
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.21, April 2013

8

Design of Encryption System using NIOS II Processor

Madhav M. Deshpande
Research Scholar,
R.C.O.E.M, Nagpur

Meghana A. Hasamnis
Associate Professor, Electronics Department

R.C.O.E.M, Nagpur

ABSTRACT

The use of embedded systems in various applications has

increased extensively over last few years. Embedded systems

allow hardware & software go hand in hand to perform some

specific task. As the application demand goes on increasing

with the time the complexity of the embedded system

increases. At the same time, the size of integrated circuits

should be limited considering the basic criteria for embedded

system like, quality of system, quantity of system, speed of

system, Performance of system and Power consumption of

system. While designing system according to this criterion

complexity of the system increases. To reduce complexity of

system, it is designed using balanced hardware & software

flow of design. This combined design of hardware & software

is known as Co-Design. Using this approach we build

dedicated software and hardware units on the single chip i.e.

SoC design.

KEYWORDS

Co-Design, image processing, DCT(Discrete cosine

transform), Custom instruction.

1. INTRODUCTION
In last few decades, embedded systems have experienced an

accelerating growth both in computing power and scope of

their possible applications. Moreover the designing procedure

for embedded system also changed immensely. As the

application demands goes on increasing with the time the

complexity of the embedded system is waxing. Combination

of software and hardware in design leads to improve the

system performance such approach is known as Co-Design.

1.1 CO-DESIGN
Hardware/software co-design is the main technique used in

the thesis. It can be defined as the cooperative design of

hardware and software. The aim of co-design is to abridge the

time-to-market while reducing the design effort and costs of

the designed products [1].

Co-design can be implemented on embedded systems and

processor is the main part of any embedded system. As

software is more flexible and cheaper than hardware, the

advantage of using processors is multiple. This suppleness of

software allows late design changes and verified debugging

opportunities. Moreover, the possibility of reusing software

by porting it to other processors reduces the time-to market

and the design effort. [1][4].hardware is always used in

design, when processors are not able to meet the required

performance. This exchange between hardware and software

illustrates the optimization aspect of the co-design problem.

Co-design is an interdisciplinary activity, bringing concepts

and ideas from diverse disciplines together, e.g. system-level

modeling, hardware design and software design [3].

Fig. 1 Co-Design Flow

The design flow of the general co-design approach is depicted

in figure 1

Step1: The co-design process starts with specifying the system

behavior at the system level.

Step 2: After this, a pure software system will be developed to

verify all algorithms.

Step 3: Performance analysis will be performed to find out the

system bottlenecks.

Step 4: The hardware/software partitioning phase a plan will

be made to determine which parts will realized by hardware

and which parts will be realized by software. Obviously, some

system bottlenecks will be replaced by hardware to improve

the performance.

Step 5: based on the results of step 4, hardware and software

parts will be designed respectively.

Step 6: co-simulation. At this step, the completed hardware

and software parts will be integrated together and

performance analysis will be performed.

Step 7: if the performance meets the requirements, the design

can stop and if the

Performance can’t meet the requirements, new HW/SW

partitioning and a new design.

1.2 Motivation

In order to wane the amount of time spent on design cycle and

debugging process, Co-design method is frequently used. In

process of making an easier explore design tradeoffs,

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.21, April 2013

9

continual verification throughout the design cycle, mutual

influence of both HW and SW early in the design cycle,

partitioning (Co-design) is the only way to get all this features

[3].

The advanced ASIC and FPGA technologies facilitate the

integration of complex Systems on a Chip (SoC). The use of

different Co-design methods is application specific. In our

project work we required an opaque and fast system. The Nios

II soft-core processor have the highest operating frequency for

FPGA implementation, it also allows reuse of code and highly

configurable [14]. These esteem features motivated to select

AES Algorithm for implementation using Co-design with

NIOS II soft core processor and study the performance

parameters.

1.3 Aim and Objective

The objective of our paper is

1. Implementation of AES algorithm on Cyclone II

FPGA using NIOS II Processor.

