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ABSTRACT 
This paper proposes the implementation of a Elliptic Curve 

(EC) cryptosystem which is aimed to provide secure stream 

ciphers, hash functions and key exchange in a time shared 

manner.  The design of hardware efficient stream cipher based 

on elliptic curves proposes the use of point multiplication 

block on a time sharing basis for providing secure stream 

ciphers, hash generation and key exchange. The EC point 

multiplication uses the Gaussian normal bases for field 

arithmetic. The designs were implemented using Verilog 

language and the hardware implementation was done using a 

Field Programmable Gate Array (FPGA) device.  
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1. INTRODUCTION  

E-commerce applications and emerging communication 

between people or agencies give rise to an important question, 

as how to reliably exchange confidential data via untrusted 

channel of communication[1]. Data transfer must be protected 

in the sense that it has to be ensured that exchanged 

documents are neither read nor modified by third parties 

during the data transfer. The technology which can provide 

this kind of protection is cryptography. The main objective of 

cryptography is the design and analysis of systems that ensure 

secure communication. The major services offered by 

cryptography are 1) key exchange 2) message encryption and 

3) data integrity. In majority of the secure communication 

systems these three functions are done by three different 

modules implementing different algorithms like RSA[2] or 

ECC for key exchange, AES, DES, E0 cipher or A5 stream 

cipher for message encryption and SHA or HMAC algorithms 

for hash generation. Implementation of these independent 

modules increases the hardware complexity for small 

handheld devices where resources are limited. Since the 

operations are done sequentially, a hardware structure which 

consists of a module based on a single cryptographic primitive  

used on a time sharing basis for all operations will be highly 

acceptable for small battery powered devices like RFID tags, 

smart cards etc. 

The widely used RSA method and public key schemes based 

on Elliptic Curves (EC) have gained more importance. In 

1985 Elliptic Curve Cryptography (ECC) was first proposed 

by Miller (1986) [3] and Koblitz (1987) [4]. ECC is an 

attractive public-key cryptosystem based on the algebraic 

structure of elliptic curves over finite fields for 

mobile/wireless environment. Compared to traditional 

cryptosystems like RSA, ECC offers equivalent security with 

smaller key sizes, which results in faster computations, lower 

power consumption, as well as memory and bandwidth 

savings. As ECC is replacing RSA, EC point multiplication 

unit will be available in hardware structure of majority of 

communication systems. If the other two functions of message 

encryption and hash generation are implemented based on 

point multiplication then, this will reduce the hardware 

complexity and will be useful for mobile devices which are 

typically limited in terms of their CPU power and network 

connectivity. 

The message encryption can be done with either stream cipher 

or block cipher. In block ciphers, the computation is done on 

blocks of data which results in increased buffer size. But in 

stream ciphers the data is encrypted bit by bit which results in 

lesser resource requirement. Also it is more suitable for real 

time operations. The major requirement for stream cipher 

generation is a pseudo-random number generator. A number 

of algorithms for pseudo-random number generation based on 

elliptic curve is available in literature. The one which is most 

suitable for hardware implementation and has increased 

security is reported in [5], and is used for implementation in 

this work. Also, a new method for hash generation based on 

EC point multiplication is proposed.  

Underlying field arithmetic is important for the 

implementations of ECC[6]. For the field arithmetic in 

GF(2m), two typical bases, namely polynomial basis (PB) and 

normal basis (NB), are used to represent field elements of 

GF(2m). Each basis representation has its own advantages and 

disadvantages. However, hardware structures, in NB 

representation, may be quite different for varying choices of 

m, although the multiplication algorithm is basically same for 

each m. Unlike NB representation, PB representation provides 

the features of regularity, scalability, and extensibility in 

hardware implementations for various m. 

Gaussian normal basis (GNB), a special class of normal 

basis[7,8], has recently received considerable attention[9]. 

