
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.24, April 2013

17

Usage of Netflow in Security and Monitoring of
Computer Networks

Shivam Choudhary

MIT Manipal

Bhargav Srinivasan
MIT Manipal

ABSTRACT

Management of a network is a challenging task without

accurate traffic statistics. Through this paper the

security benefits of implementing a Netflow
 [1]

 based

analysis system and then a novel open source

application useful in Netflow analysis and management

of flow records is proposed. Netflow data provides

important information about network conversations and

behavior. Netflow statistics are generated by Cisco and

Juniper routers and switches, as well as server software

Netflow probes. Netflow data provides enough

information to serve the needs of several different

applications such as billing, network planning and most

importantly traffic engineering, which we specifically

analyze to assess the state of the network. The flow

records are UDP packets lacking payload data which

still provides enough data to the network administrator

to be a valuable analysis tool. Netflow profiling is a

good moderation which strikes a balance between detail

and summary and provides a real-time analysis of

traffic flows, connection information and abnormal

network behavior. Netflow data on the router is

sampled at a variable rate which actually satisfies the

conditions which have been set to monitor the incoming

traffic, and then compared periodically to test if an

incoming sequence is a DOS or a possible threat to the

network by examining the packet sequences. Through

this paper the performance of a network is gauged by

using a parameter called unexpectedness
 [2],

 which is a

method to gauge the amount of traffic flowing through

a network.

General Terms

Netflow, Virtual Router, GNS3, Cisco Packet Tracer,

Backtrack

Keywords

Netflow, Cisco Packet Tracer, GNS3, Virtual Box, Virtual

Router, Unexpectedness, Decoding Netflow Packets.

1. INTRODUCTION
Netflow

 [1]
 is a traffic profile monitoring technology

developed by Darren Kerr and Barry Bruins at Cisco

Systems, back in 1996. Netflow data provides important

information about network conversations and

behaviour. Each unique flow is recorded by the network

devices or probes, and the flows are then reported to a

data collection server.

The notion of Netflow
[3]

 profiling was introduced

within the networking research community, and

subsequently extended by other researchers, to monitor

internet traffic. Netflow profiling had been predicted to

be relevant to applications such as route caching and

usage-based accounting i.e. a method of billing

customers. Today, based in part upon market demands

for performance and accounting, Netflow profiling is

built into networking devices. Although proper

standards have not yet been established, Netflow

methodology is robust enough to persist through this

period of vendor-specific implementations, and its

benefits and popularity in the industry warrant its early

adoption.

Table 1: Certain important fields encapsulated in

the flow records of a Netflow v5 packet

Network administrators who collect measurement data

often find that they either have collected too little data

or too much of it. In a sense, Netflow profiling is a good

moderation which strikes a balance between detail and

summary. The proposed method is network independent

so it can adjust to the requirements of any kind of

network. This type of data proves invaluable against

DoS (denial of service) attack and overloading of the

network. In this paper a system which can be effectively

used to capture Netflow Data and can be used to extract

certain parameters from it is described so that a DoS

attack can be detected and prevented.

1.1 Netflow v5 Flow Record Format
As described by Table 1, the Netflow v5 packet

received can be decoded using a Perl script which we

designed, with reference to certain previously designed

modules which effectively captures and separates the

various fields. This script also logs the data which can

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.24, April 2013

18

then be used for further processing. An algorithm

which can be used to design a system for processing the

sampled flow data has been proposed.

2. Outline of the System
The monitoring system comprises of a router which is

configured to export Netflow information to a flow

database which is organized by a Perl script. The script

then stores the flow information in a separate file every

day and a separate folder for each month. The Netflow

data is then compared periodically to test if an incoming

sequence is a DOS or a possible threat to the network

by examining the packet sequences that arrive through

the router. This is clearly depicted in Figure 1.

The monitoring station is a small machine that reads the

exported flows and compares them to an existing

malicious packet sequence database. When a sequence

of malicious packets is matched and detected, then the

system generates an alert status. This could then be

further analysed by network administrators to determine

whether the threat needs attention.

The router is configured to store flow information, by

the user, and it transmits this information to a database

which is listening for it. In the proposed simulation

case, the router sends the Netflow v5 information in the

form of UDP packets, through a specific port (2055 in

test case), to a client which is listening on the same

port. Once the packets are received, Perl modules
 [4]

 are

used which help decode the packet and extract flow

information. The script reads the incoming UDP

packets and extracts the flow headers and the required

flow records and stores the information in a log file. A

database is created using a Perl module which reiterates

his function periodically, forming new data logs on a

daily, monthly and yearly basis while organizing them

accordingly.