2. Implementation of AES algorithm on Cyclone II

FPGA using NIOS II Processor with Custom

Instruction

3. Comparison of algorithm in terms of speed and area

for both the designs of AES algorithm (Encryption)

with and without custom instruction

2. RIJNDAEL ENCRYPTION

ALGORITHM

The algorithm originates from the initiative of the National

Institute of Standards and Technology (NIST) in 1997 to

select a new symmetric key encryption algorithm. Rijndael

algorithm was selected as the Advanced Encryption Standard

(AES) because of its security, performance, efficiency, ease of

implementation and flexibility. The algorithm includes three

main parts: Cipher, Inverse Cipher and Key Expansion.

Cipher converts data to a jumbled form called cipher text

while Inverse Cipher converts data back into its original form

called plaintext. Key Schedule is generated by Key Expansion

that is used in Cipher and Inverse Cipher procedure. There are

Specific number of rounds required to generate cipher and

Inverse Cipher (Table 1). For the AES algorithm, the number

of rounds to be performed during the execution of the

algorithm is dependent on the key length.

Table 1.

 Block

size Nb

words

Key

length Nk

words

No. of

rounds Nr

AES-128 bit key 4 4 10

AES-192 bit key 4 6 12

AES-256 bit key 4 8 14

2.1 Encryption Process
The Encryption process of Advanced Encryption

Standard algorithm is given below,

Figure 2 Encryption Process

In Encryption process, each round consists of four operations:

SubBytes, ShiftRows, MixColumns and AddRoundkey. For

128 bit key, there will be total 10 rounds. But in last round

there will be no Addrounkey operation.

SubBytes: The input data and key is given in the form of a

matrix. Data entry in each matrix is of a byte size. The X-or

operation is performed between data and key to make new

matrix. Each byte in the matrix is replaced by the byte from S-

box, where S-box is a standard substitution table in algorithm.

ShiftRows: After Subbyte process the bytes in matrix are

shifted to lest side. First row of matrix is remain unchanged,

second row is shifted left by 1 byte, third row by by 2 bytes

and final row is shifted by 3 bytes to form new matrix.

MixColumns: This transformation is based on Galois Field

multiplication. Each byte of a column is changed with another

value that is a function of all four bytes in the given column.

The MixColumn transformation executes on the State

column-by-column, treating each column as a four-term

polynomial GF (28).

Addroundkey: In the Addition of Round Key transformation,

a Round Key is added to the State matrix by a simple bitwise

X-OR operation done on plain text and input key. Each Round

Key consists of Nb words from the key schedule generation.

Those Nb words are each added into the columns of the State

3. Implementation of Algorithm on FPGA using

NIOS II Processor

AES Algorithm will be implemented on CYCLON II FPGA

using NIOS II Processor and the software used are Quartus II

and NIOS II IDE.

NIOS II is a synthesizable VHDL model of a 32-bit processor

compliant with the SPARC V8 architecture. The processor is

highly flexible in any design configuration, and mainly

suitable for system-on-a-chip (SOC) designs. The NIOS II

IDE have GNU compiler with C/C++ license, Following are

some features of NIOS II Soft core Processor.

 Soft IP Core : A soft-core processor is a microprocessor

fully described in software, usually in an HDL, which can

be synthesized in programmable hardware, such as

FPGAs.

http://www.gaisler.com/doc/lgpl.txt

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.21, April 2013

10

 Reduced Instruction Set Computer (RISC)8/16/32-bits

memory controller for external PROM and SRAM

 No pipeline, 5 or 6 stages pipeline configurations

 It has full 32-bit instruction set

 32 general-purpose registers

 For more interrupt sources it has external interrupt

controller interface

 Single-instruction 32 × 32 multiply and divide producing a

32-bit result

 For computing 64-bit and 128-bit products dedicated

instructions of multiplication is given

 Floating-point Custom instructions for single-precision

floating-point operations

3.1 Design steps for Implementation

The system components required for Software/Hardware

implementation of Encryption or Decryption on FPGA in

QUARTUS II software are,

 NIOS II Processor

 JTAG UART

 SRAM MEMORY

 Input ,Output GPIO’S

 Performance Counter

SOPC Builder automatically generates the interconnect logic

to integrate the components in the hardware system. It can be

selected from a list of standard processor cores and

components provided with the Nios II EDS [14].

Following window shows the selection of components

required and its system generation

Figure 3 System contents in SOPC Builder

In the Figure 3, the components required to build a system are

taken in SOPC Builder.