GNB has been included in a number of standards such as 

IEEE 1363 [10] and NIST [11]. It is well known that GNB 

exists for every positive integer m that is not divisible by eight 

[12]. GNB is determined by an integer k and is referred to as 

type k GNB. The complexity of GNB multiplier in terms of 

timing and hardware depends on k. In other words, when there 

is more than one GNB for a given m, the smallest value of k 

yield efficient implementation of GF(2m) multiplier. Kwon et 

al. [13] proposed an efficient bit level multiplication 

algorithm for GF(2m) using GNB and provided VLSI 

architectures in the cases of GNB of type 2 and 4. 
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Reconfigurable hardware, such as a Field Programmable Gate 

Array, provides an attractive alternative to costly custom 

ASIC fabrication for deploying custom hardware. While 

ASIC fabrication requires very high non-recurring 

engineering (NRE) costs, an SRAM-based FPGA can be 

programmed after fabrication to be virtually any circuit. 

Moreover, the configuration can be updated an infinite 

number of times. 

Thus, this work aims to design and implement a hardware for 

secure communication based on ECC with a single module of 

EC point multiplication used in a time sharing basis for key 

exchange, message encryption and hash generation there by 

reducing the hardware complexity. 

In this paper, we propose a high performance elliptic curve 

cryptosystem over GF(2m). The proposed architecture is based 

on standard elliptic curve point multiplication algorithm and 

uses GNB for GF(2m) field arithmetic. Three major 

characteristics of the proposed architecture are (1) it uses fast 

arithmetic units based on a word-level multiplier, (2) it adopts 

a parallelized point doubling and point addition unit with 

uniform addressing mode, and (3) it utilizes benefits of GNB 

representation. Therefore, the proposed architecture leads to a 

considerable reduction of computational delay time compared 

with previously proposed hardware implementations. 

The remainder of the paper is organized as follows: In   

Section 2, the mathematical background of elliptic curves is 

discussed, Section 3 EC based Stream ciphers are introduced.  

In section 4 key exchange and hash generation based on EC is 

presented. In Section 5, hardware structure for EC based point 

multiplication is discussed.  

2. MATHEMATICAL BACKGROUND 

An Elliptic curve E over a field K is defined by the 

Weierstrass equation given by 

                         
                      (1) 

where a1, a2, a3, a4, a6  K. The points on the EC denoted as 

E(K) form an abelian group under addition together with an 

additional point denoted by O and called the 'point at infinity', 

which is the additive identity for the group. 

Elliptic curves defined over GF(2m) has great significance 

since they allow binary operations and are very suitable for 

hardware implementation. A Galois Field (finite field) GF(2m) 

consists of 2m elements for some integer ‘m’ together with 

addition and multiplication operations that can be defined 

over polynomials in GF(2). Elliptic curves over GF(2m) are 

defined by a cubic equation in which the variables and 

coefficients take on values in GF(2m). So, all mathematical 

operations on EC are performed using the rules of arithmetic 

in GF(2m) [14,15]. 

Since the characteristic of the finite field GF(2m) is 2, the 

equation (1) can be transformed by suitable change of 

variables to get the following forms 

               
                     (2) 

                                    (3) 

The set E (a2, a6) consisting of all pairs of (x, y) that satisfy 

equation (2) together with the point at infinity O form an 

abelian group if a6 ≠ 0. This type of curves is obtained if a1 in 

equation (1) is non zero. These curves are non-super singular 

elliptic curves. The set E (a3, a4, a6) consisting of all pairs of 

(x, y) that satisfy equation (3) together with the point at 

infinity O form an abelian group if a3 ≠ 0. These curves are 

super singular elliptic curves. This type of curve is obtained if 

a1 in equation (1) is zero. Here we will be considering the 

non-supersingular elliptic curves only as they provide the 

highest security in GF(2m). 

