
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.3, April 2013

17

A Formal Framework for Specifying Concurrent Systems

Sara Sharifirad

Department of Electrical, Computer and IT
Engineering, Qazvin Branch

Islamic Azad University
Qazvin, Iran

Hassan Haghighi
Faculty of Electrical and Computer Engineering

Shahid Beheshti University G.C.
Tehran, Iran

ABSTRACT

Concurrent systems are very complex and error-prone because

these systems are associated with significant issues, such as

deadlock, starvation, communication, non-deterministic

behavior and synchronization. Using formal methods, which

are based on mathematical notions and theories, can help to

increase confidence in these systems. Thus in recent years,

most efforts have focused to specify, verify and develop

concurrent systems formally. However, with specifications

that have been done up to this time, several important aspects

of concurrent systems, such as dynamic process creation,

scheduling, starvation and infinite execution have not been

specified formally yet. On the other hand, some specified

aspects, such as deadlock, synchronization and

communication have not been described as completely and

accurately and/or have been specified using a combination of

several different methods and formalisms so that the

integration of existing specifications needs too much effort. It

can be said unequivocally that until now there is no

specification framework, based on a single formalism, for

concurrent systems in which all important aspects of these

systems are considered. Thus, our previous work tried to

present an integrated formal specification framework of all the

extracted aspects based on just one formal notation, i.e., the Z

language. In this paper, the details of the mentioned formal

framework are first presented. Then, this framework is

evaluated from two viewpoints: comprehensiveness of the

framework itself and appropriateness of Z to write an

integrated formal specification of concurrent systems.

Keywords

Concurrent systems, Formal methods, Formal specification, Z

language

1. INTRODUCTION
The type of process interaction in concurrent systems has led

to specific features of these systems, e.g., deadlock,

starvation, scheduling and synchronization. On the other hand,

threads which are in fact lightweight processes present a

sample of cooperative processes existing inside a process.

Cooperation of threads increases concurrency, thereupon

multithreading concept is a basic context in concurrent

systems [1], [2].

A concurrent system has many possible executions, and its

behavior is usually not reproducible [3]. Unfortunately, this

feature will cause the development of concurrent systems to

be done in the case of risk. To develop a reliable concurrent

system, it is significant to deduce relationship between

properties of the concurrent system formally because the

application of formal methods to the specification of systems

is expected to increase the level of confidence in the

correctness of final programs [4]. In this way, formal methods

have been long distinguished for the requirement to formally

examine concurrent systems and provide an unambiguous

description of these systems [5].

Although different types of formal languages/methods, such

as VCD [6], TLZ [7] and Petri Net [8], have been used to

specify concurrent systems, many aspects of them, such as

dynamic process/thread creation, scheduling, infinite

execution and starvation have not been specified formally yet.

In addition, other important aspects of concurrent systems

have been specified partially and/or have been specified using

a combination of several different methods and formalisms

whose integration needs too much effort. These limitations

not only deprive us of having a comprehensive, formal

specification of concurrent systems, but also prevent us from

verifying and developing these systems formally in a simple

and cost-effective manner. Therefore, in our previous work

[9], it was tried to provide a formal specification framework,

which covers all the important aspects of concurrent systems.

Also, the proposed framework was only based on a unique

formalism. Because of the following reasons, the Z notation

was used to specify concurrent systems:

1. Z has a long history in academic and industrial areas.

2. Z is based on set theory and first order predicate logic

both of which are easy to be learnt and applied [10].

3. There are several well-known methods to verify Z

specifications and develop programs from these

specifications.

4. A main part of Z pertains to the schema notation

which facilitates the specification of large systems.

5. The notion of nondeterminism, which exists in the

behavior of concurrent systems inherently, has been

already modeled in Z [11].

This paper aims at:

1. Presenting the details of the mentioned framework.

2. Evaluating the framework based on two goals:

comprehensiveness of the framework itself and

appropriateness of the used formalism, i.e., Z, to write

an integrated formal specification of concurrent

systems.

The paper is organized as follows: section 2 reviews related

work. Section 3 presents the approach of this work to specify

concurrent systems. Evaluation of the given formal

framework is presented in section 4. Finally, the paper is

concluded in section 5.

2. RELATED WORK
As can be seen in Table 1, different methods and languages

have been so far used to specify various aspects of concurrent

systems. Also, these approaches do not cover all major

aspects of concurrent systems. Most of existing approaches of

concurrent Z specifications have placed emphasis on the use

of additional formalisms such as temporal logic, TLA and

CSP [12]–[14]. Also, in some papers the behavioral and

coordination aspects of concurrent systems are described by

combining CCS and Temporal logic and/or GCCS [15], [6].

In this paper, all important aspects of concurrent systems are

going to be specified fully based on the Z notation alone.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.3, April 2013

18

Table 1. Related work to specify concurrent systems

Issue Specified Aspect
Formalism

Ref.

