
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.20, April 2013

33

Autonomic Computing for B2C E-

Commerce Applications

Devasia Kurian

Christ University, Hosur Road,
Bangalore 560029,

Karnataka, India

Pethuru Raj Chelliah, PhD.

Wipro Consulting Services Division
Wipro Technologies, Sarjapur, Bangalore 560035

Karnataka, India

ABSTRACT
Ever increasing complexity, higher demand for pro-

activeness, and high speeds of innovation resulting from

heavy competition, demand the adoption of more intelligent

systems, which are capable of producing optimal results, in all

fields. B2C E-Commerce applications are no different. The

major challenge in transitioning a brick and mortar business to

an online environment is to provide the same user experience

as that of a wayside store, like the consultation, up selling,

pro-activeness, negotiation, delivery, etc. This requirement

has created a lot of intelligent tools and necessitates further

evolution of more intelligent tools. Autonomic computing

provides the framework for design of independent intelligent

self-managing components, and is thereby optimally suited to

assist E-Commerce in this journey. This framework can be

extensively used to upgrade existing E-Commerce systems

with autonomic features. This paper introduces the concept of

autonomic computing in e-commerce applications, and

provides a generic architecture, with specific focus on self-

optimizing characteristics of autonomic computing. Details of

concrete implementation of autonomic components in an e-

commerce environment are provided.

This paper is the specific application scenario of the generic

autonomic concept presented in “Autonomic Computing

Architecture for Business Applications” [1].

General Terms
Autonomic computing, E-Commerce

Keywords
autonomic computing; e-commerce; associative display;

differential evolution; automatic discount; online shop

1. INTRODUCTION
The efficient transition of a brick and mortar business to

online business requires much more than a website to display

products, select the products and pay for them. E-Commerce

in today’s stage needs more sophisticated, proactive, and

intelligent systems to achieve even a reasonable conversion.

The advances made in various areas such as analytics, data

mining, usability, artificial intelligence accelerate the move

towards intelligent systems. Autonomic computing is well

suited to become an underlying design principle for the

creation of such systems. In fact, the conscious introduction of

autonomic computing design in projects can be considered as

a disruptive movement, which will help us create a world of

intelligent equipments and systems.

If we happen to find ourselves in an adverse situation, like in

front of a lion, our body immediately increases the heart rate,

pumps adrenalin into blood, and alerts all the reflexes. Thanks

to millions of years of human evolution, nature has built in

quite a few mechanisms into our autonomous nervous system,

which help us to sleep soundly, as well as take care of critical

situations. Compared to the thousands of years of human

evolution, computer systems have not really crossed the first

hundred years. These self-managing characteristics exhibited

in human beings need to be built into appliances, servers,

networks, and applications to create a world of intelligent

components. This world of autonomic components should

form the basics of a new generation of intelligent independent

E-Commerce systems.

2. AUTONOMIC JOURNEY
IBM, in its seminal paper [2], introduced the vision,

characteristics, and design principles of a new era of

Autonomic computing, with specific emphasis in the

networking and server domain. A pre-runner to the IBM

initiative were multiple developments in the areas of robotics

and some control systems.

Most of the initial research drew control systems theory to

form the theoretical background for defining the system

behavior and its convergence[3]. A recent trend is to have

Differential Evolution[4] as the algorithmic base for

autonomic implementations focusing on self-optimization.

As an output of intensive research, multiple models,

architectures and algorithms were proposed[5]. Concepts of

policy framework and subsequent refinement of these

frameworks were attempted using Ontologies[6] and

advanced Organic Computing[7].

A very early stage adopter of autonomic principle was

robotics. Networking and communication fields are the two

further-most prominent areas, where real application of

autonomic principles happened. Such adaptive behavior was

also designed into solutions such as switches, routers, and

gateways with the help of autonomic principles.

A few of the famous implementations are Unity,

AUTONOMIA[8], FOCALE[9], SASSY[10], PAWS[11],

ANTS, Rudder[12], CHASE[13] etc. IPAutomota[14] is a

well-known commercial product from IPCenter, which claims

a 10-times efficiency increase in terms of human resource

utilization. Autonomic components [15] have also been

deployed in E-Commerce environment. This is mainly on the

server side for load balancing, server resource optimization

and so on, and not on the application side to optimize user

interactions.