Figure 4 System Generation without custom instruction

In Figure 4, the successful generation of the system is shown.

Figure 5 NIOS System without custom instruction Block

Diagram File view

In Figure 5, integration of SOPC Builder with Quartus

Software is shown. In this BDF the pin assignment is done by

importing the pin assignment of Cyclone II (EP2C35F672C6)

FPGA.

Figure 6 Hardware Generation of System in Cyclone II

(EP2C35F672C6) FPGA

In Figure 6, the generation of system in hardware is shown.

Here the connection between Cyclone II FPGA and host

computer is done by cable USB-Blaster. After successful

hardware generation time limited file is generated.

3.1.2 Results for AES using NIOS II System

The results for encryption using NIOS II IDE with 128-bit key

and 128 bit plaintext/cipher text written in c-code has given

below.

After Generation of system in Quartus II software the

.sopcinfo file is called up in NIOS II IDE as a hardware

platform. The new project is made in NIOS II IDE, then the

project for C-code is chosen in which the “hello_world”

template is selected.

The C-code for AES Algorithm are written in Hello_world.c

file (Encryption & Decryption separately). Then the project is

build using Build Project command.

After the project build the code will be implemented on

CYCLONE II (EP2C35F672C6) FPGA using command Run

as NIOS II Hardware. After all these steps the output will be

seen in NIOS II Console Window [18].

Figure 7 Nios II Processor Software Flow View for

Encryption

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.21, April 2013

11

In Figure 7, the output of implementation of Algorithm

(Encryption) on FPGA is shown with clock cycles and time

required for execution of Algorithm (Encryption)

Table no. 2 Clock Cycles for execution of Algorithm

4. Implementation of Algorithm with

custom instruction on FPGA using

NIOS II Processor

In this implementation custom instruction is added in Nios II

processor which is used for acceleration in software flow

which takes more time. Custom instruction is directly

connects to ALU of Nios II processor as a hardware shown in

Figure 8

Figure 8 Custom Instruction Logic connects to ALU in

SOPC builder system

4.1 Design steps for Implementation
In Hardware implementation, Custom Instruction is added in

NIOS II Processor. The SOPC GUI supports the inclusion of

custom instructions.

Figure 9 Inclusion of Custom Instruction in SOPC GUI

 Figure 9 shows the addition of custom instruction in NIOS II

Processor. The inclusion of Custom Instruction is added as a

floating point hardware in processor keeping all other

peripherals same, it leads to increase in hardware. The

Custom Instruction maps the memory location from SRAM

interface in SOPC builder. For data transfer it uses the 32-bit

internal registers if Nios II processor [16].

 Figure 10 RTL view of Custom Instruction

 Figure 10 shows the RTL of Custom Instruction

which is of Multicycle type.

4.1.2 Results of AES algorithm using Custom Instruction

The System is generated in SOPC Builder. In this system the

custom instruction is added as floating point hardware.

Figure 11 System with Custom Instruction in SOPC

Builder

Figure 12 System Generation for Custom Instruction

Figure 11 and Figure 12 shows the system contents and

generation of system in SOPC Builder. After generation of

system in SOPC, the pin assignment and compilation is done

in QUARTUS II.

Figure 13 NIOS System with custom instruction Block

Diagram File view

In Quartus II, The pin assignment is done by importing the

file of CYCLONE II (EP2C35F672C6) FPGA. In the figure

13 the address lines from SRAM memory are assigned to

custom instruction.

Figure 14 RTL view of NIOS II System

Algorithm Clock Cycles Time Required

Encryption 7395826 0.147917 Sec

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.21, April 2013

12

Figure 14 shows the RTL vies of the system in QUARTUS II.

After the successful compilation of system, hardware

generation in CYCLONE II FPGA is done and time limited

file is generated as shown in Figure 15.

Figure 15 Hardware generation of NIOS II System in

CYCLONE II

After hardware generation of system using CYCLONE II

FPGA, the algorithm is implemented in NIOS II IDE. We

have to follow same steps as stated in chapter 3 with addition

of Custom Instruction files in NIOS II IDE Project.

After generating hello_world.c file, we have to add custom

instruction files floating_point.c, floating_point.h,

floating_point_CI.c and floating_point_SW.c in the project.