NO

Communication

Static
communications

Process
communications

Buffer case
study

VCD

Z

Circus

[6]

[16]

[17]

Scheduling
Real-Time

systems
scheduling

Z [18]

Synchronization

Dinning
philosophers

problem

Buffer case
study

PZ

Z

IP

STOCS

 Circus

[19]

[7]

[20]

[21]

[17]

Deadlock
Detection/

Detection and
Recovery

PN

Z+TL

ESL

[8]

[7]

[22]

3. SPECIFICATION FRAMEWORK

FOR CONCURRENT SYSTEMS
As it has been shown in Table 1, some important aspects of

concurrent systems, such as starvation, multi-threading and

dynamic thread creation have not been specified formally yet.

In addition, some cases have been specified in a way that is

not related to the concurrent system exclusively; for example,

the specification of scheduling has been presented for real-

time systems not for concurrent systems.

In this section, the details of the comprehensive and integrated

framework given in [9] for formal specification of concurrent

systems are presented. The formal specification is presented

by referring to associated definitions in [9]. It is worth

mentioning that “Z/eves 2.1” has been used for type checking

of the finally proposed specification. The Z specification of

concurrent systems is now presented step by step:

[Address_Space, Message, PTName]

The type of address spaces, messages and names of processes

(and threads) are specified by the above given types in Z.

Address_Space, Message and PTName represent the maximal

set of all address spaces, messages and unique name of the

active entities, respectively.

According to the definition of “communication” in [9]:

Communication_Type:MessagePassing SharedVariable

The type of system communication is specified by
Communication_Type.
According to the definition of “concurrency” in [9]:

AE ::Process Thread

Active Entities (AE) in concurrent systems are processes and

threads. Since most properties of processes and threads are the

same, so they can be named as active entities. AE specifies the

type of an active entity in the system.

Type_Re ::Processor Memory Network

Type_Re specifies the type of a resource in the system. The

most common resources used in the system, i.e., processor,

memory and network are intended.

DeadLock_Approach ::DetRec AVO

IsLoop ::Yes No

According to the definition of “deadlock” in [9], to obtain a

comprehensive specification, both Deadlock Detection &

Recovery and Deadlock Avoidance approaches to deal with

deadlock are considered in this paper. Also by IsLoop,

presence or absence of loop in subset of active entities will be

determined.

Resource is specified as follows:

Resource 
Type: Type_Re; Location: seq Message


Type = Processor  Location = 

There is some Location in the network and memory as two

main resources to hold the messages. Identifier Type in

Resource schema specifies the type of the resource, and

identifier Location is associated with a sequence of Messages.

By the constraint section of Resource schema, it is

emphasized that Processors do not hold any messages.

Type of process or thread operation is specified as follows:

Type_OP ::Update ReadOnly Sender Receiver

Generally, the operation of the process or thread is divided

into four types: Update and ReadOnly are related to the

operations of writing type and reading type on shared

memory, respectively. Sender and Receiver are respectively

related to send and receive operations in message passing

systems.

Type of process or thread status is specified as follows:

STATUS ::IdleReadyRunningFinishRestart

WaitingStarvationInfiniteExe

The application of other states, i.e., Restart, Starvation and

InfiniteExe will be determined during the system operations.

According to definitions of “concurrency”, “dynamic thread

creation” and “multi-threading” in [9], Pr_Th schema is used

for Process and Thread specification as follows:





International Journal of Computer Applications (0975 – 8887)

Volume 68– No.3, April 2013

19

Pr_Th
Name: PTName; PT: AE; NR:  Resource

EM, IM:  Message; Address: Address_Space

ThreadsName:  PTName; Type: Type_OP

Status: STATUS; PreviousStatuses: seq STATUS


PT = Thread  ThreadsName = 


Each process or thread has a unique Name. Thus, Name

indicates the unique name of the active entity. PT specifies the

type of the active entity (Process or Thread). This means that

if PT is equivalent to Process, then all schema identifiers are

related to process features; otherwise, all identifiers are

associated to thread features. NR specifies the set of resources

requested by the process or thread right now. EM and IM

show the set of Export and Import messages for each process

or thread, respectively. If PT is Process, then ThreadsName

shows the set of names of threads which belong to the

process. PreviousStatuses specifies the sequence of previous

statuses of each process or thread.

According to the definition of “coordinator” in [9]:

Coordinator
Grant: Resource  Pr_Th; queue: Resource   Pr_Th



Coordinator plays an important role in the formal

specification given in this work: Active entities should be

synchronized to use shared resources. Often the

synchronization action of competing active entities is done by

locking protocols. Here, Coordinator is used to support

locking protocols. Coordinator consists of Grant and Queue

functions. According to locking protocols, if a resource is

free, the coordinator grants the resource to the requester

process; otherwise, the process is added to this resource

Queue.