3. AUTONOMIC APPLICATION

CHALLENGES
Although quite a lot of progress has been made theoretically

in the research above, the practical deployment of these

findings are not very remarkable. The progress made by other

computing models like J2EE, Agile Programming, .Net etc.

are far more noticeable than what has been achieved in the

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.20, April 2013

34

field of autonomic computing. Researchers world-wide are

unanimously convinced about the far reaching potential of

this approach, and even advocate that autonomic computing

should become that ubiquitous, that it is not a mere after

implementation, but a design aspect during the conception of

a system. An in-depth analysis of the possible reasons could

help us in working towards a brighter future for autonomic

computing.

Industry Support: IBM had identified difficulties in

managing large network systems, as early as 2002, and

advocated the deployment of autonomic systems to resolve

this. The industry failed to catch up on this initiative and to

take it forward as a daily discipline. Therefore, autonomous

computing got a niche technology status, identified more in

line with sophisticated technology such as artificial

intelligence, and therefore not becoming a common

technology.

Clarity of definition: Autonomous systems were defined

with four self-managing characteristics (configuration,

healing, optimization, protection) initially. Researchers kept

on adding new characteristics, which lead to a dilution of

focus on implementations. This ambiguity unclarity of

definition resulted in diluted focus.

Generic Architecture: Autonomic system definitions

evolved from multiple perspectives such as control systems,

agent based systems, component based systems etc, resulting

in multiple architecture definitions. These approaches

hindered, to a large extent, the evolution of a generic

architecture.

Positioning Conundrum: Complexities involved in IT

systems in a daily manner can be solved at three different

levels of sophistication:

Figure 1: Autonomic Computing - Positioning

Scripts are used to carry out daily tasks, whereas autonomous

systems make a regular monitoring and control in regular

intervals possible. Artificial intelligence incorporates multiple

levels of complex intelligence for managing regular tasks.

Implementers tend to either choose the easier way scripts, or

immerse in the myriads of artificial intelligence. The fact that

autonomic system can produce a near to effect like artificial

intelligence without getting into complex implementation is

not ommon knowledge, and therefore gets ignored.

Standards, Toolkits: The success of any new paradigm is

very much dependent on its adoption by industry leaders in

their products. To enable this, standards have to be defined,

and toolkits need to be provided. In case of SNMP (simple

network management protocol), standards for MIBs

(Management Information Base) came into place. Similarly,

SOAP (Simple Object Access Protocol) defined standards for

description and definition of the involved services. Autonomic

computing failed to follow these trends.

In short, the vision of autonomic computing can be achieved

only through a huge awareness campaign and the provision of

simple architecture and standards.

4. GENERIC ARCHITECTURE –

AUTONOMIC COMPONENT
The generic architecture of an autonomic agent constitutes a

simple cycle of Plan, Execute, Monitor, and Analyze:

Figure 2: Generic Architecture -Autonomic Component

This simple cycle is quite powerful in exhibiting strong

autonomic self-optimizing characteristics, with the basis of

differential evolution detailed in the next section. The

individual modules have clearly defined tasks. The ‘Plan’

module plans the variable values based on the method

administered by the policy like default values, random values,

or analysis. The ‘Execute’ module administers the behavior

determined by the values decided by the plan module. The

‘Monitor’ module keeps a tab on the results of the behavior

administered by the execute module. The ‘Analyze’ module

helps to analyze the monitored data using various analytical

methods and derive intelligent results, upon which the plan

module can further act upon.

The complete control of the cycle depends on the policies

defined in the policy module. The scheduler helps to schedule

activities as defined in the policy module.

5. GENERIC ARCHITECTURE –

AUTONOMIC SYSTEM FOR E-

COMMERCE
The generic architecture for an autonomic system is very

similar across various application scenarios. Autonomic

characteristics can be injected into a system during its

conception or as an add-on to an existing system. This paper

mainly handles the latter case for Online Retail systems.

Existing online systems, for example, Open source systems

such as Magento, Zencart, and OSCommerce, have some

basic modules for product categorization and definition,

display processing, shopping cart with ordering mechanism,

and order processing. They are also equipped with additional

Automatic

Scripts

Autonomic

Computing

Artificial

Intelligence

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.20, April 2013

35

mechanisms for discounting, association display, bundling

and so on.

Multiple autonomic components can be introduced into the

system like AdManager – for managing marketing

communications, DiscountManager – for managing discounts,

AssociativeManager – for managing product associations.