Rules for addition over non-super singular curves over GF(2m) 

can be stated as follows: 

For all points P, Q  E (a2,a6), 

1. P + O = P 

2. If P = (x1, y1), then –P = (x1, x1+y1) 

3. Addition formula: If P = (x1, y1) and Q=(x2, y2), then       

P+Q = R = (x3, y3) is given by the ‘tangent and chord’ 

method 

                          

                                        (4) 

where   = (y1 + y2)/(x1 + x2) 

4. Doubling formula: If P = (x, y), then 2P =R = (x3, y3) is 

given by 

              

      
                            (5) 

where   = x1 + y1/x1 

Thus, adding two elliptic curve points (EC-Add) as well as 

doubling an elliptic curve point (EC-Double) requires one 

inversion and two multiplications each over the underlying 

finite field GF2m. 

Computing inverses is relatively expensive in comparison to 

multiplication in GF(2m). In order to avoid computing 

inverses the point P(x,y) in affine coordinates can be 

converted to projective coordinate as (x,y,1). A point        

P(X, Y, Z) in projective coordinates can be converted to affine 

coordinates as (X/Z, Y/Z) provided Z  0. Z = 0 implies a 

point at infinity. For projective coordinates representation of 

the affine points, the common denominator for X and Y 

coordinates are taken as Z coordinate [14] and [15]. The 

projective equation of the EC is given by 

                 
       

                  (6) 

Elliptic curve addition: 

Let P = (X1 : Y1 : Z1),  Q = (X2 : Y2 : Z2) such that P   Q then 

P + Q = R = (X3 : Y3 : Z3) is given by 

A = Y1Z2 + Z1Y2,  B = X1Z2 + Z1X2,   C = B2, 

D = Z1Z2,   E = (A2 + AB + a2C)D + BC, 

X3 = BE,  Y3 = C(AX1 + Y1B)Z2 + (A + B)E,  Z3 = B3D.         (7) 

Elliptic curve doubling: 

If P = (X1 : Y1 : Z1) then 2P = R = (X3 : Y3 : Z3) is given by 

A = X1
2 B= A + Y1Z1,  C= X1Z1, 

D = C2,  E= (B2 + BC + a2D), 

X3 = CE,  Y3 = (B + C)E + A2C,    Z3 = CD.                (8) 

Thus in projective coordinates, no inversion is needed.  
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2.1 Point Multiplication on Elliptic Curves 

If P is a point on the elliptic curve and ‘k’ is any integer, 

computing a new point ‘kP’ returns another point on EC. This 

operation is called point multiplication operation on EC. The 

EC point multiplication is computed by repeated point 

additions which is same as adding the point P to itself 'k' times 

and the points on an EC form an abelian group under point 

addition operation. The point multiplication operation can be 

implemented with a number of point addition and doubling 

operations. For example, 7P can be written as 2(2P+P) + P, 

which can be implemented as a combination of two doubling 

and two addition operation. Thus for a given point P on the 

EC and any integer 'k', computation of kP is easy. But, at the 

same time, computing k from R and P is extremely difficult. 

This is called the elliptic curve discrete logarithm problem 

(ECDLP). The EC operations in turn are composed of basic 

operations in the underlying finite field (FF or GF)[16,17]. 

Since computation in one direction is easy while that in the 

opposite direction is difficult, elliptic curve point 

multiplication is a one-way function. This is the underlying 

mathematical problem that provides security and strength to 

EC-based crypto-schemes. Non-supersingular curves are 

considered to be more secure compared to supersingular 

elliptic curves.  

2.2 Finite Field Arithmetic  

2.2.1  Galois Field Addition 

If A = (a0, a1,….am-3, am-2, am-1) and B = (b0, b1,….bm-3, bm-2, 

bm-1) are elements of GF(2m), then the sum C =A+B = (c0, 

c1,….cm-3, cm-2, cm-1), where ci =ai bi. Therefore sum can be 

obtained as bitwise XORing of A and B.  

