
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.25, April 2013

10

Performance Evaluation of RC6, Blowfish, DES, IDEA,
CAST-128 Block Ciphers

Kirti Aggarwal

Department of Computer
Science and Engineering

National Institute of Technology
Jalandhar, Punjab, India

 Jaspal Kaur Saini
Department of Computer
Science and Engineering

National Institute of Technology
Jalandhar, Punjab, India

Harsh K. Verma, PhD.
Department of Computer
Science and Engineering

National Institute of Technology
Jalandhar, Punjab, India

ABSTRACT
Rapid growth of internet applications fueled the need for

securing information and computers. Encryption algorithms

play vital role to secure information. This paper provides

comparison of most common encryption algorithms namely:

DES, Blowfish, CAST-128, RC6, IDEA. Performance

evaluation is carried out on the basis of execution time and

throughput. These algorithms has different key and block size.

DES, IDEA, Blowfish, CAST-128 has block size of 64 bits.

DES has key Size of 64 bits while IDEA, Blowfish, CAST-

128 has key size of 128 bits. RC6 has Key size and Block size

of 128 bits. Simulation results are provided to demonstrate the

effectiveness of each algorithm.

General Terms
Cryptography, Symmetric encryption, DES, Blowfish, CAST-

128, RC6, IDEA

Keywords
Cryptography, Symmetric encryption, DES, Blowfish, CAST-

128, RC6, IDEA

1. INTRODUCTION
The art and science of keeping messages secure is

cryptography, and it is practiced by cryptographers[1]. Many

encryption algorithms are available which can be categorized

as symmetric key encipherment and asymmetric key

encipherment. Symmetric key encipherment involves one key

which is used for both encryption and decryption.

Asymmetric key encipherment uses different keys for

encryption and decryption.

Fig 1. Symmetric encryption and decryption

Symmetric key algorithms can be further divided into: stream

and block cipher[1]. DES[2], Blowfish[3], CAST-128[4],

RC6[5], IDEA[6] are symmetric key block ciphers, and

explained in further sections.

1.1 DES
The Data Encryption Standard (DES) was developed in the

1970s by the National Bureau of Standards with the help of

the National Security Agency [2]. DES takes 64 bit plaintext

which creates 64 bit ciphertext. The heart of DES is the DES

function.DES function applies a 48 bit key to the rightmost 32

bits to produce a 32 bit output. This function is made up of

four operations: an expansion permutation, a whitener, a

group of S boxes and a straight permutation. DES is now

considered to be insecure for many applications. This is

chiefly due to the 56-bit key size being too small.

1.2 Blowfish
Blowfish is a keyed, symmetric block cipher, designed in

1993 by Bruce Schneier. Schneier designed Blowfish as a

general-purpose algorithm, intended as an alternative to the

aging DES. Blowfish has a 64-bit block size and a

variable key length from 32 bits up to 448 bits. 18 sub-keys

are derived from a single initial key [3]. It requires total 521

iterations to generate all required subkeys. It is a 16-

round Feistel cipher and uses large key-dependent S-boxes. In

structure it resembles CAST-128, which uses fixed S-boxes.

Blowfish performs well for applications in which keys does

not change often.

1.3 CAST-128
CAST-128 is a 12 or 16-round Feistel network with a 64-

bit block size and a key size of between 40 to 128 bits (but

only in 8-bit increments) [4]. The full 16 rounds are used

when the key size is longer than 80 bits. Components include

large 8×32-bit S-boxes based on bent functions, key-

dependent rotations, modular addition and subtraction, and

XOR operations. There are three alternating types of round

function, but they are similar in structure and differ only in the

choice of the exact operation (addition, subtraction or XOR)

at various points. Although Entrust holds a patent on the

CAST design procedure, CAST-128 is available worldwide

on a royalty-free basis for commercial and non-commercial

uses

1.4 RC6
RC6 is a block cipher based on RC5 and designed by Rivest,

Sidney, and Yin for RSA Security [5]. Like RC5, RC6 is a

parameterized algorithm where the block size, the key size,

and the number of rounds are variable; again, the upper limit

on the key size is 2040 bits [7].RC6 was designed to meet the

requirements of the Advanced Encryption Standard

(AES) competition. RC6 proper has a block size of 128 bits

and supports key sizes of 128, 192 and 256 bits, but, like RC5.

