
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.22, April 2013

34

Handling of Fuzzy Queries using Relational DBMS

Nishant Agrawal Anubhav Manan Akash Aggarwal Rashmi Sharma
B. Tech(IT) B. Tech(IT) B. Tech(IT) Assoc.Professor

4
th
 year 4

th
 year 4

th
 year

(ABES Engineering College, Ghaziabad)

ABSTRACT

Handling crisp and precise data in SQL is an easy process but

classical data models often suffer from their incapability of

representing and manipulating imprecise and uncertain

information which is found in many real world applications.

Since the early 1980’s, Zadeh’sfuzzy logic has been used to

improve and modify various data models. This introduction of

fuzzy logic in databases enhances the capability of classical

models so that uncertain and imprecise information could

easily be represented and manipulated.This paper proposes an

algorithm with the help of which crisp values are converted

into fuzzy values by calculating their membership value at the

database level. The paper then uses a GUI through which the

result of fuzzy queries can be obtained from the database.

With the help of proposed algorithm, the calculated

membership value will be stored in the database for

differentpredefined categories (e.g.-child, young, middle age

and old in case of ages). These membership values helps in

fetching the result of fuzzy queries from the database with the

help of developed GUI (the database used here is oracle 10g

but other databases can also be used).The fuzzy queries have a

wider retrieved space and can be used to identify the

characteristic of an individual (marks in this case).

1. INTRODUCTION

Complexity generally occurs due to uncertainty in the form of

ambiguity. Computer System can address only simple or

direct problems however humans have the capability of

reasoning approximately.

In traditional database management systems, queries are

intended to retrieve data which satisfies some

specific crisp criteria’s. This specific crisp criterion lacks

flexibility which usually results in no result retrieval. Hence

an extended version of these systems is required so that they

could use and support imprecise querying capabilities.

In general SQL query systems, a twofold hypothesis have

been maintained: data is assumed to be precisely known and

queries are intended to retrieve elements that qualify for a

given Boolean condition.

This paper concentrates on the second aspect of this

hypothesis. In context to regular relational databases (where

data is precisely known), the objective is to provide users

with new querying capabilities based on conditions which

involve preferences and describe more or less acceptable

items, thus defining flexible queries. Since the problem is no

longer to decide whether an element satisfies (or not) a

particular condition but rather the extent to which it satisfies

the condition. One of the advantages lies in the "natural"

ordering of the answers (discrimination) which allows for

calibration if desired.

In conventional DBMS systems, the query evaluation problem

does not follow optimal pattern evaluation process. For fuzzy

queries the process becomes more complex due to two

reasons:

i) The available access paths cannot be used directly, and

ii) A larger number of tuples are selected by fuzzy conditions

as compared to Boolean ones.

When humans interact with database they require vagueness

or imprecision in the results. For removing this vagueness the

proposed algorithm could be used to calculate the membership

of the value to be stored in the database for different

categories. The value is computed by the algorithm and then

stored in the database. This algorithm can then give the result

of the queries having linguistic variables which adds

vagueness to the result.

Fuzzy data has multiple values between (0, 1). Fuzzy data is

imprecise or has partial truth values. Therefore, fuzzy data is

usually defined in terms of membership value. Fuzzy data is

represented with linguistic variable or quantifier.

 The truth-value of a variable “x” will be denoted as μ(x).

A fuzzy database is a database which is able to deal with

uncertain and incomplete information. Uncertain, imprecise

and vague type of data can be handled by fuzzy database

easily. Membership value is calculated for every data input

and according to that membership value data is fetched out

from database.

2. LITERATURE REVIEW

Classical data models often suffer from their incapability of

representing and manipulatingimprecise and uncertain

information that may occur in many real world applications.

Since the early 1980’s Zadeh’s fuzzy logic [1] has been used

to extend various data models. The purpose of introducing

fuzzy logic in databases is to enhance the classical models

such that uncertain and imprecise information can be

represented and manipulated.

A query is flexible if the following conditions are satisfied

[3]:

3.1 A qualitative distinction between the selected tuples is

allowed.