Each of them run as independent agents, executing the

complete autonomic cycle of Planning, Executing, Monitoring

and Analysing. At the core, they use a Differential Evolution

Algorithm chasing a moving optimum. An Enterprise Service

Bus (ESB) provides a middle layer for the components to

access the required services. The Reusable Assets Repository

(RAR) contains the services used by the components. The

ESB and RAR may be eliminated, if a very compact system is

envisaged, sacrificing certain flexibilities.

Figure 3: Autonomic components for Online Retail

The customer effects are created by manipulating the values

related to the database. The Online Retail database is accessed

through a set of Repository components. The monitoring

components capture the feedback, which is evaluated by the

analysis components.

6. DIFFERENTIAL EVOLUTION
The self-optimization characteristic of autonomous systems is

normally a complex and non-differentiable problem. For

example, in case of determination of optimal association

strength between two products, we encounter a huge number

of influencing factors such as nature of products, climatic

temperature, running advertisement campaigns, political

situations (war, flood, etc) and so on. Modeling of all the

factors into a mathematical equation and arriving at an

optimal solution is near to non-achievable task. Differential

Evolution[4] (DE) is suitable for search of such optimization

parameters, which are very complex and non-differentiable. It

tries to make no assumptions of the influencing parameters,

and focuses on the final utility. The basic approach is to

optimize the problem focusing on the utility function, and

iterate the influencing variables to maximize the utility

function.

The problem complexity gets compounded by the fact that the

optimum keeps changing over time. Many of the factors listed

above will have a profound influence on the optimal value, for

example, the association strength of bread and beer will be

stronger in summer, than in winter. So, the autonomous

component keeps chasing a moving optimum constantly.

The basic DE algorithm is designed to find an optimum

parameter combination to minimize the utility value by

applying techniques of mutation, combination and selection in

an iterative manner.

Figure 4: Classical DE Algorithm

In autonomic self-optimization, only an iterative mutation

aiming at an optimal result is logical. The moving optimum

makes a recombination and selection of not much use, as the

optimization goal itself has changed. So, these steps are being

avoided in this context. A simulation with practical values for

associative manager later, shows that this method is almost as

good as an intelligent human selecting the values.

7. E-COMMERCE IMPLEMENTATION
The emergence of applications, such as sale of jewelry,

grocery etc. online, is transforming the e-commerce landscape

in terms of customer experience. Following modules were

identified as autonomic agents:

AdManager: Online shops resort to a lot of online as well as

offline advertisements, as the concept of footfall is almost

zero (Organic Search is considered to be equivalent to

footfall). Compared to minimal rent, maintenance, etc, Ad

spend forms the main expense. The AdManager, autonomic

manager for optimizing advertisement, distributes the budget

provided by the administrator to various advertisement media,

monitors the effectiveness based on utility functions like

clicks, sale etc., and re-plans the spend to optimize the

effectiveness of the whole budget.

AssociativeMgr: Customer experience is improved by

suggestions of associated products generated by the system.

Data mining algorithms can be used to mine associative data

from purchase data of other customers. AssociativeMgr

optimizes the associations between the products in a

continuous manner.

DiscountMgr: Like any other retail shop, online shops also

need to provide discounts based on policies administered. The

Online Retail

Application

Autonomous

Components

A1 A2

A3

Prod-

uct

Admin

Disp-

lay

Order

Proce

ssing

Enterprise Service Bus (ESB)

Policy

Reposi

tory

Analyis

Compo

nents

Knowl
edge

Base

Data-

base

Initialization

Mutation

Recombinationn

Selection

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.20, April 2013

36

discounts need to be changed periodically, and based on sales

data to enhance sales. DiscountMgr takes care of these

activities.

DemographicMgr: Product displays, discounts etc can be

suited to the demographic profile of the customer.

We will examine each of the managers in detail with

simulation of results.

8. GENERIC CLASS STRUCTURE
A generic class structure is explained in brief here for the

benefit of real implementers to bring in uniformity and easy

understanding. The implementation constitutes of six main

components – PC (PlanClass), EC (ExecutionClass), MC

(MonitorClass), AC (AnalyzeClass), PoC (Policy Class), and

SC (Scheduler Class).