A small Perl snippet (figure 2) was created as required

and it can be easily modified to provide efficient

methods of organization for the logged and pre-

processed data. The records are indexed effectively and

an optimal searching algorithm can be formulated to

effectively retrieve the required flow data. The available

Netflow data on the router is sampled at a variable rate

of Z samples per second which corresponds to the

cluster of packets that actually satisfy the conditions

which have been set to monitor the incoming Netflow

packets, and only these ones will be allowed to enter the

processing system, which will then perform a detailed

analysis of the incoming traffic and check for any

anomalies.

As depicted through the flowcharts (figure 3), the

monitoring system borrows from the database the

values of previously identified attack patterns and

sequences, which are simultaneously compared with

incoming traffic. This system monitors traffic on ports

which are most susceptible to attacks. Effectively the

monitoring system acts as an interface between two

databases i.e. the collection database and the Threat

database.

2.1 Monitoring Station
The role of the monitoring station is to judge whether

the incoming traffic requires the attention and detailed

threat analysis using the system. The station is designed

to segregate packets which flow into the processing

module and those which are just sent for storage.

Condition of Denial of Service (DOS) attacks or

network overloading can be established by evaluating if

either one or more of the following signatures are

observed.

2.1.1 Malicious Data Packets

The following are the examples of how the “malicious”

data packets can look like and how one can configure

the router to protect against the specific type of attack.

Finally, at the end, methods consolidate all the

protection mechanisms into a single firewall

configuration and use it to protect the system against

DOS attack is proposed.

2.1.1.1 ARP poisoning:

There may be improper configuration in the network

causing broadcast storms and lot of ARP packets might

be received by the router. Also, sometimes it is possible

that a customer facing port receives lot of ARP request

and reply packets as part of a DOS attack. Thus a

simple rate limit imposed on such packets can be an

effective prevention strategy.

2.1.1.2 Packets with strange (Martian) addresses/

strange IP options field:

They commonly are sent by improperly configured

systems on the network and have destination addresses

that are obviously invalid. Malformed packets such as

these are most likely crafted and are often part of DOS

attacks. Hence a filter is set in order to check for

martian IPs. IPs with options field enabled are not

detected by the router, hence an IP packet with too

many options can easily be used to fabricate a DOS

attack. These types of packets are strictly monitored and

filtered to protect system resources from being depleted

or misused.

2.1.1.3 Malicious control plane packets:

A router may be subject to DOS attacks by sending

large number of such packets which go up to the router.

Such control packets generated by a DOS attacker will

contain either invalid information that will be discarded,

or may even contain malicious information that can

cause router’s forwarding information to get corrupted.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.24, April 2013

19

Figure 1: Diagram showing the logical flow of packets

Figure 2: Perl Program to store the Netflow Data

Figure 3: Flow Diagram showing storage and collection of Netflow Data Records

Control plane packets are accepted only from well-

known peers and thus such a filter prevents injection of

routing protocol PDUs into the network and hence

tampering with the routing configuration.

Perl program snippet to store Netflow in an organized manner.

$now_time = strftime "%Y%m%d", localtime;

$now_month = int($now_time/100);

if($now_time!=$first_time || !$run) { # check if date (year,month,day) changed

if($now_month!=$first_month || !$run) { # if date changed check if month changed

$path = 'd:\perl\logm' + $no + '\log1.txt'; # create a new monthly table

$first_month=$now_month;

$no = $no +1;

}

$path = 'd:\perl\logm' + $no + '\log' + $no2 +'.txt'; # create table entries for today

$first_time=$now_time;

$run = 1; # from now on we only check for the tables when the date changed

$no2 = $no2 +1;

}

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.24, April 2013

20

2.1.1.4 Half open TCP ports (TCP SYN/RST,

RST/FIN attacks):

A very common DOS attack experienced by routers is

the TCP SYN/RST attack. Here a lot of malicious TCP

SYN packets or RST packets are received by a router.

Now, on receiving a TCP SYN packet, the system will

attempt to complete a TCP 3- way handshake, and will

queue up the TCP SYN packets in its protocol control

blocks as pending connections. This leads to the port

being half open and later become an unused port. This

is one of the very popular methods for performing a

DOS attack, and is preferred by most attackers or script

kiddies. Similarly, when it receives a packet with

RST/FIN, it will queue them up for processing and it

leads to half open ports, resulting in a scenario similar

to the one previously described. Thus a rate limiting

system can be implemented to provide a check and thus

aid in the prevention of such malicious activity.

2.1.1.5 Flood of UDP/ICMP and other OAM

packets:

An attacker usually tries to deplete all network

resources by flooding the system with ICMP pings or

trace routes or other types of OAM packets. Therefore a

rate limit has to be brought into effect, in order to

prevent overloading. Other forms of injected packets

overloading such as ftp, SNMP, ntp, DNS can also be

capped.

Figure 4 shows the proposed algorithm to tackle all the

idiosyncrasies of the packets.