3.2Imprecise conditions inside queries are introduced when the

user cannot define his/her needs in a definite way, or when a

pre-specified number of responses are desired and therefore a

margin are allowed to interpret the query.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.22, April 2013

35

Here typically, the former case occurs when the queried

relational databases contain incomplete information and the

query conditions are crisp and the latter case occurs when the

query conditions are imprecise even if the queried relational

databases do not contain imperfect information [2]

The GEFRED model in [4, 5] generalized fuzzy domains,

unknown, NULL values, is a possibility model. The GEFRED

model is based on the generalized fuzzy domain (D) and

generalized fuzzy relation (R), which include classic domains

and classic relations, respectively. This model defines fuzzy

comparators, which are general comparators based on any

existing classical comparator (>, <, =, etc.). GEFRED

redefines the relational algebraic operators in the so-called

generalized fuzzy relational algebra: union, intersection,

difference, Cartesian product, projection, selection, join, and

division.

Takahashi presents a fuzzy query language for relational

databases [6] and discusses the theoretical foundation of query

languages to fuzzy databases in [7]. Based on matching

strengths of answers in FRDBs, a method for fuzzy query

processing is presented in Chaing et al [8]. Yang et al [9]

discussed nested fuzzy SQL queries in a FRDB.

3. Methodology

3.1The GUI has been developed for calculation of

Membership values for crisp data.

3.2The user of GUI enters marks on front endusing

theproposed algorithm and formulae, the membership value of

marks for different categories is calculated and these values

are stored in the database.

3.3 If user desires to see the data, he/she may select any

category and the query is fired and data is fetched out using

the GUI.

4. Proposed Algorithm

4.1 Terms and variables used in the algorithm

X – Value to be stored in the database.

μs (X) – membership of the value in its own category.

μs-next (X) – membership of value in next category.

μs-prev(X) – membership of value in previous category.

a - lowerboundary values of same category.

 b - Upper boundary value of same category.

AF- Adjustmentfactor.

as - lower boundary value of previous category.

bs - upper boundary value of previous category.

al- lower boundary value of next category.

bl-upper boundary value of next category.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.22, April 2013

36

5.2 Flowchart for proposed algorithm (does not shows the front end part)

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.22, April 2013

37

5.3 Stepwise Algorithm
1. Get the value of X [i.e. the value to be stored in the

database].Also calculate the range as,

Range = b – a.

2. Check whether the value to be stored is a boundary value

or a non-boundary value,

If X is not a boundary value,go to step 3

else go to step 6.

3. If X lies in first category, Then μs(X) = 1

μs_next (X)= ((X – al)/range) + AF

go to step 7.

4. Else if X lies in last category then, μs (X)= 1

μs_prev (X)= ((bs – X)/range) + AF

go to step 7.

5. Else (when category is neither first nor last)μs (X) = 1

μs_next (X) =((X – al)/range) + AF

μs_prev (X)= ((bs – X)/range) + AF

go to step 7.

6. When X is a boundary value, If X is in first category

1 if X = a

μs (X) =

 0.1 if X = b

else

0.1 ifX = a

μs (X) = 1 if X = b

0 otherwise

Note that if X is a boundary value then it should be checked

for all the categories and its membership should be calculated

for all the categories using above formulas.

7 If μs (X) < 0 [i.e. if any of the above calculated value of μs

(X) is negative]

Then set μs (X) =0.

8 Store the value of μs (X).

9 END

Note that the algorithm only calculates the membership of

value in the immediate next and immediate previous

categories along with the same category in which the value

lies. The membership of value for all other categories can be

directly set to zero or can be calculated according to above

formulaswhich will result in a negative value. This negative

value can then be set to zero in step 7 of the algorithm.

5.4 Calculation of membership value
Let us take the data of marks of students of a class in a subject

out of 50. Based on the marks the students are divided into

five categories i.e.

1 Below average [0 – 10]

2 Average [10 – 20]

3 Good [20 – 30]

4 Very good [30 – 40]

5 Excellent [40 – 50]

When working on crisp values, any student with 0 marks

should be below average and any student with 9 marks should

also be below average. I.e. there is no membership value of

student with 9 marks in average category. Also student with

10 marks should be inclusive in only one of the category i.e.

below average or average. This makes the representation

discrete or non-continuous.

