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ABSTRACT 
Ever increasing complexity, higher demand for pro-

activeness, and high speeds of innovation resulting from 

heavy competition, demand the adoption of more intelligent 

systems, which are capable of producing optimal results, in all 

fields. B2C E-Commerce applications are no different.  The 

major challenge in transitioning a brick and mortar business to 

an online environment is to provide the same user experience 

as that of a wayside store, like the consultation, up selling, 

pro-activeness, negotiation, delivery, etc. This requirement 

has created a lot of intelligent tools and necessitates further 

evolution of more intelligent tools. Autonomic computing 

provides the framework for design of independent intelligent 

self-managing components, and is thereby optimally suited to 

assist E-Commerce in this journey. This framework can be 

extensively used to upgrade existing E-Commerce systems 

with autonomic features. This paper introduces the concept of 

autonomic computing in e-commerce applications, and 

provides a generic architecture, with specific focus on self-

optimizing characteristics of autonomic computing. Details of 

concrete implementation of autonomic components in an e-

commerce environment are provided.  

This paper is the specific application scenario of the generic 

autonomic concept presented in “Autonomic Computing 

Architecture for Business Applications” [1]. 
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1. INTRODUCTION 
The efficient transition of a brick and mortar business to 

online business requires much more than a website to display 

products, select the products and pay for them. E-Commerce 

in today’s stage needs more sophisticated, proactive, and 

intelligent systems to achieve even a reasonable conversion. 

The advances made in various areas such as analytics, data 

mining, usability, artificial intelligence accelerate the move 

towards intelligent systems. Autonomic computing is well 

suited to become an underlying design principle for the 

creation of such systems. In fact, the conscious introduction of 

autonomic computing design in projects can be considered as 

a disruptive movement, which will help us create a world of 

intelligent equipments and systems. 

If we happen to find ourselves in an adverse situation, like in 

front of a lion, our body immediately increases the heart rate, 

pumps adrenalin into blood, and alerts all the reflexes. Thanks 

to millions of years of human evolution, nature has built in 

quite a few mechanisms into our autonomous nervous system, 

which help us to sleep soundly, as well as take care of critical 

situations. Compared to the thousands of years of human 

evolution, computer systems have not really crossed the first 

hundred years. These self-managing characteristics exhibited 

in human beings need to be built into appliances, servers, 

networks, and applications to create a world of intelligent 

components. This world of autonomic components should 

form the basics of a new generation of intelligent independent 

E-Commerce systems. 

2. AUTONOMIC JOURNEY 
IBM, in its seminal paper [2], introduced the vision, 

characteristics, and design principles of a new era of 

Autonomic computing, with specific emphasis in the 

networking and server domain. A pre-runner to the IBM 

initiative were multiple developments in the areas of robotics 

and some control systems.  

Most of the initial research drew control systems theory to 

form the theoretical background for defining the system 

behavior and its convergence[3]. A recent trend is to have 

Differential Evolution[4] as the algorithmic base for 

autonomic implementations focusing on self-optimization. 

As an output of intensive research, multiple models, 

architectures and algorithms were proposed[5]. Concepts of 

policy framework and subsequent refinement of these 

frameworks were attempted using Ontologies[6] and 

advanced Organic Computing[7].  

A very early stage adopter of autonomic principle was 

robotics. Networking and communication fields are the two 

further-most prominent areas, where real application of 

autonomic principles happened. Such adaptive behavior was 

also designed into solutions such as switches, routers, and 

gateways with the help of autonomic principles.  

A few of the famous implementations are Unity, 

AUTONOMIA[8], FOCALE[9], SASSY[10], PAWS[11], 

ANTS, Rudder[12], CHASE[13] etc. IPAutomota[14] is a 

well-known commercial product from IPCenter, which claims 

a 10-times efficiency increase in terms of human resource 

utilization. Autonomic components [15] have also been 

deployed in E-Commerce environment. This is mainly on the 

server side for load balancing, server resource optimization 

and so on, and not on the application side to optimize user 

interactions. 

3. AUTONOMIC APPLICATION 

CHALLENGES 
Although quite a lot of progress has been made theoretically 

in the research above, the practical deployment of these 

findings are not very remarkable. The progress made by other 

computing models like J2EE, Agile Programming, .Net etc. 

are far more noticeable than what has been achieved in the 
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field of autonomic computing. Researchers world-wide are 

unanimously convinced about the  far reaching potential of 

this approach, and even advocate that autonomic computing 

should become that ubiquitous, that it is not a mere after 

implementation, but a design aspect during the conception of 

a system. An in-depth analysis of the possible reasons could 

help us in working towards a brighter future for autonomic 

computing. 