RC6 can be viewed as interweaving two parallel RC5

encryption processes. It uses an extra multiplication operation

not present in RC5 in order to make the rotation dependent on

every bit in a word.

Shared Key

Plain Text Cipher Text

Encryption Sender

Plain Text

Receiver Decryption

Same Key is used to encrypt
and decrypt message

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.25, April 2013

11

1.5 IDEA
International Data Encryption Algorithm (IDEA) is a block

cipher designed by James Massey of ETH Zurich and Xuejia

Lai and was first described in 1991. The algorithm was

intended as a replacement for the Data Encryption

Standard (DES) [6]. IDEA is a minor revision of an

earlier cipher, Proposed Encryption Standard (PES).IDEA

was originally called Improved PES (IPES). IDEA operates

on 64-bit blocks using a 128-bit key, and consists of a series

of eight identical transformations and an output

transformation.

2. DES (Data Encryption Standard)
DES is an algorithm that takes a fixed-length string of

plaintext bits and transforms it into ciphertext bit string of the

same length. In the case of DES, the block size is 64 bits. DES

also uses a key to customize the transformation. The key

consists of 64 bits; however, only 56 of these are actually used

by the algorithm. Eight bits are used solely for checking

parity, and are thereafter discarded.

2.1 Key Generation
Initially, 56 bits of the key are selected from the initial 64 by

Permuted Choice 1 (PC-1) the remaining eight bits are either

discarded or used as parity check bits. The 56 bits are then

divided into two 28-bit halves; each half is thereafter treated

separately. In successive rounds, both halves are rotated left

by one or two bits (specified for each round), and then 48

subkey bits are selected by Permuted Choice 2 (PC-2) 24 bits

from the left half, and 24 from the right.

Fig 2. DES Key Generation

3. Encryption and Decryption
The algorithm's overall structure is shown in Figure 1: there

are 16 identical stages of processing, termed rounds. There is

also an initial and final permutation, termed IP and FP.

Before the main rounds, the block is divided into two 32-bit

halves and processed alternately; this criss-crossing is known

as the Feistel scheme. The Feistel structure ensures that

decryption and encryption are very similar processes the only

difference is that the subkeys are applied in the reverse order

when decrypting. The rest of the algorithm is identical.

The ⊕ symbol denotes the exclusive-OR (XOR) operation.

The F-function scrambles half a block together with some of

the key. The output from the F-function is then combined with

the other half of the block, and the halves are swapped before

the next round. After the final round, the halves are swapped;

this is a feature of the Feistel structure which makes

encryption and decryption similar processes.

Fig 3. DES Encryption and DecryptionBLOWFISH

It is suitable for applications where the key does not change

often, like communication link or an automatic file encryptor.

Blowfish symmetric block cipher algorithm encrypts block

data of 64-bits at a time. It follows the feistel network and

 this algorithm is divided into two parts. Key-generation &

Data Encryption[8]

3.1 Key Generation
Blowfish uses a large number of subkeys. These keys must be

precomputed before any data encryption or decryption [9].

The P-array consists of 18 32-bit subkeys:

P1, P2,..., P18.

 There are four 32-bit S-boxes with 256 entries each:

S1,0, S1,1,..., S1,255;

S2,0, S2,1,..,, S2,255;

S3,0, S3,1,..., S3,255;

S4,0, S4,1,..,, S4,255.