In crisp database, if we want to get the names of students in

category below average, then the query passed should be-

Select roll_no, name, marks from marks where marks <

10;
When dealing with fuzzy data the student with 9 marks should

have some membership in average category also. Also the

student with 10 marks should have the membership in both

below average and average categories. The above mentioned

algorithm provides a way to store such a fuzzy data in the

database by calculating the membership value.

The membership value of marks of a student for all the

different categories is calculated. Let the value of adjustment

factor, AF = 0.2

Note that any value of adjustment factor can be taken between

(0,1) according to own choice.

The table 1 shows the stepwise calculation of values for

different categories for student with marks 9 and 15:

Now, consider a student with 10 marks out of 50, since it is a

boundary value, hence go to step 6 of the algorithm.According

to step 6, since 10 is a boundary value of first category i.e. 10

= b,

μs (X) = 0.1 (for below average)

Since according to algorithm, boundary value of all the

categories should be checked

Hence, μs (X) = 0.1 (for average)

Andμs (X) = 0 (for all other categories).

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.22, April 2013

38

Table 1 Stepwise calculation of values for different categories

 MARKS = 9 MARKS =15

1.

 2.

3.

 4.

5.

Range= b-a = 10

9 is not a boundary value, goto step 3.

9 lies in first category,

Hence μs(X) = 1

Now, membership of student with 9 marks in

average category,

μs_next (X)= ((X – al)/range) + AF

 = ((9 – 10)/10) + 0.2

 = - 0.1 + 0.2

 = 0.1

Now, goto step 7

According to step 7, check the above calculated

values,

μs(X) = 1 (positive value)

μs_next (X) = 0.1(positive value)

Since both the values are positive, store them in

database.

Range = b-a = 10

15 is not a boundary value, goto step 3.

15 does not lie in first category, goto step 4.

15 does not lie in last category, goto step 5

μs (X) = 1

Now, membership of student with 15 marks in good

category,

μs_next (X) =((X – al)/range) + AF

 = ((15-20)/10) + 0.2

 = - 0.3

μs_prev (X)= ((bs – X)/range) + AF

 =((10 – 15)/10) + 0.2

 = - 0.3

Now, goto step 7

According to step 7, check the above calculated values,

μs (X) = 1(positive value)

μs_next (X)= - 0.3 (negative value)

hence set μs_next (X) = 0.

μs_prev (X)= - 0.3 (negative value)

hence set μs_prev (X) = 0.

Store the values in the database.

A table with name, marks and calculated membership values for all five categories is shown;

Za represents membership of marks in below average

Zb represents membership of marks in average category.

Zc represents membership of marks in good category.

Zd represents membership of marks in very good category.

Ze represents membership of marks in excellent category.

Suppose we want to find the names of all the students who are average, then we can select the linguistic variable as Average and the

front end will generate a query to the database as follows,

Select roll_no, name, marks from marks where Za> 0;

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.22, April 2013

39

Hence the database will give the name of student with 11 marks also in the result of average students.

Table 2 shows storage of fuzzy data in crisp form in database

Roll No. Name Marks Za Zb Zc Zd Ze

1 Aman 2 1 0 0 0 0

2 Ankit 9 1 0.1 0 0 0

3 Yugal 10 0.1 0.1 0 0 0

4 Neha 11 0.1 1 0 0 0

5 Tushar 20 0 1 0.1 0 0

 6. Interface Design

Figure1 GUI of the application

Figure 1 shows the selection of linguistic variable in the front

end of the application and the text area (Editor) shows the

query passed in the database which gives the result shown in

the table student details. The front end has been developed in

JSP and the database usedis MYSQL

.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.22, April 2013

40

7. Conclusion
Till now data used for the value used are crisp value. But now

with the help of proposed algorithm in this paper fuzzy data

can be stored in the form of crisp value in database. By

calculating membership value of data, the result is fetched for

any type of fuzzy input. It will store the membership value in

the database and will return output for all positive values of

membership values which will be the desired output for the

given input.