Industry Support: IBM had identified difficulties in 

managing large network systems, as early as 2002, and 

advocated the deployment of autonomic systems to resolve 

this. The industry failed to catch up on this initiative and to 

take it forward as a daily discipline. Therefore, autonomous 

computing got a niche technology status, identified more in 

line with sophisticated technology such as artificial 

intelligence, and therefore not becoming a common 

technology.  

Clarity of definition: Autonomous systems were defined 

with four self-managing characteristics (configuration, 

healing, optimization, protection) initially. Researchers kept 

on adding new characteristics, which lead to a dilution of 

focus on implementations. This ambiguity unclarity of 

definition resulted in diluted focus. 

Generic Architecture: Autonomic system definitions 

evolved from multiple perspectives such as control systems, 

agent based systems, component based systems etc, resulting 

in multiple architecture definitions. These approaches 

hindered, to a large extent, the evolution of a generic 

architecture.  

Positioning Conundrum: Complexities involved in IT 

systems in a daily manner can be solved at three different 

levels of sophistication: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Autonomic Computing - Positioning 

Scripts are used to carry out daily tasks, whereas autonomous 

systems make a regular monitoring and control in regular 

intervals possible. Artificial intelligence incorporates multiple 

levels of complex intelligence for managing regular tasks. 

Implementers tend to either choose the easier way scripts, or 

immerse in the myriads of artificial intelligence. The fact that 

autonomic system can produce a near to effect like artificial 

intelligence without getting into complex implementation is 

not ommon knowledge, and therefore gets ignored. 

Standards, Toolkits: The success of any new paradigm is 

very much dependent on its adoption by industry leaders in 

their products. To enable this, standards have to be defined, 

and toolkits need to be provided. In case of SNMP (simple 

network management protocol), standards for MIBs 

(Management Information Base) came into place. Similarly, 

SOAP (Simple Object Access Protocol) defined standards for 

description and definition of the involved services. Autonomic 

computing failed to follow these trends. 

In short, the vision of autonomic computing can be achieved 

only through a huge awareness campaign and the provision of 

simple architecture and standards. 

4. GENERIC ARCHITECTURE – 

AUTONOMIC COMPONENT 
The generic architecture of an autonomic agent constitutes a 

simple cycle of Plan, Execute, Monitor, and Analyze: 

 

 

Figure 2: Generic Architecture -Autonomic Component 

This simple cycle is quite powerful in exhibiting strong 

autonomic self-optimizing characteristics, with the basis of 

differential evolution detailed in the next section. The 

individual modules have clearly defined tasks. The ‘Plan’ 

module plans the variable values based on the method 

administered by the policy like default values, random values, 

or analysis. The ‘Execute’ module administers the behavior 

determined by the values decided by the plan module. The 

‘Monitor’ module keeps a tab on the results of the behavior 

administered by the execute module. The ‘Analyze’ module 

helps to analyze the monitored data using various analytical 

methods and derive intelligent results, upon which the plan 

module can further act upon.  

The complete control of the cycle depends on the policies 

defined in the policy module. The scheduler helps to schedule 

activities as defined in the policy module. 

5. GENERIC ARCHITECTURE – 

AUTONOMIC SYSTEM FOR E-

COMMERCE 
The generic architecture for an autonomic system is very 

similar across various application scenarios. Autonomic 

characteristics can be injected into a system during its 

conception or as an add-on to an existing system. This paper 

mainly handles the latter case for Online Retail systems. 

Existing online systems, for example, Open source systems 

such as Magento, Zencart, and OSCommerce, have some 

basic modules for product categorization and definition, 

display processing, shopping cart with ordering mechanism, 

and order processing. They are also equipped with additional 
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mechanisms for discounting, association display, bundling 

and so on. 

Multiple autonomic components can be introduced into the 

system like AdManager – for managing marketing 

communications, DiscountManager – for managing discounts, 

AssociativeManager – for managing product associations. 