FP

F

Ciphertext(64 bits)

F

F

For 16 rounds

IP

F

Plaintext(64 bits)

PC1

<<< <<<

<<< <<<

<<<

<<< <<<

<<<

PC2

PC2

PC2

PC2

Subkey 1
(48 bits)

Subkey 16
(48 bits)

Subkey 15
(48 bits)

Subkey 2
(48 bits)

Key(64 bits)

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.25, April 2013

12

Fig 4: The Feistel structure of Blowfish

ALGORITHM

1. Initialize first the P-array and then the four S-boxes, in

order, with a fixed string. This string consists of the

hexadecimal digits of pi (less the initial 3).

 etc.

2. XOR with the first 32 bits of the key, XOR with

the second 32-bits of the key, and so on for all bits of the

key (possibly up to). Repeatedly cycle through the

key bits until the entire P-array has been XORed with

key bits. (For every short key, there is at least one

equivalent longer key; for example, if A is a 64-bit key,

then AA, AAA, etc., are equivalent keys.)

3. Encrypt the all-zero string with the Blowfish algorithm,

using the subkeys described in steps (1) and (2).

4. Replace and with the output of step (3).

5. Encrypt the output of step (3) using the Blowfish

algorithm with the modified subkeys.

6. Replace and with the output of step (5).

7. Continue the process, replacing all entries of the array,

and then all four S-boxes in order, with the output of the

continuously changing Blowfish algorithm.

In total 521 iterations are required to generate all required

subkeys. Applications can store the subkeys rather than

execute this derivation process multiple times.

3.2 Encryption:-
INPUT

64 bit data element.

OUTPUT

64 bit cipher text.

ALGORITHM

1. Divide x into two 32-bit halves: ,

2. Then, for

3.

4.

5. Swap xL and xR

6. After the sixteenth round, swap and again to undo

the last swap.

7. Then, and

8. Finally, recombine and to get the ciphertext.

3.3 Decryption
Decryption is exactly the same as encryption, except that P1,

P2…P18 are used exactly in reverse order.

4. CAST-128
CAST has a classical Feistel network consisting of 16 rounds

and operating on 64-bit blocks of plaintext to produce 64-bit

blocks of cipher text. The key size varies from 40 bits to 128

bits in 8-bit increments.

Fig 5. Cast-128 Encryption and Decryption

4.1 Key Generation
Three different round functions are used in CAST-128. The

rounds are as follows (where "D" is the data input to the f

function and "Ia" - "Id" are the most significant byte through

least significant byte of I, respectively). Note that "+" and "-"

are addition and subtraction modulo 2^32, "^" is bitwise

XOR, and "<<<" is the circular left- shift operation.

Type 1:

Type 2:

Type 3:

14 more
rounds

P1 P1

7

F

P1

6

F

P1

Cipher Text

F

F

F

Encryption

K0

K1

Kn

etc…

Plain Text

Plain Text

F

F

F

Decryption

Kn

Kn-1

K0

etc…

Cipher Text

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.25, April 2013

13

 Rounds 1, 4, 7, 10, 13, and 16 use function Type 1.

 Rounds 2, 5, 8, 11, and 14 use function Type 2.

 Rounds 3, 6, 9, 12, and 15 use function Type 3.

4.2 Encryption:-
The full encryption algorithm is given in the following four

steps.

INPUT: plaintext ; key .

OUTPUT: ciphertext .

1. Split the plaintext into left and right 32-bit halves

 and .

2. for , compute and as follows:

3. Exchange final blocks and concatenate to form

the ciphertext.

4.3 Decryption
Decryption is identical to the encryption algorithm given

above, except that the rounds (and therefore the subkey pairs)

are used in reverse order to compute () from

().

5. RC6
RC6 is a fully parameterized family of encryption algorithms.

A version of RC6 is more accurately specified as RC6-w r

b where the word size is w bits, encryption consists of a

nonnegative number of rounds r, and b denotes the length of

the encryption key in bytes. Since the AES submission is

targeted at w = 32 and r = 20, we shall use RC6 as shorthand

to refer to such versions. When any other value of w or r is

intended in the text, the parameter values will be specified as

RC6-w r. Of particular relevance to the AES effort will be the

versions of RC6 with 16-, 24-, and 32-byte keys [7].