PC – Plan components decide the new values of parameters

based on the results of analysis. The results of a plan need to

be checked for boundary conditions to ensure stability. In case

the boundary conditions are violated, the plan module may

request for a human intervention. The plan module may also

reset the value to maximum, minimum, or default based on

the module policy.

EC – Execution is the actual deployment of planned

parameters in the real system. This might involve changing

values in database, reprogramming components to evaluate

the new parameters, etc.

MC – Monitoring is a constant activity and normally data is

saved, by the system itself, in selected repositories. MC will

provide a snapshot of data from time to time to the AC.

AC – Analysis class encompasses algorithms for analysis of

the data and extraction of new information. This could involve

various domain specific algorithms or generic algorithms

from the field of data mining, etc.

PoC – The policy information forms the main knowledge

base for the complete module. Each manager is equipped with

a set of policies, which determine the actual behavior. The

policy module is responsible for the definition of the policies,

setting the parameter values for each policy and also fine

tuning the policy.

SC – A practical scheduling of all the above activities are

required for the smooth running of the system. A system for

online retail may run the analysis, and planning during

midnight, and execution and monitoring may happen

throughout the day.

9. ASSOCIATIVE MANAGER
 AssociativeMgr is well suited for a detailed description of the

implementation details of the components. Product

associations are a common feature in today’s online retail

web-sites. Product pairs, which are displayed under the

category “people who bought this, also bought…” are such

products. Data mining algorithms help to mine huge amount

of sales data and extract product combinations.

EC: Execution component takes care of setting the associative

values in the database and reprogramming the interface

modules to display the products in descending order according

to the strength of association.

MC: Design of monitoring component depends on the activity

to be measured such as navigation behavior, buying patterns,

etc. In case of navigation behavior, the sequence of navigation

from the customer needs to be recorded. E-commerce systems

mandatorily store purchase data and therefore, buying pattern

can be directly examined.

AC: Analysis is done by standard algorithms data mining

algorithms such as a priori.

PC: Planning module consists of an initial planning or a

default value, and subsequent values. The products enter into

an associative mode when the support value exceeds a certain

threshold, which is specified by a policy parameter. The initial

value of strength of association is assigned in 2 ways: values

coming out of a priori and random associations. Random

associations are assigned to identify new associations.

Planning component operates on a theoretical basis of

Differential Evolution as described earlier. An algorithmic

representation of the core logic is as follows:

Calculate associations using a priori;

For all (associations > MinimumAssociativeValue) {

 If (new association > old association) {

new association = old association +

IncrementValue;

 } else {

new association = old association -

DecrementValue;

 }

}

The algorithm uses a fixed increment/decrement to ensure a

smooth transition avoiding spikes. MinimumAssociative

Value, IncrementValue, DecrementValue, etc are policy

parameters.

PoC – This component stores mainly the policy parameters

for the individual managers. No attempt is made for a perfect

separation of the policy and the individual managers. The

individual managers implement the policy and the policy

component provides the policy parameters, which gives

specific shape to the policy. To illustrate this, some main

policy parameters of Associative Manager are listed:

DMAlgo: {a priori} – Select the algorithms used.

Following parameters depend on the algorithm used:

 MinimumAssociativeValue: Specifies the minimum

support at which two products will be considered to have

an association.

 IncrementValue: The delta to be incremented in case the

support moves in a positive direction.

 DecrementValue: The delta to be incremented in case

the support moves in a negative direction.

10. AssociativeMgr-SIMULATION
In a real world scenario, the strength of association between

two products is dependent on multiple parameters such as

price, season, climate, festivals, economy, etc. Adding the

transient nature of each of these parameters makes it

impossible to have a perfect solution for each day. The

differential evolution techniques provide a continuous search

towards an optimal/sub-optimal solution.

A simulation was carried out to determine how the solution

compares to a completely human determined system. The

efficiency of the system was measured in terms of the

difference between a set value and an actual value. Actual

value is considered to be a better approximation towards the

optimal value and therefore the difference is taken to be a

better measure of distance from the optimal value.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.20, April 2013

37

The value set by human was simulated in multiple modes such

as fixed value, equivalent to yesterday’s actual value. Also,

the new actual values were calculated in random or as random

variation from yesterday’s value. The results were:

Figure 5: Case 1: Random actual value, Fixed Human Value

Case 1: Human input is a fixed associative value, which is

given at the start of the simulation, and it remains unchanged.