2.2.2 Galois Field Squaring 

Squaring of an element A in the normal basis representation is 

a cyclic shift operation. Hence, the hardware implementation 

of squaring operation requires only a shift register.  

2.2.3 Galois Field Multiplication 

Gaussian normal bases (GNB) for GF (2m) exist whenever m 

is not divisible by 8. They include the optimal normal bases 

(ONB)[18,19], which have the simplest and most efficient 

multiplication possible in a normal basis. The type of a GNB 

is a positive integer measuring the complexity of the 

multiplication operation with respect to that basis. The smaller 

the type, the more efficient is the multiplication. For a given 

m and T (type T Gaussian normal basis), the field GF (2m) can 

have at most one GNB of type T [20, 21]. A table of Gaussian 

normal bases is given in [10]. The Gaussian normal bases of 

types 1 and 2 have the most efficient multiplication rules for 

all normal bases. For this reason, they are called optimal 

normal bases. 

 

Let p= 2m + 1 be a prime ≠ 2 and let ordp2, be the order of 2 

(mod p) such that gcd(2m/ordp2, m) = 1 where i.e. either 2 is a 

primitive root (mod p) or ordp2 = m and m is odd. Then the 

element α = β+β-1 where β is a primitive pth root of unity in 

GF(22m) forms a normal basis {α0, α1, …,αm-1} in GF(2m) 

which is a Gaussian normal basis of type 2 (or a type II ONB). 

Thus from [13] the multiplication of two elements A and B 

can be represented as C = AB, where  

                 
                

          
 
     

 

We briefly explain, as an example, a word-level multiplier 

over GF(25) which has GNB of type 2. The multiplication 

result is as follows (see [13] for details). 

 

C0 = (a3+a4)b2 + a1b0 + (a1+a2)b3 + (a0+a3)b1 + (a2+a4)b4 

 

C1 = (a4+a0)b3 +  a2b1 + (a2+a3)b4 + (a1+a4)b2 + (a3+a0)b0 

 

C2 = (a0+a1)b4 + a3b2 + (a3+a4)b0 + (a2+a0)b3 + (a4+a1)b1 

 

C3 = (a1+a2)b0 + a4b3 + (a4+a0)b1 + (a3+a1)b4 + (a0+a2)b2 

 

C4 = (a2+a3)b1 + a0b4 + (a0+a1)b2 + (a4+a2)b0 + (a1+a3)b3 

 

The underlined entries are the first terms to be computed. The 

shifted diagonal entries have the common terms of ai's. The 

product C using a type II ONB in GF(2m) for m =5 is shown 

in Fig.1. 

 

 
 

Fig 1. A multiplication circuit using GNB in GF(2m) for m 

= 5 

 

3. EC BASED STREAM CIPHERS 
Stream ciphers allow real time operation, which is usually not 

possible with block cipher encryption. The need for buffer 

space is very less in stream ciphers, since data is operated bit 

by bit. Most critical step in the design of a stream cipher is the 

design of a cryptographically strong pseudorandom bit 

sequence generator (CSPBSG)[22, 23]. Two main approaches 

to implement CSPBSG are (i) using cryptographic one-way 

function and (ii) using Linear Feedback Shift Register (LFSR) 

based structures[24,25]. LFSR based systems are less 

complex in hardware compared to one-way function based 

structures. Even though one-way function based stream 

ciphers have increased hardware complexity compared to 

LFSR based structures, if the underlying one-way function is 

used for the implementation of some other cryptographic 

services such as authentication or key exchange, then the 

redundant hardware in the system can be reduced. The 

operations of key exchange, encryption and authentication are 

done sequentially. Thus an encryption system built using 

infrastructure available for key exchange or authentication is 

highly acceptable. This approach will reduce the overall 

hardware complexity of the cryptosystem. 