To specify the range of Queue function, power set (i.e., ) is

used instead of the sequence (i.e., seq) because priority should

not be considered in the queue of resources in the

specification time. In other words, priority is an

implementation issue.

Now, the state schema of the system is specified as follows:

CS 
processes:  Pr_Th; resources:  Resource

coordinator: Coordinator; communication: Pr_Th  Pr_Th

CT: Communication_Type; DA: DeadLock_Approach

DL_chance, DL_sure: IsLoop


p: processes p. NR  resources

p, q: processes q. Address = p. Address

 (p = q  p. Name  q. ThreadsName  q. Name  p.

 ThreadsName)
p, q: processes p  q  p. Name  q. Name

CT = SharedVariable r: resources r .Type = Memory
p, q: Pr_Th p q communication

p. Type = Update  q. Type = ReadOnly
CT = MessagePassing r: resources r. Type = Network
p, q: Pr_Th p q communication

p. Type = Sender  q. Type = Receiver
r: Resource r dom coordinator. Queue

p: Pr_Th p  coordinator. Queue r  p. Status = Waiting

DA = DetRec  DL_sure Yes No
DA = AVO  DL_sure = No 

DL_chance = No  DL_sure = No

DL_chance = Yes  DL_sure Yes No

dom coordinator. Grant  resources

dom coordinator. Queue  resources

ran coordinator. Grant  processes

p:  Pr_Th p ran coordinator. Queue  p  processes

dom communication  processes 

ran communication  processes



The most important identifiers used in the state schema are as

follows: Processes indicates the set of active entities including

processes and threads which exist in the concurrent system,

and identifier resources denotes the set of active resources.

Communication relationship shows the relevance between

each active entity with other active entities. DL_chance

indicates deadlock possibility among a subset of processes

while DL_sure determines a deterministic occurrence of

deadlock among a subset of processes.

In the constraint part of the state schema, all theoretical

assumptions are expressed as formal. For example, processes

or threads should be known by each other to communicate.

Now, if the type of communication is selected as

SharedVariable in the system from the beginning, then

process or thread operation Update and ReadOnly is

considered. However, if the type of communication is

selected as MessagePassing from the beginning, then process

or thread operation Sender and receiver is considered. On the

other hand, if the Detection & Recovery approach is selected

for deadlock problem in the system, then Dl_sure value can

be Yes or No; otherwise (i.e., when Avoidance approach is

used), Dl_sure value is No.

Here is the initialization schema:

CSInit 
CS'


processes' = resources' = 

coordinator'. Grant = coordinator'. Queue = 

communication' = DL_chance' = No DL_sure' = No



Now it is shown how various operations executed in the

system are specified by operational schemas. All the specified

operations in this section include important aspects of

concurrent systems:

Create 
CS

p?: Pr_Th


p?  processes p?. PT = Process

p?. NR  resources p?. EM  Message

p?. IM = p?. Status = Idle 

p?. PreviousStatuses = 
processes' = processes p?


Create indicates creating a process in the system. In this

schema, CS expresses the change in the system state (it is

considered in other operational schemas similarly). The input

process (p?) will be created and added to the set of system

processes.

To create a process in the system, a number of preconditions

must be considered. For example, p?. PT= Process shows that

this schema just specifies the creation of processes (not

threads) in the concurrent system. When all preconditions are

satisfied, the new process is added to the collection of all

active entities.



International Journal of Computer Applications (0975 – 8887)

Volume 68– No.3, April 2013

20

DTC
CS

p?: Pr_Th; new_t?:  PTName

new_tn!:  PTName; new_create!:  Pr_Th


p? . Status = Running p?  processes

1t_set:  Pr_Th # new_t? = # t_set

t: t_set t. Name  new_t?

 t. PT = Thread  t . Address = p?. Address

 t. Status = Idle  t  processes new_create! = t_set

new_tn! = p: processes p = p?p. ThreadsName new_t?
processes' = p: processes p  p?
p: Pr_Th p . ThreadsName = new_tn! 

 p. Name = p?. Name new_create!



DTC specifies dynamic thread creation. Each process can

create one or more thread during its running; according to this

schema, a set of threads (new_t?) will be added to the current

threads of the input process (p?). This operation will cause

two changes in the processes set: first, the identifier

ThreadsName of p? will change and second, the added threads

(i.e., new_create!) must be added to all active entities (i.e.,

processes).

Terminate
CS

p!: &Pr_Th


p: processes p  processes  p . Status = Finish  p! = p

coordinator'. Grant = coordinator. Grant p!
processes' = processes \ p!