8.Acknowledgement
The satisfaction that accompanies that the successful

completion of any task would be incomplete without the

mention of people whose ceaseless cooperation made it

possible, whose constant guidance and encouragement crown

all efforts with success. We are grateful to our paper guide

MrsRASHMI SHARMA for the guidance, inspiration and

constructive suggestions that helpful us in the preparation of

this paper.

9.References
[1] Zadeh, L. A. (1971). Similarity relations and fuzzy

orderings. Information Sciences, 3, 177-200.

[2] Umano, M., &Fukami, S. (1994). Fuzzy relational

algebra for possibilitydistribution- fuzzy-relation model

of fuzzy data. Journal of Intelligent Information Systems,

3, 7-28.

[3] Zemankova-Leech, M., &Kandel, A. (1984). Fuzzy

relational databases: A key to expertsystems. Köln,

Germany: Verlag TUV Rheinland.Fgf.

[4] Prade, H., &Testemale, C. (1987a). Fuzzy relational

databases: Representational issues and reduction using

similarity measures. J. Am. Soc. Information Sciences,

38(2), 118-126.

[5] Y. Takahashi, “A fuzzy query language for relational

databases,”IEEE Transactions onSystems, Man and

Cybernetics, Vol. 21, 1991, pp. 1576-1579.

[6] D. A. Chiang, N. P. Lin, and C. C. Shis, “Matching

strengths of answers in fuzzy relational databases,” IEEE

Transactions on Systems, Man, and Cybernetics-Part

C:Applications and Reviews, Vol. 28, 1998, pp. 476-481.

[7] V. Cross, “Defining fuzzy relationships in object models:

Abstraction and interpretation,”Fuzzy Sets and Systems,

Vol. 140, 2003, pp. 5-27.

[8] V. Cross, “Fuzzy extensions for relationships in a

generalized object model,” InternationalJournal of

Intelligent Systems, Vol. 16, 2001, pp. 843-861.

[9] G. Q. Chen, E. E. Kerre, and J. Vandenbulcke, “The

dependency-preserving decomposition and a testing

algorithm in a fuzzy relational data model,” Fuzzy Sets

and Systems, Vol. 72, 1995, pp.27-37.

[10] L.A. Zadeh, The concept of a linguistic variable and its

application to approximate reasoning.

Information Sciences, Part 1: 8:199-249; Part 2:2:301-

357; Part 3: 9:43-80, 1975.

[11] Galindo, J., Urrutia, A., Piattini, M., Fuzzy Databases:

modelling, Design and Implementation, Idea Group

Publishing, Hershey, USA. (2006).

[12] B. Bhuniya and P. Niyogi, “Lossless join property in

fuzzy relational databases,” Data and Knowledge

Engineering, Vol. 11, 1993, pp. 109-124.

[13] T. K. Bhattacharjee and A. K. Mazumdar,

“Axiomatisation of fuzzy multivalued dependencies in a

fuzzy relational data model,” Fuzzy Sets and Systems,

Vol. 96, 1998, pp. 343-352.

[14] G. Q. Chen, Fuzzy Logic in Data Modelling; Semantics,

Constraints, and DatabaseDesign, Kluwer Academic

Publisher, 1999.

[15] Z. M. Ma, W. J. Zhang, and F. Mili, “Fuzzy data

compression based on data dependencies,” International

Journal of Intelligent Systems, Vol. 17, 2002, pp. 409-

426.

[16] S. Y. Liao, H. Q. Wang, and W. Y. Liu, “Functional

dependencies with null values, fuzzy values, and crisp

values,” IEEE Transactions on Fuzzy Systems, Vol. 7,

1999, pp. 97-103.

[17] K. H. Lee, First Course on Fuzzy Theory and

Applications, Springer, 2004.

[18] M. Kamel, B. Hadfield, and M. Ismail, “Fuzzy query

processing using clustering techniques,” Information

Processing and Management, Vol. 26, 1990, pp. 279-

293.

[19] R. Intan and M. Mukaidono, “Fuzzy functional

dependency and its application to approximate data

querying,” in Proceedings of International Database

Engineering and Applications Symposium, 2000, pp. 47-

54.