Then the project is build by command Build Project. While

building a project, a macro function system.h is generated

which connects the C-code of algorithm to Custom Instruction

hardware.

After successful build of project the Algorithm is

implemented on CYCLONE II (EP2C35F672C6) FPGA. This

implementation is done by command Run as NIOS II

Hardware. After execution of this command the result is

shown in NIOS II console window.

Figure 16 Encryption result with Custom Instruction

 In Figure 16, the output of implementation of Algorithm

(Encryption) on FPGA is shown with clock cycles and time

required for execution of Algorithm (Encryption).

The table no.3 shows the clock cycles required for Encryption

and Decryption.

Table no. 3 Clock Cycles for execution of Algorithm

5. Result and Conclusion

The System generated in SOPC with and without Custom

Instruction is compiled in Quartus II environment. The AES

algorithm (Encryption) is compared in terms speed i.e.

number of clock cycles required and area in terms of number

of Logic elements (LE’s) on FPGA.

5.1 SYNTHESIS REPORT

After execution of Algorithm on FPGA with and without

custom instruction, their comparison is done for parameters

clock cycles. From the table no. 2 and table no. 3 the

comparison is done shown in table no.4

Table 4 CPU Clock cycles and time required

From the performance analysis results of clock cycles and

time required for execution of AES algorithm (Encryption)in

software i.e. system without Custom Instruction is more as

compared with execution of algorithm in hardware i.e. system

with custom instruction.

In hardware implementation custom instruction maps the

processes in software such as addition, subtraction,

multiplication & division directly to the ALU of NIOS II

processor which is used directly as hardware. Inclusion of

such hardware reduces the clock cycles and time required for

execution of algorithm.

The system which is generated using SOPC Builder is

compiled in Quartus II software. The hardware required for

generation of system is depend upon the LE’s used in

CYCLONE II (EP2C35F672C6) FPGA . The comparison in

hardware change is shown in table 6.

Table 5 comparison of compilation report

The above table shows the comparison between the software

and hardware systems i.e. system with and without custom

Algorithm Clock Cycles Time Required

Encryption 6029854 0.120597 Sec

Items Clock Cycles Time Required

Encryption Without

Custom Instruction

7395826 0.147917 Sec

Encryption With

Custom Instruction

6029854 0.120597 Sec

Items Total

Count

Without

Custom

Instruction

With Custom

Instruction

Total Logic

Elements

33216 3290 (10%) 4623(14%)

Total

Combinational

Functions

33216 3089(9%) 4226(13%)

Dedicated

Logic

Registers

33216 2021(6%) 2941(9%)

Total Pins 475 41(9%) 73(15%)

Total Memory

Bits

483840 46208(10%) 46355(10%)

Embedded

multipliers 9-

bit Elements

70 4(6%) 11(16%)

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.21, April 2013

13

instruction. It shows that inclusion of custom instruction

increases the hardware which gives better result in terms of

clock cycles and require for execution of algorithm.

5.2 CONCLUSION

 Rijndael Encryption Algorithm (Encryption) considered as a

case study is implemented using the hardware / software co-

design methodology. Hardware / software co-design

methodology implementation gives an optimized design of the

algorithm. Algorithm is implemented on CYCLONE II FPGA

based around NIOS II processor. Speed of the algorithm is

increased by (18.46%) in Encryption by the loss of area. Also,

when Algorithm is implemented with NIOS II system using

Custom Instruction, speed of the AES algorithm is increased

but area required for the implementation is also increased.

6. REFERENCES

[1] Ernst, R.: “Co-design of embedded systems: status and

trends”, Proceedings of IEEE Design and Test, April–

June 1998, pp.45–54

[2] Subrahmanyam, P. A., “Hardware-Software Co-design -

- Cautious optimism for the future”, Hot Topics, IEEE

Computer, R. D. Williams, ed., January, 1993, pp. 84

[3] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and

J.Stockwood, “Hardware–Software Codesign of

Embedded Reconfigurable Architectures”, in Proc.

Design Automation Conference, 2000.

[4] Jason G. Tong, Ian D. L. Anderson and Mohammed A.