The daily associative value is assumed to be a random value

within a range. The associative algorithm determines the

difference between the actual value and the daily associative

value, and assigns a new associative value. The difference

from human value and new associative value to the actual

value is determined and plotted for few days. The darker line

depicts the performance of the autonomous system, and it is

very evident that this value is closer to the optimum.

Figure 6: Case 2: Random actual value, Optimized Human

Value

Case 2: Human is assumed to change the associative value

applying his mind. The logic assumed in the simulation is that

the new value will be equal to or nearer to the value from the

day before. The simulation shows that on some days, human

is more accurate. Overall, the performance is very similar to

the human with intelligence.

Case 3: The actual values are not just random values, but

follow a smoother curve, which is closer to a real life

situation. In this case also the performance of the autonomous

system is very similar to the human mind.

Figure 7: Case 3: Smoothened Random actual value,

Optimised human value

11. AdMgr
Effective control and optimization of the advertisement

budget remains the biggest challenge for a Marketing

Manager. The AdManager implements this function using

autonomous techniques to achieve an optimal distribution of

the individual budgets among various media.

EC: Execution component takes care of setting the budget

values in the respective media. Many popular online

advertisement web-sites like Google, Bing provide online

interfaces to set the daily budget. In such cases, the budget

provisioning can happen in a fully autonomic manner. Print

media, Outdoor advertisement, etc. mostly do not have such

automatic provisions. In this case, the system outputs values

for the budget every day and the manual operator needs to

issue further instructions for the changes and confirm to the

system that the change has been effectuated.

MC: The effectiveness of the advertisement can be measured

in terms of customers visiting the web-site, leads generated by

those clients, etc. Google, for example, provides metrics for

cost per click, number of clicks, etc. The monitoring

component may extract the data from servers such as Google

analytics[16], or from deployed open source analytic servers

like piwik[17]. Print media data collection should happen by

offering the readers some incentives to visit the web-site and

fill in some data.

AC: Analysis is done by calculating the utility function value

like cost per click for each media.

PC: Planning module consists of an initial planning or a

default value, and subsequent values. Initially, each media is

assigned a default value, say 10% of the budget. This value is

then increased or decreased based on the effectiveness of the

utility function.

Planning component operates on a theoretical basis of

Differential Evolution as described earlier. An algorithmic

representation of the core logic is as follows:

Calculate CostPerClik for each Media;

If (new CostPerClick < old CostPerClick) {

new Budget = old Budget + IncrementValue;

} else {

new Budget = old Budget - DecrementValue;

}

Adjust Total NewBudget to be equal to AllowedBudget;

The algorithm uses a fixed increment/decrement to ensure a

smooth transition avoiding spikes. The IncrementValue,

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.20, April 2013

38

DecrementValue, etc. are policy parameters, which are self-

explanatory.

12. DiscountMgr
Efficient management of discounts is another area of concern

for an online retail store. Effective control and optimization of

the discount remains the biggest challenge of a Site Manager.

The DiscountMgr implements this function using autonomous

techniques to achieve an optimal determination of the

discount percentage.

EC: Execution component takes care of setting the discount

values for various products. The discounts are displayed

alongside the products during the navigation of the customer

through the products.

MC: The Monitoring component collects the daily sales data.

AC: The best way to measure the effectiveness of the

discount is to calculate the utility function, Daily Profit Sum.

Daily Profit Sum =

As the discounts increase, the volume of sale increases, which

again leads to higher total profits.

PC: Planning module consists of an initial discount value and

subsequent values. Initially, each product, that is eligible for

discount is assigned a default value, say 10% discount.

Further, this value is increased or decreased based on the

effectiveness of the utility function, Daily Profit Sum.

Planning component operates on a theoretical basis of

Differential Evolution, as described earlier. An algorithmic

representation of the core logic is as follows:

Calculate DailyProfitSum for Product;

If (new DailyProfitSum < old DailyProfitSum) {

new Discount = old Discount - DecrementValue;

} else {

new Discount = old Discount + IncrementValue;

}

if (Discount>UpperBoundary) then

Discount = UpperBoundary;

if (Discount<LowerBoundary) then

Discount = LowerBoundary;

13. DemographicMgr
DemographicMgr controls the influence of navigation control

based on the demographic of the logged in person like age,

geography, gender, etc. Data mining algorithms for clustering

like regression analysis are used to identify trends.