3. Formulation of Unexpectedness

Through the simulations, the performance of a network

is gauged by using a parameter called unexpectedness

[2],
 which is a method to gauge the amount of traffic

flowing through a network. The value can then be used

to infer traffic deviation from pre-set 'normal'

conditions, and hence the flow of traffic through the

network can be monitored and it provides the

administrator with a profound understanding of the

network's current state.

The value of unexpectedness is a standardized value,

which is network independent and can function as a tool

to monitor the severity of overloading of the network.

The value gives administrators a fair idea about the

traffic flowing through the network, and thus enables

appropriate judgement.

3.1 Proposed Algorithm
In the algorithm an extremely simple method based on

the available flow data to calculate the unexpectedness

and it involves defining the following parameters,

U = Rate of sampling and storage of processed flow

records at a variable rate

La = Rate of incoming flow records (Flows/sec) at the

router in an “attack” scenario

Ln =Rate of incoming flow records (Flows/sec) at the

router in a “normal” scenario

Lneff = the effective rate of incoming flow records in a

“normal” scenario

Laeff = the effective rate of incoming flow records in an

“attack” scenario

 Lneff = U*(Ln/ (Ln+La)) under

normal conditions

 Laeff = U*(La/ (Ln+La)) under

attack conditions

Let Ln = 10^4; La = 10^5; U = 2·10^4 ;(we leave out

the units for better readability)

We obtain Lneff = 1.82 · 10^3 and Laeff = 1.82·10^4

Now, if the attack rate increases by 10% then L’a =

1.1·10^5,

The effective rates become L’neff= 1.67·10^3 and L’aeff =

1.83 · 10^4,

i.e., the effective rate of attack flow records increases

by 0.83%,

While the effective rate of normal flow records

decreases by 8.3%

So, Unexpectedness = L’aeff x 100% = 83%.

Hence this raises an alarm and prompts the network

administrator to further investigate the issue.

3.2 Result of the above formulation
In order to obtain the above calculations, we have

considered two scenarios a 'normal' scenario and an

'attack' scenario. The 'normal' scenario entails

computers to operate in a fully functional optimally

loaded state, which is considered as regular and

untampered behaviour which is carefully judged and

pre-set by the administrators according to their

requirements. The 'attack' scenario is characterized by

all the systems overloading the network such that it

emulates a denial of service attack or simply depletion

of network resources. Hence the unexpectedness scale

can be obtained to monitor the network effectively and

this approach makes this system scalable to a very high

extent.

4. Simulation of the Network
Simulation of the network was achieved using a

complete virtualization of the system, provided by the

popular network simulation tool GNS3. Using the IOS

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.24, April 2013

21

Figure 4: Flowchart illustrating a proposed algorithm for

the monitoring station.

image of a Cisco 3620 series router the virtual test

network was created. We start by having two networks

in which one is the administrator and his router is

having Netflow enabled on it and the other is the

attacker which is trying to attack the administrator’s

network, and we have configured two virtual machines

to act as two independent hosts. The Backtrack R3 is a

packet generation system and we have another

Backtrack R3 which is the administrator’s network. We

are using Scapy
[5]

for packet crafting and transmission

because it gives us more control over how the packet

moves and more control over the various flags.

4.1 Configuration of the Network
The network is configured in the following way,

1) IP Address 10.1.5.100 (255.0.0.0) to the Backtrack

Administrator system.

2) IP Address 192.168.44.1(255.255.255.0) to the

Backtrack R3 packet injector System.

A router can be used to connect these two networks by

configuring it properly. The topology of the network is

as shown below in figure 5. The following topology

was simulated in GNS3. The two clouds C1 and C2

represent two networks from Virtual Box. So

effectively two machines running in Virtual Box are

connected through a Virtual Router running in

Windows.

4.2 Storing the Netflow Data
Netflow is enabled on the virtual router and then the

Netflow data is dumped into the UDP port number 2055

of the admin machine (IP address 10.1.5.100). On this

port a Perl script is running and this script is used to

decode the packets and arrange them properly in

months, days, years so that the data packets are properly

arranged for future reference. The idea of the system is

to analyse the Netflow data and then compare it with

the records and look for certain parameters in the data

so that an attack packet can be isolated and the network

is saved from further harm. Statistically it is seen that

an attacker or hacker never attacks all of a sudden. They

keep on gathering information about a network for

some time using custom scanning techniques which can

be very discrete and cannot be prevented otherwise. For

example if the network imposes a limit on the number

of ports to be scanned a clever work around can be

using an ever changing IP Address spoof and then keep

on scanning the ports or a second and more crude way

could be having a script scanning few ports (well within

the limits of the network) without ever being detected.