3.1 PRBS Generation Based on One-Way 

Functions  
A pseudorandom bit sequence generator (PBSG) is a 

deterministic algorithm which takes a random binary 

sequence of length k and outputs a binary sequence of length 

n»k which ‘‘appears” to be random. The input to the PBSG is 

called the seed, while the output is called a pseudorandom bit 

sequence. Generation of pseudorandom bit sequences from a 

one-way function f can be briefly explained as follows: First 

select a random seed S0, and apply the function f to the seed to 

generate f(S0). Now, apply a predicate B on f(S0) and output 
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B(f(S0)). Then, advance to the next seed S1, and output 

B(f(S1)) etc. Different EC based PBSG schemes suggested in 

the literature use different ways to proceed from seed for ith 

iteration to that for (i+1)th iteration and different predicates B, 

while the one way function f is the EC point multiplication 

operation[26]. 

3.2 Stream Cipher Generation Based on 

Elliptic Curve  
Various suggestions are available in literature for EC based 

stream cipher generation. The properties such as periodicity, 

throughput and security of the key stream produced by these 

algorithms are thoroughly analyzed in [5]. Since Elliptic curve 

encryption demands mapping the message to a point on the 

Elliptic curve, it can be implemented only as an iterative 

process which is very complex. Hence methods of encryption 

based on EC which demand much lower hardware complexity 

need to be investigated. Stream cipher generation based on EC 

with low hardware complexity is reported in [5, 27]. 

The algorithm is basically an improvement of Linear 

Congruential Generator based on EC. It performs a random 

walk through points on elliptic curve starting from a secret 

seed point P. Random walk is performed by choosing a 

random integer ‘k’ given out by an LFSR and computing ‘kP’. 

The LFSR can be used as a counter whose count sequence is 

determined by the feedback polynomial. If the feedback 

polynomial is a primitive polynomial of degree ‘m’, the LFSR 

content passes through all 2m-1 nonzero values starting from 

an initial value. For example, let the length of the LFSR be 5. 

Then, one possible primitive polynomial for being used as 

feedback polynomial is x5 + x3 + 1. Let the initial count in this 

LFSR be given as C0 = (c0, c1, c2, c3, c4). Then for the next 

clock, the contents of LFSR gets modified to C1 = ((c2+c4), c0, 

c1, c2, c3) and so on. The constant used for multiplying the 

seed point P for ith iteration is ith count Ci of the LFSR. Thus 

by combining LFSR with EC point multiplication operation, 

the required randomness is ensured by the LFSR while 

security is ensured by the EC point multiplication. The secret 

integer for ith iteration is ith state of LFSR starting from an 

initial key. Once the LFSR passes through all possible states 

starting from the initial key, it is re-loaded by the x coordinate 

of the output point for the iteration i.e., X(CnP). The outer 

loop can be chosen to run the required number of times ‘k’. 

The value of ‘k’ can be any value chosen at liberty in such a 

way that randomness properties of the sequence is not 

destroyed, the order of the point will not be revealed by the 

period of the sequence. Thus, the new algorithm helps to 

increase the security of the sequence in two different ways: (i) 

by removing the symmetry properties in the binary sequence 

(ii) by hiding the order of the seed point. The cryptanalysis of 

this proposed cipher can be done only by making brute-force 

trials on points on elliptic curve as seed point. Authors 

experimentally proved that this method of iteration can 

provide good security and randomness. Output bits at any 

instant are generated from X and Y coordinates of output 

point by applying a trace operation. 

 

Algorithm 

Let E be a non-super singular elliptic curve over GF(2m). Let 

P be an affine point of order l +1 on an E. P is the secret key. 

L = log2 (l + 1) 

Step 1: Load LFSR of length ‘L’ with some known non-zero 

integer C1. 

Step 2: for j = 1 to k 

For i = 1 to n 

Get the LFSR count Ci. 

Si Ci P 

s(2i-1) = Tr(X-co-ordinate(Si)) 

s(2i) = Tr(Y-co-ordinate(Si)) 

Advance the LFSR to the next count. 