Fig 6. RC6 Encryption

For all variants, RC6-w r b operates on units of four w-bit

words using the following six basic operations.

 integer addition modulo

 integer subtraction modulo

 ⊕ bitwise exclusive-or of w-bit words

 integer multiplication modulo

 Rotate to the left by the amount given by the least

significant bits of

 Rotate A to the right, similarly

 parallel assignment

5.1 Key Expansion
Use two magic constants:-

Where:-

 …….(base of natural logarithm)

 ……..()

 is the odd integer nearest to .

INPUT

 byte key that is preloaded into word array

 denotes the no of rounds.

OUTPUT

 w-bit round keys .

ALGORITHM

 –

For do

5.2 Encryption
Four w-bit registers A, B, C, D contain the initial input plain-

text as well as the output ciphertext at the end of encryption.

The first byte of plaintext is placed in the least significant byte

of A, the last byte of plaintext is placed into the most

significant byte of D [5].

INPUT

Plaintext stored in four w-bit input registers

Number r of rounds w-bit round keys

OUTPUT

C B A D

S[1] +

<<

<

<<

<

+

F

S[0]

lg w lg w

F

<<

<
<<

<

+ S[2i] +

+ +

D B C A

S[2i+1]

S[2r+2] S[2r+3]

Repeat
for r

rounds

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.25, April 2013

14

Ciphertext stored in

ALGORITHM

1.

2.

3.

4.

5.

6. ⊕

7. ⊕

8.

9.

10. C = C + S[2r + 3]

5.3 Decryption
For decryption of cipher-text load these cipher text into

registers A, B, C, D Algorithm uses integer subtraction

modulo 2w and right rotation on registers for getting plain

text.

INPUT

Ciphertext stored in four w-bit input registers

Number r of rounds

w-bit round keys

OUTPUT

Plaintext stored in

ALGORITHM

1.

2.

3.

4.

5.

6.

7. ⊕

8. ⊕

9.

10.

6. IDEA
IDEA operates on 64-bit blocks using a 128-bit key, and

consists of a series of eight identical transformations and an

output transformation. The processes for encryption and

decryption are similar.

6.1 Encryption and Decryption
For each of the eight complete rounds, the 64-bit plaintext

block is split into four 16-bit sub-blocks: X1, X2, X3, X4. The

64-bit input block is the concatenation of the subblocks [9]:

X1 || X2 || X3 || X4, where || denotes concatenation. Each

complete round requires six subkeys. The 128-bit key is split

into eight 16-bit blocks, which become eight subkeys. The

first six subkeys are used in round one and the remaining two

subkeys are used in round two.

Each round uses each of the three algebraic operations:

bitwise XOR, addition modulo 216, and multiplication modulo

216 + 1.

ALGORITHM

(Multiply means multiplication modulo 216 + 1,

Add means addition modulo 216)

1. Multiply X1 and the first subkey Z1.

2. Add X2 and the second subkey Z2.

3. Add X3 and the third subkey Z3.

4. Multiply X4 and the fourth subkey Z4.

5. Bitwise XOR the results of steps 1 and 3.

6. Bitwise XOR the results of steps 2 and 4.

7. Multiply the result of step 5 and the fifth subkey Z5.

8. Add the results of steps 6 and 7.

9. Multiply the result of step 8 and the sixth subkey Z6.

10. Add the results of steps 7 and 9.

11. Bitwise XOR the results of steps 1 and 9.

12. Bitwise XOR the results of steps 3 and 9.

13. Bitwise XOR the results of steps 2 and 10.

14. Bitwise XOR the results of steps 4 and 10.

For every round except the final transformation, a swap

occurs, and the input to the next round is: result of step 11 k

result of step 13 k result of step 12 k result of step 14, which

becomes X1 k X2 k X3 k X4, the input for the next round.