Each of them run as independent agents, executing the 

complete autonomic cycle of Planning, Executing, Monitoring 

and Analysing. At the core, they use a Differential Evolution 

Algorithm chasing a moving optimum. An Enterprise Service 

Bus (ESB) provides a middle layer for the components to 

access the required services. The Reusable Assets Repository 

(RAR) contains the services used by the components. The 

ESB and RAR may be eliminated, if a very compact system is 

envisaged, sacrificing certain flexibilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Autonomic components for Online Retail 

The customer effects are created by manipulating the values 

related to the database. The Online Retail database is accessed 

through a set of Repository components. The monitoring 

components capture the feedback, which is evaluated by the 

analysis components.  

6. DIFFERENTIAL EVOLUTION 
The self-optimization characteristic of autonomous systems is 

normally a complex and non-differentiable problem. For 

example, in case of determination of optimal association 

strength between two products, we encounter a huge number 

of influencing factors such as nature of products, climatic 

temperature, running advertisement campaigns, political 

situations (war, flood, etc) and so on. Modeling of all the 

factors into a mathematical equation and arriving at an 

optimal solution is near to non-achievable task. Differential 

Evolution[4] (DE) is suitable for search of such optimization 

parameters, which are very complex and non-differentiable. It 

tries to make no assumptions of the influencing parameters, 

and focuses on the final utility. The basic approach is to 

optimize the problem focusing on the utility function, and 

iterate the influencing variables to maximize the utility 

function. 

The problem complexity gets compounded by the fact that the 

optimum keeps changing over time. Many of the factors listed 

above will have a profound influence on the optimal value, for 

example, the association strength of bread and beer will be 

stronger in summer, than in winter. So, the autonomous 

component keeps chasing a moving optimum constantly.  

The basic DE algorithm is designed to find an optimum 

parameter combination to minimize the utility value by 

applying techniques of mutation, combination and selection in 

an iterative manner.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Classical DE Algorithm 

In autonomic self-optimization, only an iterative mutation 

aiming at an optimal result is logical. The moving optimum 

makes a recombination and selection of not much use, as the 

optimization goal itself has changed. So, these steps are being 

avoided in this context. A simulation with practical values for 

associative manager later, shows that this method is almost as 

good as an intelligent human selecting the values. 

7. E-COMMERCE IMPLEMENTATION 
The emergence of applications, such as sale of jewelry, 

grocery etc. online, is transforming the e-commerce landscape 

in terms of customer experience. Following modules were 

identified as autonomic agents: 

AdManager: Online shops resort to a lot of online as well as 

offline advertisements, as the concept of footfall is almost 

zero (Organic Search is considered to be equivalent to 

footfall). Compared to minimal rent, maintenance, etc, Ad 

spend forms the main expense. The AdManager, autonomic 

manager for optimizing advertisement, distributes the budget 

provided by the administrator to various advertisement media, 

monitors the effectiveness based on utility functions like 

clicks, sale etc., and re-plans the spend to optimize the 

effectiveness of the whole budget. 

AssociativeMgr: Customer experience is improved by 

suggestions of associated products generated by the system. 

Data mining algorithms can be used to mine associative data 

from purchase data of other customers. AssociativeMgr 

optimizes the associations between the products in a 

continuous manner. 

DiscountMgr: Like any other retail shop, online shops also 

need to provide discounts based on policies administered. The 
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discounts need to be changed periodically, and based on sales 

data to enhance sales. DiscountMgr takes care of these 

activities. 

DemographicMgr: Product displays, discounts etc can be 

suited to the demographic profile of the customer.  

We will examine each of the managers in detail with 

simulation of results. 

8. GENERIC CLASS STRUCTURE 
A generic class structure is explained in brief here for the 

benefit of real implementers to bring in uniformity and easy 

understanding. The implementation constitutes of six main 

components – PC (PlanClass), EC (ExecutionClass), MC 

(MonitorClass), AC (AnalyzeClass), PoC (Policy Class), and 

SC (Scheduler Class).  

PC – Plan components decide the new values of parameters 

based on the results of analysis. The results of a plan need to 

be checked for boundary conditions to ensure stability. In case 

the boundary conditions are violated, the plan module may 

request for a human intervention. The plan module may also 

reset the value to maximum, minimum, or default based on 

the module policy.   

EC – Execution is the actual deployment of planned 

parameters in the real system. This might involve changing 

values in database, reprogramming components to evaluate 

the new parameters, etc. 

MC – Monitoring is a constant activity and normally data is 

saved, by the system itself, in selected repositories. MC will 

provide a snapshot of data from time to time to the AC. 

AC – Analysis class encompasses algorithms for analysis of 

the data and extraction of new information. This could involve 

various domain specific algorithms or generic algorithms 

from the field of data mining, etc. 