End for; 

Cj = X(CnP) 

End for 

Step 3: Return (s) 

For an EC defined over GF(2m) , the rough estimate of the 

number of trials to be done for finding the seed point can be 

given as 2m..  Thus the security of the above algorithm is 

O(2m) for an EC defined over GF(2m). Since the predicate 

Trace function is applied on output points Si to generate bit 

stream {s}, the output points Si cannot be traced back from 

output bit stream {s}. The Trace function (Tr) applied on 

output points to generate output bit stream, is bitwise XOR. 

The security of this cipher is increased further by making Ci a 

part of secret information. Then the security is even more 

stronger than solving ECDLP. This is because, even if the 

attacker gets point Si, from bitstream si, to get back P, he 

should solve P = Ci
-1Si where Ci is not known. Thus the 

algorithm produces a sequence of large periodicity and good 

security. 

4.  KEY EXCHANGE AND HASH 

GENERATION USING EC 
Two kinds of cryptosystems that implement cryptographic 

algorithms are private key cryptosystem and public key 

cryptosystem. In a private key cryptosystem both 

communicating entities share a secret key through a secure 

and authenticated channel. This secret key is used for both 

encryption and decryption of data. Private Key cryptography 

is used for the encryption of data due to its speed and reduced 

complexity of operations. However, it has certain 

shortcomings that make it unsuitable for use in today’s 

environment. 

 Key Management Problem : In a broadcast communication 

scenario, each user will have  to communicate with many 

different ones. Thus, communication on a public network is 

not restricted to one-on-one. For a network of n users,        

n(n-1)/2 private keys need to be generated. When n is large, 

the number of keys becomes unmanageable. 

 Key Distribution Problem : With such a large number of keys 

that need to be generated on a network, the job of generating 

the keys and finding a secure channel to distribute them 

becomes a burden. 

 No digital signatures possible : A digital signature is an 

electronic analogue of a handwritten signature. If Alice sends 

an encrypted message to Bob, Bob should be able to verify 

that the received message is indeed from Alice. This can be 

done with Alice’s signature; however, private key 

cryptography does not allow such a feature. In contrast, public 

key cryptography uses two keys. Each user on a network 

publishes a public encryption key that anyone can use to send 

them messages, while keeping the private key secret for 

decryption. On a network of n users, it only needs n public 

and n private keys. Furthermore, it allows the use of digital 
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signatures, which ensures non-repudiation. However, public 

key cryptography does have its drawbacks.  

In truth, public and private key cryptography work best 

together. Public key cryptography is ideal for key distribution 

and management, ensuring data integrity, providing 

authentication and nonrepudiation, while private key 

cryptography is ideal for ensuring confidentiality, such as 

encrypting data and communication channels. Thus in this 

hardware implementation public key cryptography is used for 

key exchange and private key cryptography is used for 

message encryption. 

4.1 Elliptic Curve Diffie-Hellman Key 

Agreement Scheme 

In Key-Agreement schemes (KAS), users can exchange and 

establish keys by means of an interactive protocol. Key-

agreement schemes are public-key cryptography based and are 

used to initiate a conversation between two introduced users. 

The Diffie-Hellman Key agreement scheme is implemented 

on Elliptic Curve defined over GF(2m) and a point P of order n  

which is known to the public. Let A and B be the 

communicating entities. The various steps in key exchange 

process are 

1. A chooses a random integer X, computes XP and sends the 

partial key to B. 

2. B chooses a random integer Y, computes YP and sends the 

partial key to A. 

3. On receipt of A’s message, B computes Y(XP) = XYP. 

4 .On receipt of B’s message, A computes X(YP) = XYP. 

Now, both A and B share a common secret, XYP which is a 

point on the given elliptic curve. But for an eavesdropper who 

sees the partial secrets, XP and YP, recovering the key ‘XYP’ 

requires solving the ECDLP (Elliptic Curve Discrete 

Logarithm Problem). 