After round 8, a ninth “half round” final transformation

occurs:

1. Multiply X1 and the first subkey.

2. Add X2 and the second subkey.

3. Add X3 and the third subkey.

4. Multiply X4 and the fourth subkey.

The concatenation of the blocks is the output.

6.2 Key Scheduling
Each of the eight complete rounds requires six subkeys, and

the final transformation “half round” requires four subkeys;

so, the entire process requires 52 subkeys.

The 128-bit key is split into eight 16-bit subkeys which forms

the first 8 subkeys. Then the bits are shifted to the left 25 bits.

The resulting 128-bit string is split into eight 16-bit blocks

that become the next eight subkeys. The shifting and splitting

process is repeated until 52 subkeys are generated.

The shifts of 25 bits ensure that repetition does not occur in

the subkeys. Six subkeys are used in each of the 8 rounds.

 The final 4 subkeys are used in the ninth “half round” final

transformation.

7. PERFORMANCE AND ANALYSIS
Performance analysis of RC6, Blowfish, IDEA, CAST-128 &

DES is done to provide some measurement on the encryption

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.25, April 2013

15

and decryption. Various parameters such as number of rounds,

file size, key length and key generation time are inquired. A

comparative analysis of RC5, Blowfish & DES has already

been performed [10] [11]. Effects of several parameters such

as number of rounds, block size and the length of secret key

on the performance evaluation criteria are investigated.

These encryption algorithm were implemented in java using

IAIK-JCE library in NetBeans IDE 7.0.1. Performance was

measured on Intel(R) Core(TM) i3 CPU M 370 @ 2.40 Ghz

2.39 Ghz 32 bit system with 4 GB of RAM running Windows

7 Ultimate.

7.1 Performance Comparison
In addition, to improve the accuracy of our timing

measurements, program was executed 10 times for each input

file and we report the average of the times thereby obtained.

7.1.1 On the basis of execution time
We compare the execution time of each algorithm for

encryption, decryption and key generation. Figure 7 shows the

key generation time of different cryptographic algorithm in

milliseconds. Figure 8 shows the average encryption time of

different cryptographic algorithm in milliseconds and figure 9

shows the average decryption time of different cryptographic

algorithm in milliseconds.

Fig 7. Key Generation time of different algorithms

Fig 8. Encryption time of Different algorithms

Fig 9. Decryption time of Different algorithms

7.1.2 On the basis of Throughput
Throughput of encryption and decryption of different

algorithms in MegaBytes/Sec is shown in figure 10 and 11

respectively.

Fig 10.Throughput of Encryption of Different Algorithms

Fig 11. Throughput of Decryption of Different Algorithms

7.2 Result Analysis
Figure 12 and Figure 13 shows the mean execution time of

encryption and decryption respectively for the algorithms to

execute the files of different size. RC6 has faster execution

time than any other algorithm considered here. Throughput of

RC6 and Blowfish is almost same. Result also concludes that

0.702

0.512

0.65

0.488
0.602

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Key generation Time (millisec)

281.45

176.95
208.14

140.86

339.58

0

100

200

300

400

Average Encryption time(millisec)

384.79

155.49

264.22

145.19

330.91

0

100

200

300

400

500

Average Decryption time (millisec)

10.64

16.99
14.38

21.26

8.82

0

5

10

15

20

25

Throughput (MB/Sec)

7.78

19.259

11.33

20.62

8.82

0

5

10

15

20

25

Throughput (MB/Sec)

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.25, April 2013

16

Blowfish performs better than IDEA.IDEA has better

throughput than DES for decryption but for Encryption DES

performs better. Throughput of CAST-128 is better than

IDEA but the difference is very small.