Terminate specifies finishing an active entity (process/thread)

in a normal condition. According to the definition of

nondeterminism in [9], nondeterministic effects appear in this

part of specification since more than one active entity may

have the finish status. One of the main reasons to select Z in

this work is that the nondeterminism concept has been already

added to this language. Thus, the notion of multi-schema

(when declaring p! by “&”) is used according to the notation

given in [11].

release
CS

p?: Pr_Th; r!:  Resource; new_nr!:  Resource

new_tn!:  PTName


p?  processes p?. Status = Restart

r! = coordinator. Grant ~p?
coordinator' . Grant = coordinator. Grant p?
new_nr! = p: processes p = p? p. NR  r!
new_tn! = p: processes p = p?  p. PT = Process

p . ThreadsName \ p?. ThreadsName
processes' = p: processes p  p?p: Pr_Th

p . NR = new_nr! p. ThreadsName = new_tn!

 p. Name = p?. Name

Release specifies abandonment of all the granted resources to

a specific active entity (p?) in abnormal conditions (e.g., when

an active entity is entered to the restart mode). The incidence

of abnormal condition will be specified in synchronization

schema. In such circumstances, the released resources should

be added to the set of active entity requirements (i.e., NR).



ReleaseOneResource 
CS

p?: Pr_Th; r?: Resource


p? . Status = Running r? p? coordinator . Grant

coordinator'. Grant = coordinator. Grant \ r? p?


If an active entity does not need its current resource, then

releases it. ReleaseOneResource specifies liberation of

resource (r?) that is not needed for the input active entity (p?)

anymore.

ND_Req 
CS

r?: Resource; p!: Pr_Th


p!  coordinator. Queue r?

r?  resources  dom coordinator . Grant

coordinator’ Grant  coordinator Grant r? p!
coordinator'  Queue r?  coordinator Queue r?  p!


When several active entities compete for the same resource,

nondeterministic effects appear since there may exist more

than one active entity which can acquire a specific resource at

the same time. Thus, the notion of multi-schema is used for

specifying ND-Req. In this sense, ND-Req is a

nondeterministic schema since the result of selecting one of

the active entities in a resource queue is uncertain. More

precisely, the selection will be done based on different

priorities in the implementation phase.

ND-Req is used in two operational schemas, i.e.,

Assign_Resource and Sinscheduling as follows:

Assign_Resource
ND_Req

new_nr!:  Resource


new_nr!  p: processes p  p! p NR \ r?
processes' = p: processes p  p!
p: Pr_Th p . NR = new_nr!  p. Name = p! . Name

Assign_Resource includes the nondeterministic schema “ND-

Req” above to complete the specification of resource

allocation to an active entity existing in the resource queue.

In the proposed specification framework, two modes of

scheduling are specified: SinScheduling and CoScheduling

below are scheduling schemas for single-processor systems

and multi-processor systems, respectively:

SinScheduling
ND_Req


r?. Type = Processor p!. Status = Ready

processes' = p: processes p  p!p: Pr_Th

p . Name = p!. Name p. PT = p! . PT

 p. NR = p!. NR \ r? p . EM = p!. EM

 p. IM = p!. IM p. Address = p!. Address

 p. ThreadsName = p!. ThreadsName

 p. Type = p!. Type p. Status = Running

 p. PreviousStatuses = p!. PreviousStatuses Ready


As known, several scheduling algorithms exist on a range of

different criteria (The logic of these algorithms is used here).

Thus, nondeterministic concept is used in this part of the

proposed specification framework. r?.Type = Processor

shows that the input resource must be of type “processor”.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.3, April 2013

21

According to the definition of “scheduling” in [9], fairness

will be guaranteed by a suitable scheduler in the

implementation phase, not in the specification stage.

In multi-processor systems, “Coscheduling” should be used

because otherwise, active entities will be faced with large

communication delays. In the proposed framework, Gang

scheduler idea [9] is used. According to Gang idea, dependent

active entities are executed simultaneously.

CoScheduling 
CS

p?: Pr_Th; r_set?:  Resource


p?  processes p?. Status = Ready

r: resources r  r_set? r. Type = Processor

r_set?  resources \ dom coordinator . Grant

# p?. ThreadsName = # r_set?

r: Resource r  r_set?

coordinator' . Grant = coordinator . Grant r p?
processes' = p: processes p  p?p: Pr_Th

p . Name = p?. Name p. PT = p?. PT

 p. NR = p?. NR \ r_set? p. EM = p? . EM

 p. IM = p?. IM p. Address = p?. Address

 p. ThreadsName = p?. ThreadsName

 p. Type = p?. Type p. Status = Running

 p. PreviousStatuses = p?. PreviousStatuses Ready


According to the definition of “scheduling” in [9], in

CoScheduling schema, dependent active entities are gangs

scheduled to run simultaneously on distinct processors. Each

process consists of a number of interacting threads.

In this part of specification, r_set? is an input set of resources,

and the type of resources is “processor”. This is one of the key

preconditions for CoScheduling schema. One basic

precondition for the Gang scheduler is that the number of free

processors is equal to the number of dependent threads in p?