4.2 Hash Generation Based on EC Point 

Multiplication  

A hash function is a one-way function that maps binary 

strings of different lengths to a binary string of fixed length, 

called the hash value. It is widely used in secure 

communication systems for message authentication and data 

integrity verification. The hash value produced is a function of 

all the bits of the input message and provides an error 

detection capability. A change in a single bit of the input 

message causes a change in the hash code. At the same time 

many messages can have the same hash value as it is a many 

to one mapping. Commonly used hash algorithms are MD5, 

SHA, HMAC etc. 

As the aim of this work is to implement a secure 

communication system of low hardware complexity by using 

a single module of EC point multiplication for all the three 

functions on a time sharing basis, the hash function used for 

implementation is a point multiplication operation as 

explained below. 

The mathematical expression of the hash function is 

H(m) = (x1 + nx2)P, 

where x1 and x2 are the residues of modular division of the 

message string with generator polynomials g1(x) and g2(x) and 

‘n’ is any arbitrary integer which is kept as a constant. The 

operation nx2 is implemented as a GF multiplication. P is the 

point on the elliptic curve which is the key generated by the 

Diffie-Hellman key exchange algorithm as given Fig.2. 

 

Fig 2. Hash generation unit 

As the underlying one-way function is EC point multiplication 

and it is infeasible to find another message string of same x1 

and x2 values, the above function satisfies all the properties to 

be chosen as a hash function. Thus the only additional 

hardware required for hash generation are two simple modular 

division circuits with polynomial g1(x) and g2(x). This results 

in a large reduction of hardware for the entire secure 

communication system. 

5. HARDWARE STRUCTURE FOR EC 

POINT MULTIPLICATION 

This work concentrates on hardware implementation of 

encryption system, integrity verification system and key 

exchange system. The design of complete hardware structure 

is explained here. The point multiplication operation is 

realized through point addition and point doubling operations 

on EC. As it is clear from the formulae for point addition 

equation (7) and point doubling equation (8), these operations 

are performed through addition, multiplication and squaring 

operations on the variables that are elements of the basic field 

over which the EC is defined. So, the hierarchy of arithmetic 

for EC point multiplication for a point P on an elliptic curve is 

as shown in Fig 3. Since EC over GF(2m) are more suitable 

for hardware implementation, the basic operations are to be 

done in GF(2m) for the implementation of point 

multiplication. 

 

Fig 3.EC arithmetic hierarchy 

The finite field addition (FF-Add) and finite field squaring 

(FF-Square) operations are quite simple. These operations can 

be done with very few clock cycles. But finite field 

multiplication (FF-Mult) is very costly in terms of hardware 

requirement. The number of clock cycles required for its 

computation depends on the particular architecture of the FF 

multiplier.  
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5.1 Hardware Structure for EC Arithmetic  

The EC point multiplication is computed by repeated point 

additions and point doubling 

Algorithm: 

Input :An integer k>0, Point P on EC. 

Output: Q = k.P 

Step1: Set k=(kl……….k1k0)2                 

Step2: Set QP, 

Step3: for I from l-1 down to 0 do 

Q2Q, 

if ki =1 

QP+Q, 

end if 

          end for 

Step4: Return(Q) 

The architecture for the EC point multiplication can be 

obtained by combining the EC addition and EC doubling 

architectures as given in Fig.4. 