4.3 Decoding of Netflow packets
This is the central problem of which we are trying to

find a solution. So using Netflow all data packets are

logged on and details are extracted. So for example if

an attacker tries to attack the system still using different

IP addresses but the behaviour of the packets matches a

malicious pattern in the database then he can be suitably

tracked down and preventive measures can be taken. If

Netflow is enabled and the dump of the file is checked

though we will get the file but we won’t be able to

decode anything from the dumped data. So proper

decoding of the data is required to get the information

from the Netflow packets. So in the system a decoding

script is running on the port 2055 (in simulation case ip

address 10.1.5.100) that decodes the data and dumps it

into a text file. Figure 6 shows the Netflow data being

dumped on the port without any decoding. So as one

can infer from the figure it is gibberish and doesn’t

make any sense. But once the packets are properly

decoded very useful parameters can be extracted from

these packets.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.24, April 2013

22

Figure 5: The Topology of the Network

Figure 6: Captured packet format by Netflow

So from Figure 6 it can be inferred clearly that decoding

of these packets is required to get the information. So a

decoding script is running on port number 2055.So any

data that gets dumped on port number 2055 is decoded

and can be seen through the script.

To enable Netflow Version 5 on the router standard IOS

commands is used. Also the port number and

destination address to dump the UDP Netflow data is to

be specified while configuring the router. Figure 7

clearly shows the router configuration. Just to check if

the network is working properly it is pinged using

ICMP packets. This result is summarized in Figure 8.

From this it is obvious that the network is connected

and the router is aware of it. These ICMP

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.24, April 2013

23

Figure 7: Router Netflow Configuration

packets just ensure that the network is present and does

not tell us any information about the network. It is

simply an indication of presence of a host computer on

a particular IP address. Many network administrators

(such as that of Apple) disable this because they

unnecessarily engage the server with hello packets.

Also if the identity of the server is to be restricted to

public then ICMP packets can be disabled on the

network.

But in the test case network no Access Control List

(ACL) is applied and no ports are blocked. So it can be

seen clearly from figure 8 that one can easily ping the

networks in the topology. Now Scapy
 [5]

was used to

generate packets and then send the packets to the

Admin’s network. Now through the router each and

every packet will be captured and it will be dumped

onto the Admin’s side. So one can now have scripts

running to compare the data packets in the network.

After the data has been dumped it will be decoded and

then compared using another script to extract the details

for that packet. And then these details will be used to

determine whether the attack is happening or not.

Figure 9 below shows those typical Netflow packets.

5. Conclusion
In this paper we set out to gain insights into the

capabilities of Netflow. We can gain the same or

additional information from Netflow compared to other

measurement techniques be it more detailed, such as at

a packet level, or more brief. We propose an algorithm

and present an implementation that is able to assess and

prevent any threat risks for the network using Netflow

data.

The implementation of the system can be effectively

summarized as an independent real time sampling,

aggregating and monitoring system. The versatility of

the system lies in the fact that it can be used to properly

gauge the possibility of a DoS attack or depletion of

resources using a scale based on formulating a standard

value of unexpectedness.

Furthermore the system is in very early stage of its

development and requires further research and

improvement. Filtering of packets can be implemented

more effectively using advanced techniques. The

calculation of unexpectedness can be further improved

and also the fact that Netflow loses certain amount of

accuracy compared to SNMP (Simple Network

Management Protocol) and TCP connection summaries,

but it is a fair tradeoff in processing speeds, indexing

capabilities of the flow records.

The methodology shows that the acquired Netflow

summaries provide invaluable insight of the actual state

of the network. Netflow is the weapon of choice for

network administrators if right aggregation technique is

employed.

 Figure 8: Ping Results of the Network

Figure 9: Netflow Data showing various protocols

and their flow rates

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.24, April 2013

24

6. REFERENCES
[1] Cisco, Cisco IOS Net Flow Technology Data Sheet.

<http://www.cisco.com/go/netflow>

[2] Vojtech Krmicek. GEANT3 JRA2 T4 Internal

Deliverable. “Inspecting DNS Flow Trace for Purposes

of Botnet Detection port scanning.” 2011. Paper

[3] Cisco Systems Inc., “NetFlow Services and Applications

-White paper,”

<http://www.cisco.com/warp/public/cc/pd/iosw/ioft/neflc

t/tech/napps_wp.h%tm>.

[4] Decoding Kobayashi, Atsushi. "CPAN RT." Net::Flow.

Cpan.org, 2008. Web. 15 Dec. 2012. Brown, L. D., Hua,

H., and Gao, C. 2003.

[5] “Scapy”, an open source software for generating custom

packets<http://oss.netboxblue.com/pug/scapy.html>.com

/pug/scapy.html>.

[6] William Stallings, SNMP, SNMPv2, SNMPv3 and

RMON 1 and 2, 1999.