(A free processor is a processor that does not belong to any

active entity currently). After assignment, the next state of

processes (i.e., processes’) will be changed similar to

SinScheduling nearly.

SLS
CS

r?: Resource; hun_p!: Pr_Th


p: processes p  coordinator . Queue r?

p. PreviousStatuses # p. PreviousStatuses 1

i: 1.. # p. PreviousStatuses 
p. PreviousStatuses i = Waiting hun_p! = p

processes' = p: processes p  hun_p!
p: Pr_Th p . Name = hun_p!. Name

 p. PT = hun_p!. PT  p. NR = hun_p!. NR

 p. EM = hun_p!. EM p. IM = hun_p!. IM

 p. Address = hun_p!. Address

 p. ThreadsName = hun_p!. ThreadsName

 p. Type = hun_p!. Type p. Status = Starvation

 p. PreviousStatuses = hun_p!. PreviousStatuses Waiting


SLS schema specifies Standstill-Livelock-Starvation state

based on the definition of “standstill” in [9]. In addition,

according to the definition of “starvation” in [9], if all

previous statuses of a process are Waiting, then the process

status is starvation. Meeting several preconditions is necessary

to specify “starvation control problem”:

 The process (thread) should have some Previous

Statuses based on which a decision will be made.

p. PreviousStatuses 
 Minimum number of “PreviousStatuses” should be

“2”. For the first case of Waiting mode, the decision is

not the Starvation mode:

p. PreviousStatuses 1
 The value of all previous statuses of the input process

(thread) for a requested resource should be Waiting

mode:

i: 1.. # p.PreviousStatuses  p.PreviousStatuses i =

Waiting
If the above conditions hold, then the Starvation conditions

are established and PreviousStatuses of the active entity

should be changed.

SLI
CS

p?: Pr_Th; shift_amount?, length!: 


p?  processes p?. Status = Restart

p?. PreviousStatuses 
length! = # p? . PreviousStatuses

1 shift_amount?  length! – 1

length! - shift_amount? + 1 mod2 = 0

p?. PreviousStatuses shift_amount? = Running

 p?. PreviousStatuses length! = Restart

i: 1 .. length!2 * i - 2 + shift_amount?  length! - 1

p? . PreviousStatuses 2 * i - 2 + shift_amount? = Running

2 * i - 1 + shift_amount?  length!

 p? . PreviousStatuses 2 * i - 1 + shift_amount? = Restart

processes' = p: processes p  p?p: Pr_Th

p . Name = p?. Name p. PT = p?. PT

 p. NR = p?. NR p. EM = p?. EM

 p. IM = p?. IM p. Address = p?. Address

 p. ThreadsName = p?. ThreadsName

 p. Type = p?. Type p. Status = InfiniteExe

 p. PreviousStatuses = p?. PreviousStatuses Restart


SLI schema specifies Standstill-Livelock-Infinite based on the

definition of “standstill” in [9]. Meeting several preconditions

is necessary to specify “Infinite execution”:

 The current state of the input process (thread) should

be Restart.

 Considering a shift number (shift_amount?) on the

sequence of PreviousStatuses as a starting point.

 Calculating the total length (length!) of the

PreviousStatuses sequence.

 Having a Running condition in the shift_amount?

position on PreviousStatuses sequence.

 Having a Restart condition in the length! position on

PreviousStatuses sequence.

Continuously switch between the two conditions Restart and

Running from determined position of shift_amount? to

determine the position of length! .

Now according to the definition of “standstill” in [9], livelock

situation is specified as follows:

LiveLock 
SLS

SLI


CircularCondition
CS

p?: Pr_Th; r?: Resource; len_set!: 


r?  resources

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.3, April 2013

22

p_set: seq processes len_set! = # p_set

 p? = p_set len_set! i: 1.. len_set! - 1

r: resources r  r?

r p_set i + 1 coordinator. Grant

rp_set i coordinator. Queue
r? p_set 1 coordinator . Grant  r?  p? . NR

DL_chance' = Yes


CircularCondition checks deadlock possibility in a subset of

active entities. The output of this schema is either Yes or No.

p? and r? are input active entity and resource, respectively. p?

intends to access r?. This access can cause deadlock in the

system under certain conditions.