 

Fig 4. EC point multiplication block 

If ki is ‘1’ then first an EC doubling operation and then an EC 

addition operation is to done. If ki is ‘0’ then only an EC 

doubling operation is to done. The ADD sequential machine 

does the sequential actions and generates the necessary 

control signals for the EC addition operation. Similarly the 

DOUBLE sequential machine does the sequential actions and 

generates the necessary control signals for the EC doubling 

operation. The intermediate results are stored in the 

register/RAM array. Clock division is provided for the GF 

multiplication as it requires many clock cycles. The EC 

addition operation and EC doubling operation requires 

additional steps which requires one or more clock cycles. A 

controller has been designed to generate various control 

signals to synchronize operations within the EC point 

multiplication unit. These operations include loading a new 

integer input into the point multiplication block, passing 

control between doubling and addition units, loading the 

result into output lines etc. The counter also synchronizes the 

starting and ending of a point multiplication. After the 

completion of point multiplication in the projective 

coordinates, the z coordinate of the result is passed into an 

inversion block, which does the field inversion. Then the 

inverse of z is multiplied with x and y coordinates of the result 

to get the point multiplied result in the affine form. 

 

 

5.2 Hardware Implementation of ECPBSG  

The entire working of the hardware can be divided into three 

different phases 1) key exchange 2) pseudo random bit 

sequence generation and 3) hash generation. The complete 

structural block diagram of the implementation of secure 

communication module is shown in Fig.5. The hardware 

requires five different clock frequencies which can be 

generated using clock division circuit. The hardware generates 

signals for handshaking process i.e. the request and grant 

signals. Once the initial handshaking is over the process of 

key exchange is initiated. The hardware randomly selects an 

integer stored in the memory, loads it to the LFSR. Initial seed 

point is the point P which is publicly known. EC point 

multiplication block computes the result according to the 

algorithm discussed before. The result is output through the 

port YA. Simultaneously it receives the value YB sent by the 

other entity through port YB. Now YB forms the seed point 

for next EC multiplication. The result of point multiplication 

with YB as the seed point forms the key. The x value of the 

key is loaded into the LFSR and the key acts as new seed 

point for EC multiplication. The output from the EC point 

multiplication block is now given to the trace generation 

circuit to get the PRBS. This output bit gets xor-ed with the 

message bits stored in the buffer and the resultant cipher text 

is obtained. Simultaneously the message bits are loaded into 

the hash generation unit. Once the entire cipher text is 

generated the LFSR is loaded with the output of hash 

generation unit. The x-coordinate value of the result of point 

multiplication is given out as the hash value of that message 

block. The control signals to the various blocks are generated 

by the controller. 

5.3 Experimental Results 

In this paper, we propose a design for implementation of 

secure stream cipher based on EC using an efficient multiplier 

over GF(241). Our design proposes a Stream Cipher generator, 

Hash generation unit, and a Key exchange module as a single 

hardware unit which uses the point multiplication unit on a 

time sharing basis controlled by a high performance controller 

unit thereby reducing the hardware complexity.  The 

implementation of proposed EC cypto system was carried out 

using Xilinx Spartan 6 (XC6SLX45T) FPGA. The proposed 

architecture uses 7,263 slices and has a maximum frequency 

of 143MHz as shown in table 1. This hardware efficient 

design provides an elliptic curve cryptosystem with stream 

cipher of high throughput rates, integrity verification unit and 

key exchange as one module. Further, the proposed 

architecture can easily be implemented on ASICs or FPGAs. 

Table 1. Performance results 

  Device/Slices Freq Remarks 

This 

work 

XC6SLX45T, 

7363 

143 

MHz 

Time shared multiplier 

unit for key exchange 

hash and stream cipher 

generation 
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Fig 5. Structural diagram of the Hardware for Secure stream cipher with key exchange and hash generation 

6. CONCLUSION 

We have designed and implemented an Elliptic curve based 

message encryption module, key exchange module and hash 

generation module using verilog on FPGA Spartan 6. Even 

though the implementations were done over GF(241), it can be 

extended to any number of bits. The proposed design is an 

efficient implementation of EC based encryption system with 

good security making use of hardware for key-exchange and 

integrity verification. Since EC based key exchange is a 

popular option for key exchange in many of the modern 

communication systems, the proposed design is highly 

relevant in the implementation of secure communication 

system of low hardware complexity suitable for hand-held 

devices. 
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