S. Khalid: Soft-Core Processors for Embedded Systems,

the 18th International Conference on Microelectronics

(ICM) 2006

[5] Summa Cum Laude Thesis Bhavya Daya Bachelor of

Science in Electrical Engineering Bachelor of Science in

Computer Engineering, Spring 2009, “ RAPID

PROTOTYPING OF EMBEDDED SYSTEMS USING

FIELD PROGRAMMABLE GATE ARRAYS”.

[6] “NIOS II Processor Handbook”, Altera Corporation,

October 2008

[7] DAEMEN, J.—RIJMEN, V. : AES Proposal: Rijndael,

The Rijndael Block Cipher, AES Proposal, pp. 1–45,

1999 (http://csrc.nist.gov/CryptoToolkit/aes/).

[8] Marko Mali-Fran Novak-Anton Biasizzo,“HARDWARE

IMPLEMENTATION OF AES ALGORITHM”, Journal

of ELECTRICAL ENGINEERING, VOL. 56, NO. 9-10,

2005, 265–269

 [9] J. Zambreno, D. Nguyen and A. Choudhary, “Exploring

area/delay tradeoffs in an AES FPGA implementation”,

in Proc. of International Conference on Field

Programmable Logic and its Applications, Lecture

Notes in Computer Science, Springer-Verlag, Vol. 3203,

pp. 575-585, 2004.

[10] Shrivathsa Bhargav, Larry Chen, Abhinandan Majumdar,

Shiva Ramudit ”128-bit AES decryption” Project report,

CSEE 4840 – Embedded System Design Spring 2008,

Columbia University.

[11] Behrouz A. Forouzan and Debdeep Mukhopadhyay

“Cryptography and Network Security” (2nd edition).

[12] Shrivathsa Bhargav, Larry Chen, Abhinandan Majumdar,

Shiva Ramudit ”128-bit AES decryption” Project

report,CSEE 4840 – Embedded System Design Spring

2008, Columbia University.

[13] Behrouz A. Forouzan and Debdeep Mukhopadhyay

“Cryptography and Network Security” (2nd edition).

[14] William stallings “Cryptography and Network Security”

3rd Edition published by Pearson Education Inc and

Dorling Kindersley Publishing Inc. Advanced Encryption

Standard (AES), Nov. 26, 2001.

 [15] Stallings W. “Cryptography and Network Security:

Principles and Practices. ”4th ed., Pearson Education,Inc.

pp. 63-173. 2006.

[16] Kazi Shabbir Ahmed, Md. Liakot Ali, Mohammad

Bozlul Karim and S.M. Tofayel Ahmad, Institute of

Information and Communication Technology

Bangladesh University of Engineering and Technology,

Bangladesh, “ FPGA IMPLEMENTATION OF AN AES

PROCESSOR”.

 [17] Altera Corporation, “NIOS Embedded Processor System

Development,” [Online Document], Available

HTTP:http://www.altera.com/products/ip/processors/nios

/nio -index.html

[18] “Custom Instruction User Guide”, January 2011, Altera

Corporation

[19] “SOPC Builder User Guide”, December 2010, Altera

Corporation

[20] “NIOS II Software Developer’s Handbook”, May 2011,

Altera Corporation

 [21] Nios II Hardware Development Tutorial, altera,

December 2009 Altera Corporation Website,

www.altera.com, June 2006

[22] Altera Corporation, “Nios Software Development

Tutorial,” [Online Document], 2003 July, [Cited 2004

March 1], Available HTTP:

http://www.altera.com/literature/tt/tt_nios_sw.pdf

[23] Altera Corporation, “Quartus II Development Software

Handbook v4.0,” [Online Document], 2004 February,

[Cited 2004 February5], Available HTTP

http://www.altera.com/literature/hb/qts/quartusii_handbo

ok.pdf

[24] Altera Corporation, “Introduction to Quartus II,” [Online

Document], 2004 January, [Cited 2004 February 6],

Available HTTP:

http://www.altera.com/literature/manual/intro_to_quartus

2.pdf

 [25] Cyclone II Device Handbook, Volume 1,

AlteraCorporation

[26] DE2 Development and Education Board, Altera

Corporation

http://csrc.nist.gov/CryptoToolkit/aes/
http://www.altera.com/literature/tt/tt_nios_sw.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