Synchronization
CircularCondition


p?  processes

p?. Status Finish Waiting Restartr?  p? . NR

r?  resources \ dom coordinator . Grant

 coordinator’. Grant = coordinator. Grant r? p?
processes' = p: processes p  p?p: Pr_Th

p . Name = p?. Name p. PT = p?. PT

 p. NR = p?. NR \ r? p . EM = p? . EM

 p. IM = p?. IM p. Address = p?. Address

 p. ThreadsName = p?. ThreadsName

 p. Type = p?. Type p. Status Ready Running
 p. PreviousStatuses = p?. PreviousStatuses p?. Status
r? dom coordinator. Grant

 DA = DetRec  DL_chance Yes No

 DA = AVO  DL_chance = No

 coordinator’. Queue r? = coordinator. Queue r? p?
processes' = p: processes p  p?p: Pr_Th

p . Name = p?. Name p. PT = p?. PT

 p. NR = p?. NR p. EM = p?. EM

 p. IM = p?. IM  p. Address = p?. Address

 p. ThreadsName = p?. ThreadsName

 p. Type = p?. Type  p. Status = Waiting

 p. PreviousStatuses = p?. PreviousStatuses p? . Status
DA = DetRec  DL_chance = Yes  DL_sure' = Yes

DA = AVO  DL_chance = Yes  coordinator’. Queue

 r? = coordinator. Queue r?

processes' = p: processes p  p?p: Pr_Th

p . Name = p?. Name p. PT = p?. PT

 p. NR = p?. NR p. EM = p?. EM

 p. IM = p?. IM p. Address = p?. Address

 p. ThreadsName = p?. ThreadsName

 p. Type = p?. Type  p. Status = Restart

 p. PreviousStatuses = p?. PreviousStatuses p?. Status


According to the definition of “synchronization” in [9], active

entities need to be synchronized. In Synchronization schema,

synchronization is done based on two types of deadlock

approaches. CircularCondition schema has been also used in

this schema. p?.Status Finish Waiting Restartshows

unauthorized statuses for p?.

As mentioned, if the value of DL_chance is Yes in Detection

& Recovery approach, then deadlock will occur definitely.

Deadlock_Recovery specifies deadlock problem elimination:





DeadLock_Recovery
Synchronization

p_loop?:  Pr_Th; p!:& Pr_Th


DA = DetRec DL_sure = Yes

p: Pr_Th p  p_loop? p . Status = Waiting

p!  p_loop?

processes' = p: processes p  p!p: Pr_Th

p . Name = p!. Name p. PT = p!. PT

 p. NR = p!. NR p. EM = p!. EM

 p. IM = p!. IM  p. Address = p!. Address

 p. ThreadsName = p!. ThreadsName

 p. Type = p!. Type p. Status = Restart

 p. PreviousStatuses =

 p?. PreviousStatuses WaitingDL_sure' = No



If the deadlock approach is Detection & Recovery, then it is

resolved by killing a process or thread existing in the detected

cycle randomly (or nondeterministically); hence, the notion of

multi-schema was used when specifying DeadLock_Recovery.

p_loop? shows a set of involved active entities in the loop of

deadlock, and p! shows a nondeterministic representative of

p_loop?. Finally, when the loop is not present, the value of

DL_sure will be No.

According to the definition of “communication” in [9], active

entities can be communicated in two methods: by message

passing or shared variables. Communication by message

passing can be either synchronous or asynchronous.

Asynchronous_Communication 
CS

p?: Pr_Th; r?: Resource; new_M!:  Message


CT = MessagePassing r? . Type = Network

r? p? coordinator . Grant



In the asynchronous message passing, a message can be

placed on a network location, provided that there is some

empty space in the network to hold the message; it is assumed

that each network has an unlimited amount of space.

Operation schemas As_Send_Me and As_Receive_Me below

specify operations of sending and receiving messages,

respectively:

As_Send_Me 
Asynchronous_Communication

m?: Message


q: processes p? q communication

m?  p? . EM r? p? coordinator . Grant

new_M! = p: processes p = p? p . EM \ m?
processes' = p: processes p  p?
p: Pr_Th p . EM = new_M!  p. Name = p? . Name
resources' = r: resources r  r?r: Resource

r . Type = r?. Type  r. Location = r?. Location m?


As_Receive_Me
Asynchronous_Communication

m!: Message


q: processes q p? communication

r?. Location m! = head r?. Location

new_M! = p: processes p = p? p. IM m!
processes' = p: processes p  p?

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.3, April 2013

23

p: Pr_Th p . IM = new_M!  p. Name = p? . Name
resources' = r: resources r  r?r: Resource

r . Type = r?. Type  r. Location = tail r?. Location


As it is clear from the name of “synchronous

communication”, “send” and “receive” operations are done

simultaneously:

Synchronous_SeAndRe
CS

p?, q?: Pr_Th; m?: Message;

new_pm!, new_qm!:  Message


CT = MessagePassing p? q? communication

m?  p? . EM

new_pm! = p: processes p = p? p . EM \ m?
new_qm! = q: processes q = q? q . IM m?
processes' = p: processes p  p?  p  q?
p: Pr_Th p . EM = new_pm!  p . Name = p?. Name
q: processesq. IM = new_qm!  q.Name = q?. Name

Synchronous_SeAndRe schema specifies synchronous

message passing. According to the definition of

“communication” in [9], in the synchronous message passing,

the sender process delays until the receiving process is ready

to receive the message. Messages do not have to be saved in a

location of the network.