EC: Execution component takes care of setting the values for

selected demographies. Initial values may be set up in a

random style, which also helps to unearth certain clusterings.

That young people like pink clothes maybe not a known fact

to the system. Only when the random module sets ‘pink’ for

‘young people’, people start buying pink clothes, and then the

cluster is formed. If the random module is not used, then this

trend might go unidentified.

MC: The effectiveness of the demographic placement can be

measured in terms of increase in targeted sales of the

particular product. It might be difficult to segregate and

quantify the increase, and therefore the sales itself can be

considered as a measure.

AC: Analysis is done by carrying out a regression analysis

and identifying the clusters.

PC: Planning module consists of an initial planning or a

default value, and subsequent values. Initially, each media is

assigned a random value, indicating that ‘young people’ like

pink. Further, this value is increased or decreased based on the

effectiveness of the sales values.

An algorithmic representation of the core logic is as follows:

Calculate Sales for Demographic Association;

If (new Sales > old Sales) {

new Association = old Association +

IncrementValue;

} else {

new Association = old Association -

DecrementValue;

}

14. IMPLEMENATION LESSONS
Certain practical aspects of the implementation are listed

below for the benefit of implementers:

Design Level: Modularization of a new system to autonomic

components during its conception will serve as a powerful

tool for simplification of complex systems.

AddOns: Autonomic components can be planned as AddOns

for existing system, even for proprietary implementations. In

such cases, it might be easiest to manipulate the database

values directly, to produce the desired effect. A wrapper for

the existing tables, with the required boundary checks, would

be a neater implementation.

Limiting values: The optimizing values need to be limited at

the upper and lower boundaries to avoid unexpected

accidents. For example, a percentage discount value above 50

% might not make sense for a particular product. The

differential evolution method might search for the optimum

even at 90% discounts, if the utility function is just based on

sales.

Trend following: The variation from the current value might

be implemented as a percentage of the current value. This is to

avoid a high volatility in the values and to implement the

behavior of identifying a trend and following the trend. For

example, a single day increase in milk consumption, due to a

festival, should not drastically influence the regular discount

levels available for this product.

Fixed Steps: Fixed increment steps in the direction of the

trend would help to keep the volatility further under control.

SOA: A service oriented implementation with SOAP

implementation helps in providing a neat implementation

base. This also supports deployment in cloud environments in

a future scenario.

The above are a few guidelines from our experience in

implementation and not a comprehensive list.

15. METRICS – VOLATILITY,

STABILITY
Autonomicity of a system, means how close to the ideal

system does the current implementation manages itself,

cannot be directly measured, as in most cases the definition of

the ideal system itself is vague. For example, if we take the

case of discount manager, the normal system would be an

administrator deciding the discounts like a fixed discount,

varying discounts based on last day’s sale, varying discount

based on predictive sale, etc. As we see, even a human being

cannot be similar to the ideal system. It is also impossible to

calculate the ideal discount. Therefore, an objective metrics is

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.20, April 2013

39

impossible for this overruling attribute, and mostly one needs

to resort to a subjective measure. Some attributes, which can

be measured for autonomic components are:

Level of Autonomicity: LoA - [18] is an attempt to bring in

some objectivity into the overall autonomic behavior of a

system, by summing up the various self-CHOP attributes

levels using a scale based approach.

Volatility: The difference between the actual values and the

trend curve is a measure of volatility experienced during the

search.

Figure 8: Volatility Graph

The Volatility is calculated as Root Mean Square Deviation:

Volatility =

Volatility gives an indication of how close to the optimal

value does the algorithm calculate the actual value. The

measure only helps to compare two algorithms for the same

environment, and not two entirely different algorithms, as the

scales vary. The lesser the volatility value, the less volatile the

system is and therefore better performance.

Stability: The optimum searches in the above examples are

controlled by certain boundary parameters. For example, we

can easily say that percentage values should never go beyond

100 %. The number of times the calculated value goes beyond

100 % is a measure of stability of the system. Stability is

measured as a percentage of the cases which crosses the

boundary to the total number of cases.

Stability =

A higher value indicates higher stability.

16. FUTURE WORK
This research work has outlined the framework for

autonomous applications in an online retail environment.

Practical results from deployment of these modules in very

large environments like Amazon, eBay, etc. should give more

insights about scalability, stability, etc. The framework, as

well as the sample implementation will be published as open

source.