PoC – The policy information forms the main knowledge 

base for the complete module. Each manager is equipped with 

a set of policies, which determine the actual behavior. The 

policy module is responsible for the definition of the policies, 

setting the parameter values for each policy and also fine 

tuning the policy.  

SC – A practical scheduling of all the above activities are 

required for the smooth running of the system. A system for 

online retail may run the analysis, and planning during 

midnight, and execution and monitoring may happen 

throughout the day.  

9. ASSOCIATIVE MANAGER 
 AssociativeMgr is well suited for a detailed description of the 

implementation details of the components. Product 

associations are a common feature in today’s online retail 

web-sites. Product pairs, which are displayed under the 

category “people who bought this, also bought…” are such 

products. Data mining algorithms help to mine huge amount 

of sales data and extract product combinations.  

EC: Execution component takes care of setting the associative 

values in the database and reprogramming the interface 

modules to display the products in descending order according 

to the strength of association. 

MC: Design of monitoring component depends on the activity 

to be measured such as navigation behavior, buying patterns, 

etc. In case of navigation behavior, the sequence of navigation 

from the customer needs to be recorded. E-commerce systems 

mandatorily store purchase data and therefore, buying pattern 

can be directly examined. 

AC: Analysis is done by standard algorithms data mining 

algorithms such as a priori.  

PC: Planning module consists of an initial planning or a 

default value, and subsequent values. The products enter into 

an associative mode when the support value exceeds a certain 

threshold, which is specified by a policy parameter. The initial 

value of strength of association is assigned in 2 ways: values 

coming out of a priori and random associations. Random 

associations are assigned to identify new associations. 

Planning component operates on a theoretical basis of 

Differential Evolution as described earlier. An algorithmic 

representation of the core logic is as follows: 

Calculate associations using a priori; 

For all (associations > MinimumAssociativeValue) { 

 If (new association > old association) { 

new association = old association + 

IncrementValue; 

 } else { 

new association = old association -

DecrementValue; 

 } 

} 

The algorithm uses a fixed increment/decrement to ensure a 

smooth transition avoiding spikes. MinimumAssociative 

Value, IncrementValue, DecrementValue, etc are policy 

parameters. 

PoC – This component stores mainly the policy parameters 

for the individual managers. No attempt is made for a perfect 

separation of the policy and the individual managers. The 

individual managers implement the policy and the policy 

component provides the policy parameters, which gives 

specific shape to the policy. To illustrate this, some main 

policy parameters of Associative Manager are listed: 

DMAlgo: {a priori} – Select the algorithms used. 

Following parameters depend on the algorithm used: 

 MinimumAssociativeValue: Specifies the minimum 

support at which two products will be considered to have 

an association. 

 IncrementValue: The delta to be incremented in case the 

support moves in a positive direction. 

 DecrementValue: The delta to be incremented in case 

the support moves in a negative direction. 

10. AssociativeMgr-SIMULATION 
In a real world scenario, the strength of association between 

two products is dependent on multiple parameters such as 

price, season, climate, festivals, economy, etc. Adding the 

transient nature of each of these parameters makes it 

impossible to have a perfect solution for each day. The 

differential evolution techniques provide a continuous search 

towards an optimal/sub-optimal solution. 

A simulation was carried out to determine how the solution 

compares to a completely human determined system. The 

efficiency of the system was measured in terms of the 

difference between a set value and an actual value. Actual 

value is considered to be a better approximation towards the 

optimal value and therefore the difference is taken to be a 

better measure of distance from the optimal value. 
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The value set by human was simulated in multiple modes such 

as fixed value, equivalent to yesterday’s actual value. Also, 

the new actual values were calculated in random or as random 

variation from yesterday’s value. The results were: 

 

Figure 5: Case 1: Random actual value, Fixed Human Value 

Case 1: Human input is a fixed associative value, which is 

given at the start of the simulation, and it remains unchanged. 

The daily associative value is assumed to be a random value 

within a range. The associative algorithm determines the 

difference between the actual value and the daily associative 

value, and assigns a new associative value. The difference 

from human value and new associative value to the actual 

value is determined and plotted for few days. The darker line 

depicts the performance of the autonomous system, and it is 

very evident that this value is closer to the optimum. 