Communication via shared variables is specified as follows:

SharedMemory_Communication 
CS

p?: Pr_Th; r?: Resource; new_M!:  Message

new_r!: Resource


CT = SharedVariable r? . Type = Memory

r? p? coordinator . Grant



Write_Message
SharedMemory_Communication

m?: Message


q: processes p? q communication

m?  p? . EM

new_M! = p: processes p = p? p . EM \ m?
processes' = p: processes p  p?p: Pr_Th 
 p . EM = new_M!  p. Name = p? . Name
resources' = r: resources r  r?r: Resource

r . Type = r?. Type  r. Location = r?. Location m?

Read_Message 
SharedMemory_Communication

m!: Message


q: processes q p? communication

r?. Location m! = head r?. Location

new_M! = p: processes p = p? p. IM m!
processes' = p: processes p  p?
p: Pr_Th p . IM = new_M!  p. Name = p?. Name
resources' = r: resources r  r?r: Resource

r . Type = r?. Type  r. Location = tail r?. Location

According to the definition of “communication” in [9], in

shared memory systems, processes/threads communicate with

each other using two operations write and read on shared

variables; these operations are similar to send and receive in

the asynchronous communication.

The next section investigates comprehensiveness of the

presented framework. It also discusses on the appropriateness

of Z to being used for formal specification of concurrent

systems.

4. EVALUATION OF THE PRESENTED

FRAMEWORK
As mentioned in section 3, the final specification has been

type checked and consistency checked using a well-known Z

type checker, i.e., Z/eves 2.1. Thus, the presented

specification in this paper is structured correctly. To evaluate

the proposed specification framework in terms of

comprehensiveness, Table 2 is presented. In this table, the

proposed framework is compared with the previous related

work; see section 2 for reviewing related work.

The second column of table 2 shows the results of previous

work and related shortcomings. The third column implies the

comprehensiveness of the framework presented in this paper

in comparison to related work. In several parts of the fourth

column, “making nondeterminism explicit” was considered as

one of the advantages of the proposed framework because as

the findings of [11] show, when nondeterministic behavior of

concurrent systems is specified explicitly, all interleaved

executions of concurrent processes will be extractable in the

final program. In other words, it will be possible to develop

real, concurrent systems formally; see [4] and [11] for more

details.

Table 2. Comparing specified aspects in the proposed

framework with other related work

Aspect
Related

work

The proposed

specification

framework

Advantages of

the proposed

specification

framework

D
y

n
a
m

ic
 P

ro
c
e
ss

 /
 T

h
r
ea

d

C
r
e
a

ti
o

n

Lack of a

suitable

specification

Thread creation

dynamically:

create and

terminate active

entity

Multi-threading

specification;

Suitable

specification for

concurrency

concept; Making

nondeterminism

explicit

C
o

m
m

u
n

ic
a

ti
o

n

Only

message

passing

specification

Both Message

passing and

Shared variable

specification

Comprehensive

specification of

the

communication

S
y

n
c
h

ro
n

iz
a

ti
o

n

Specification

of classical

case studies

Precise

specification of

issues related to

assign

resources

Conjunction with

the approach to

deal with deadlock

implicitly; Making

nondeterminism

explicit

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.3, April 2013

24

S
ta

n
d

st
il

l

(D
e
a

d
lo

c
k

 &
 l

iv
e

lo
c
k

) Only

deadlock

detection

specification

Comprehensive

specification of

deadlock and

livelock

Making

nondeterminism

explicit;

Appropriately

descriptive

approach

S
c
h

e
d

u
li

n
g

 Lack of a

suitable

specification

for

concurrent

systems

Specification of

scheduling in

single processor

systems and

using the Gang

scheduler idea

to specify

scheduling in

multi-processor

systems

Scheduling

specification in

single processor

and multi-

processor systems;

No delay in

communication;

Making

nondeterminism

explicit in single

processor systems

As another benefit of the proposed work, it should be

reemphasized that the work is based on a single formalism,

i.e., Z. The following samples are extracted from Table 1 in

order to show how various formalisms have been used in

previous work in order to specify some aspects of concurrent

systems:

1. Synchronization specification: Z and Petri Net [19]

2. Deadlock detection specification: Z and Temporal

Logic [8]

3. Buffer case study specification: Circus (Z and CSP)

[17]

Unlike cases 1 and 2 above, in the proposed framework,

synchronization and deadlock detection are specified only

using the Z notation: since nondeterminism is specified in

this framework explicitly, the Z notation can be used

independently. In the specification of buffer (case 3 above),

there are synchronization and communication concepts

implicitly. In this case study, a combination of Z and CSP

has been used since Z was unable to specify the dynamic

behavior of concurrent systems at that time. In the following,

it is shown how one can use the framework of this paper to

specify operations which are equivalent with those

operations existing in the buffer case study, i.e., input and

output operations (see [17] for more details):

 Input 
Synchronization

Write_Message



Output 
Read_Message


In this way, the presented framework is able to specify

behavioural and functional aspects of the buffer case study

only based on the Z notation. Moreover, due to existence of

synchronization in input schema, one important issue, i.e.,

assigning resources, has also been considered here. This issue

is not considered in [17].