The development of similar components for other application

areas like ERP, CRM, etc. would bring out more intelligent

applications. Establishment of certain standards for each

domain will help vendors to interoperate. Development and

publishing of toolkits would help many developers to start

working in this area.

17. CONCLUSIONS
The article gives a very brief overview of the modern

autonomic computing journey after IBM has taken the

initiative to introduce this technology to the IT segment.

Further, an analysis of the possible reasons for the non-

penetration of this technology is made. The simple generic

architecture is described and its deployment as various classes

is detailed. Also, differential evolution as a mathematical base

is being examined.

Specific implementation of autonomic components for an

online retail system is being examined. A simulation for

human associative manager is carried out with the outcome

that the manager is as good as or sometimes even better than

the human manager itself. Sample implementation for AdMgr,

DemographicMgr, and DiscountMgr is provided. A metrics

for measuring autonomicity, volatility, stability of

autonomous system has been discussed.

Development of autonomous components for more

applications, establishments for domain specific as well as

interoperability standards, availability of toolkits, etc. are

some requirements to take autonomous computing to a

ubiquitous technology.

18. REFERENCES

[1] D. Kurian and P. R. Chelliah, "An Autonomic

Computing Architecture for Business Applications," in

IEEExplore Digital Library, WICT 2012, Trivandrum,

2012.

[2] J. O. Kephart and D. M. Chess, "The Vision of

Autonomic Computing," IEEE Computer Society, pp. 41-

50, January 2003.

[3] Y. Diao, L. J. Hellerstein, S. Parekh and Griffith, "A

Control Theory Foundation for Self-Managing

Computing Systems," IEEE Journal on Selected Areas in

Communication, vol. 23, pp. 2213--2221, 2003.

[4] R. Storn and K. Price, "Differential Evolution - A Simple

and Efficient Heuristic for Global Optimization over

Continous Spaces," Journal of Global Optimization, vol.

11, pp. 341-359, 1997.

[5] M. Parashar and S. Hariri, "Autonomous Computing: An

Overview," pp. 247-259, 2005.

[6] L. Stojanovic, J. Schneider, A. Maedche and S.

Libischer, "The role of ontologies in autonomic

computing systems," IBM Systems Journal, vol. 43, pp.

598-616, 2004.

[7] H. Schmeck, C. Müller-Schloer, E. Cakar, M. Mnif and

U. Richter, "Adaptivity and Self-Organisation in Organic

Computing Systems," ACM Transactions on

Autonomous and Adaptive Systems, vol. 5, no. 10, pp. 1-

32, September 2010.

[8] X. Dong, S. Hariri and L. Xue, "AUTONOMIA: An

Autonomic Computing Environment," 2003.

[9] J. C. Strassner, N. Agoulmine and E. Lehtihet,

"FOCALE – A Novel Autonomic Networking

Architecture," 2006.

[10] A. D. Menascé, H. Gomaa, S. Malek and P. J. Sousa,

"SASSY: A Framework for Self-Architecting," IEEE

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.20, April 2013

40

Software, pp. 78-85, November 2011.

[11] D. Ardagna, M. Comuzzi and E. Mussi, "PAWS: A

Framework for Executing Adaptive Web-Service

Processes," 2007.

[12] L. Zhen and M. Parashar, "Rudder: An agent-based

infrastructure for Autonomic Composition of Grid

Applications," 2005.

[13] M. Rak and A. Cuomo, "CHASE: an Autonomic Service

Engine for Cloud Environments," in 20th IEEE

International Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises, 2011.

[14] February 2012. [Online]. Available:

http://www.ipsoft.com/.

[15] H. S. Venkatarama and C. Kandasamy, "An approach in

using differentiated services to Maximise Profit in an

autonomic Computing System," International Journal of

Computer Applications, vol. 5, no. 8, pp. 22-26, 2010.

[16] "Google Analytics," google, 15 December 2012.

[Online]. Available: http://www.google.co.in/analytics/.

[Accessed 15 December 2012].

[17] "Piwik Analytics," Piwik, [Online]. Available:

http://piwik.org/. [Accessed 15 December 2012].

[18] R. A. C. W. A. S. Thaddeus Eze, "A Technique for

Measuring the Level of Autonomicity (LoA) of Self-

managing Systems," in ICAS2012, Netherlands, 2012.