 

Figure 6: Case 2: Random actual value, Optimized Human 

Value 

Case 2: Human is assumed to change the associative value 

applying his mind. The logic assumed in the simulation is that 

the new value will be equal to or nearer to the value from the 

day before. The simulation shows that on some days, human 

is more accurate. Overall, the performance is very similar to 

the human with intelligence. 

Case 3: The actual values are not just random values, but 

follow a smoother curve, which is closer to a real life 

situation. In this case also the performance of the autonomous 

system is very similar to the human mind. 

 

Figure 7: Case 3: Smoothened Random actual value, 

Optimised human value 

11. AdMgr 
Effective control and optimization of the advertisement 

budget remains the biggest challenge for a Marketing 

Manager. The AdManager implements this function using 

autonomous techniques to achieve an optimal distribution of 

the individual budgets among various media.  

EC: Execution component takes care of setting the budget 

values in the respective media. Many popular online 

advertisement web-sites like Google, Bing provide online 

interfaces to set the daily budget. In such cases, the budget 

provisioning can happen in a fully autonomic manner. Print 

media, Outdoor advertisement, etc. mostly do not have such 

automatic provisions. In this case, the system outputs values 

for the budget every day and the manual operator needs to 

issue further instructions for the changes and confirm to the 

system that the change has been effectuated.  

MC: The effectiveness of the advertisement can be measured 

in terms of customers visiting the web-site, leads generated by 

those clients, etc. Google, for example, provides metrics for 

cost per click, number of clicks, etc. The monitoring 

component may extract the data from servers such as Google 

analytics[16], or from deployed open source analytic servers 

like piwik[17]. Print media data collection should happen by 

offering the readers some incentives to visit the web-site and 

fill in some data. 

AC: Analysis is done by calculating the utility function value 

like cost per click for each media.  

PC: Planning module consists of an initial planning or a 

default value, and subsequent values. Initially, each media is 

assigned a default value, say 10% of the budget. This value is 

then increased or decreased based on the effectiveness of the 

utility function.  

Planning component operates on a theoretical basis of 

Differential Evolution as described earlier. An algorithmic 

representation of the core logic is as follows: 

Calculate CostPerClik for each Media; 

If (new CostPerClick < old CostPerClick) { 

new Budget = old Budget + IncrementValue; 

} else { 

new Budget = old Budget - DecrementValue; 

} 

Adjust Total NewBudget to be equal to AllowedBudget;  

The algorithm uses a fixed increment/decrement to ensure a 

smooth transition avoiding spikes. The IncrementValue, 
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DecrementValue, etc. are policy parameters, which are self- 

explanatory. 

12. DiscountMgr 
Efficient management of discounts is another area of concern 

for an online retail store. Effective control and optimization of 

the discount remains the biggest challenge of a Site Manager. 

The DiscountMgr implements this function using autonomous 

techniques to achieve an optimal determination of the 

discount percentage.  

EC: Execution component takes care of setting the discount 

values for various products. The discounts are displayed 

alongside the products during the navigation of the customer 

through the products. 

MC: The Monitoring component collects the daily sales data. 

AC: The best way to measure the effectiveness of the 

discount is to calculate the utility function, Daily Profit Sum. 

Daily Profit Sum =  

As the discounts increase, the volume of sale increases, which 

again leads to higher total profits.  

PC: Planning module consists of an initial discount value and 

subsequent values. Initially, each product, that is eligible for 

discount is assigned a default value, say 10% discount. 

Further, this value is increased or decreased based on the 

effectiveness of the utility function, Daily Profit Sum.  

Planning component operates on a theoretical basis of 

Differential Evolution, as described earlier. An algorithmic 

representation of the core logic is as follows: 

Calculate DailyProfitSum for Product; 

If (new DailyProfitSum  < old DailyProfitSum) { 

new Discount = old Discount - DecrementValue; 

} else { 

new Discount = old Discount + IncrementValue; 

} 

if (Discount>UpperBoundary) then  

Discount = UpperBoundary;  

if (Discount<LowerBoundary) then  

Discount = LowerBoundary; 

13. DemographicMgr 
DemographicMgr controls the influence of navigation control 

based on the demographic of the logged in person like age, 

geography, gender, etc. Data mining algorithms for clustering 

like regression analysis are used to identify trends. 

EC: Execution component takes care of setting the values for 

selected demographies. Initial values may be set up in a 

random style, which also helps to unearth certain clusterings.  

That young people like pink clothes maybe not a known fact 

to the system. Only when the random module sets ‘pink’ for 

‘young people’, people start buying pink clothes, and then the 

cluster is formed. If the random module is not used, then this 

trend might go unidentified. 