In summary, the presented specification framework is only

dependent on a single notation, i.e., Z. This feature releases us

from integration efforts to have a comprehensive specification

of concurrent systems. Also, several existing methods for

formal verification and formal program development, which

rely on Z specifications, can be applied to the provided

specification.

5. FUTURE WORK
One goal to specify systems formally is developing programs

from formal specifications. Z has been chosen since it has an

interpretation in Martin-Löf’s theory of types [11]. Thus, as a

future work, the authors are going to translate the Z

specification of a concurrent system into its counterpart in

Martin-Löf’s theory of types and then drive a functional

program from a correctness proof of the resulting type

theoretical specification. In this way, it will be possible to

provide a completely formal way to specify and develop

concurrent systems.

6. REFERENCES
[1] P. Brinch Hansen, “Operating System Principles”,

Prentic-Hall, 1973.

[2] A. J. Bijoy, D. P. Hiren, “Generating Multi-Threaded

Code from Polychronous Specifications”,

ElsevierJournal, ENTCS, vol. 238, 2009, 57–69.

[3] J. Bacon, J. Van der Linden, “Concurrent Systems: an

integrated approach to operating systems, distributed

systems and databases”, 3nd Edition, international

computer science series, 2002.

[4] H. Haghighi, “Towards a Formal Framework for

Developing Concurrent Programs: Modeling Dynamic

Behavior”, Proc. AICCSA-10, Tunisia, 2010.

[5] S. C. Harpreet, W. B. John, M. W. Jeanette, “Formal

Specification of Concurrent Systems”, Advances In

Engineering Software, vol. 30, 1999, 211–224.

[6] D. Safranek, “Visual Specification of Systems with

Heterogeneous Coordination Models”, ENTCS, 2007

107-121.

[7] P. Stocks, K. Raymond, D. Carrington, A. Lister,

“Modeling Open Distributed Systems in Z”, Elsevier

computer Communications, vol. 15, 1992, 103–113.

[8] D. E. Cook, “Formal Specification of Resource-Deadlock

Prone Petri Net”, Elsevier Systems Software Journal, vol.

11, 1990, 53–69.

[9] S. Sharifirad, H. Haghighi, “A Comprehensive and

Integrated Framework for Formal Specification of

Concurrent Systems”, International conference on

software engineering and technology, Venice, Italy,

November 2011.

[10] J. Woodcock, J. Davies, “Using Z, Specification,

Refinment and Proof”, Prentic Hall, 1996.

[11] H. Haghighi, S. H. Mirian-Hosseinabadi,

“Nondeterminism in Constructive Z”, Fundamenta

Informatica, vol. 88, 2008, 109-134.

[12] R. Duke, I. J. Hayes, P. King, G. A. Rose, “Protocol

Specification and Verification Using Z”, In IFIP Eighth

International Workshop on Protocol Specification,

Testing and Verification, North-Holland, 1988, 33–46.

[13] L. Lamport, “TLZ”, Proceeding of the 8th Z Users

Meeting, Cambridge, Springer Verlage, 1994.

[14] J. C. P.Woodcook, C. Morgan, “Refinement of State-

Based Concurrent Systems”, Proc. VDM 90, Springer

Verlag, 1990, 341–351.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.3, April 2013

25

[15] D. Safranek, “Visual Specification of Concurrent

Systems”, IEEE International Conference on Automated

Software Engineering, 2003.

[16] A. S. Evans, “Specifying & Verifying Concurrent

Systems Using Z”, In: ISCIS XI, Turkey, 1994.

[17] J. C. P. Woodcock, A. Cavalcanti, “A Concurrent

Language for Refinement”, Irish Workshop in Formal

Methods, 2001, 1–16.

[18] M. Pilling, A. Buruns, K. Raymond, “Formal

Specification and Proof of Inheritance Protocols for

Real_Time Scheduling”, IEEE Software Engineering

Journal, vol. 5, 1990, 236-279.

[19] X. He, “PZ nets_a formal method integrating petrinets

whit Z”, Elsevier Information and Software Technology,

vol. 43, 2001, 1–18.

[20] C. Chu Chiang, “Development of Concurrent Systems

through Coordination”, IEEE International Conference

on Information Technology, 2005.

[21] V. Kumar Garg, “Specification and Analysis of

Concurrent Systems Using STOCS model”, IEEE

Computer Networking Symposium, 1988.

[22] N. D. Francesco, G. Vaglini, “Modular Verification of

Correctness Properties in Enviorment for Concurrent

Systems Specification Deadlock Case”, Elsevier

Information Software Technology, vol. 32, 1990, 133–

148.