Fig 12. Execution time of Encryption for different file

sizes

Fig 13. Execution time of Decryption for different file

sizes

8. CONCLUSION
In this research paper RC6, Blowfish, IDEA, CAST-128 and

DES block cipher algorithms were compared using IAIK-JCE

library in java program in NETBEANS 7.0.1. Performance of

these five algorithms were measured on Intel(R) Core(TM) i3

CPU M 370 @ 2.40 Ghz 2.39 Ghz 32 bit system with 4 GB of

RAM running Windows 7 Ultimate.

 Comparative analysis of RC6, Blowfish, IDE, CAST-128

and DES have been done with a set of input files and

evaluated the encryption & decryption time. Results conclude

that RC6 is faster than Blowfish and which is faster than

CAST-128 which is faster than IDEA and DES. Blowfish is

suitable for applications where the key does not change often.

Using RC6 is beneficial where high encryption rate is

required.

9. REFERENCES
 [1] W. Stallings, "Cryptography and Network Security:

Principles and Practice", Prentice-Hall, New Jersey, 1999

[2] “Data Encryption Standard”, “wikipedia.org”, [online]

Available at:

http://en.wikipedia.org/wiki/Data_Encryption_Standard

[3] “Blowfish”, “wikipedia.org”, [online] Available at:

http://en.wikipedia.org/wiki/Blowfish_(cipher)

[4] CAST-128 available at

http://www.ipa.go.jp/security/rfc/RFC2144EN.html

[5] Ronald L. Rivest,”THE RC6 Block Cipher” RSA

Laboratories, 2955 Campus Drive, Suite 400, San Mateo,

CA 94403, USA.

[6] IDEA “wikipedia.org”. Available at:

http://en.wikipedia.org/wiki/International_Data_Encrypti

on_Algorithm

[7] “What are RC5 and RC6”,”rsa.com”. Available at:

http://www.rsa.com/rsalabs/node.asp?id=2251

[8] B. Schneier, “Description of a New Variable-Length

Key, 64-Bit Block Cipher (Blowfish)”, [online]

Available at: http://www.schneier.com/paper-blowfish-

fse.html

[9] B. Schneier, "Applied Cryptography", John Wiley &

Sons Inc., 1999

[10] Harsh Kumar Verma, and Ravindra Kumar Singh,

“Performance Analysis of RC5, Blowfish and DES

Block Cipher Algorithms”, International Journal of

Computer Applications (0975 – 8887) March 2012

Volume 42– No.16

[11] Tingyuan Nie, Chuanwang Song, Xulong Zhi

“Performance Evaluation of DES and Blowfish

Algorithms”,IEEE Biomedical Engineering and

Computer Science, 2010. ICBECS 2010. International

Conference

23-25 April 2010,pp. 1-4

[12] Vikas Tyagi, Shrinivas Singh, Volume 3, No. 4, April

2012 Journal of Global Research in Computer Science

“ENHANCEMENT OF RC6 (RC6_EN) BLOCK

CIPHER ALGORITHM AND COMPARISON WITH

RC5 & RC6”.

[13] CAST “wikipedia.org”. Available at:

http://en.wikipedia.org/wiki/CAST-128

[14] RC6 “wikipedia.org”. Available at:

http://en.wikipedia.org/wiki/RC6

[15] Andreas Sterbenz and Peter Lipp “Performance of the

AES Candidate Algorithms in Java”, Institute for

Applied Information Processing and Communications

Graz, University of Technology Inffeldgasse 16, A-8010

Graz, Austria.

[16] MelekD .Yucel and R.CllneyAt car “COMPARISON OF

THE BLOCK CIPHERS DES AND IDEA” EIT,CO'99

INTERNATIONAL CONFERBNCE ON ELECTRICAL

AND ELECTRONICS ENGINEERING.

0

200

400

600

800

1000

1200

DES

BLOW
FISH
CAST

RC6

IDEA

0

200

400

600

800

1000

1200

1400

1600

DES

BLOW
FISH
CAST

RC6

IDEA