MC: The effectiveness of the demographic placement can be 

measured in terms of increase in targeted sales of the 

particular product. It might be difficult to segregate and 

quantify the increase, and therefore the sales itself can be 

considered as a measure.  

AC: Analysis is done by carrying out a regression analysis 

and identifying the clusters.  

PC: Planning module consists of an initial planning or a 

default value, and subsequent values. Initially, each media is 

assigned a random value, indicating that ‘young people’ like 

pink. Further, this value is increased or decreased based on the 

effectiveness of the sales values.  

An algorithmic representation of the core logic is as follows: 

Calculate Sales for Demographic Association; 

If (new Sales > old Sales) { 

new Association = old Association + 

IncrementValue; 

} else { 

new Association = old Association - 

DecrementValue; 

} 

14. IMPLEMENATION LESSONS 
Certain practical aspects of the implementation are listed 

below for the benefit of implementers: 

Design Level: Modularization of a new system to autonomic 

components during its conception will serve as a powerful 

tool for simplification of complex systems. 

AddOns: Autonomic components can be planned as AddOns 

for existing system, even for proprietary implementations. In 

such cases, it might be easiest to manipulate the database 

values directly, to produce the desired effect. A wrapper for 

the existing tables, with the required boundary checks, would 

be a neater implementation. 

Limiting values: The optimizing values need to be limited at 

the upper and lower boundaries to avoid unexpected 

accidents. For example, a percentage discount value above 50 

% might not make sense for a particular product. The 

differential evolution method might search for the optimum 

even at 90% discounts, if the utility function is just based on 

sales. 

Trend following: The variation from the current value might 

be implemented as a percentage of the current value. This is to 

avoid a high volatility in the values and to implement the 

behavior of identifying a trend and following the trend. For 

example, a single day increase in milk consumption, due to a 

festival, should not drastically influence the regular discount 

levels available for this product. 

Fixed Steps: Fixed increment steps in the direction of the 

trend would help to keep the volatility further under control. 

SOA: A service oriented implementation with SOAP 

implementation helps in providing a neat implementation 

base. This also supports deployment in cloud environments in 

a future scenario. 

The above are a few guidelines from our experience in 

implementation and not a comprehensive list. 

15. METRICS – VOLATILITY, 

STABILITY 
Autonomicity of a system, means how close to the ideal 

system does the current implementation manages itself, 

cannot be directly measured, as in most cases the definition of 

the ideal system itself is vague. For example, if we take the 

case of discount manager, the normal system would be an 

administrator deciding the discounts like a fixed discount, 

varying discounts based on last day’s sale, varying discount 

based on predictive sale, etc. As we see, even a human being 

cannot be similar to the ideal system. It is also impossible to 

calculate the ideal discount. Therefore, an objective metrics is 
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impossible for this overruling attribute, and mostly one needs 

to resort to a subjective measure. Some attributes, which can 

be measured for autonomic components are: 

Level of Autonomicity: LoA - [18] is an attempt to bring in 

some objectivity into the overall autonomic behavior of a 

system, by summing up the various self-CHOP attributes 

levels using a scale based approach.  

Volatility: The difference between the actual values and the 

trend curve is a measure of volatility experienced during the 

search. 

 

Figure 8: Volatility Graph 

The Volatility is calculated as Root Mean Square Deviation: 

Volatility =   

Volatility gives an indication of how close to the optimal 

value does the algorithm calculate the actual value. The 

measure only helps to compare two algorithms for the same 

environment, and not two entirely different algorithms, as the 

scales vary. The lesser the volatility value, the less volatile the 

system is and therefore better performance. 

Stability: The optimum searches in the above examples are 

controlled by certain boundary parameters. For example, we 

can easily say that percentage values should never go beyond 

100 %. The number of times the calculated value goes beyond 

100 % is a measure of stability of the system. Stability is 

measured as a percentage of the cases which crosses the 

boundary to the total number of cases. 

Stability =  

A higher value indicates higher stability. 

16. FUTURE WORK 
This research work has outlined the framework for 

autonomous applications in an online retail environment. 

Practical results from deployment of these modules in very 

large environments like Amazon, eBay, etc. should give more 

insights about scalability, stability, etc. The framework, as 

well as the sample implementation will be published as open 

source. 

The development of similar components for other application 

areas like ERP, CRM, etc. would bring out more intelligent 

applications. Establishment of certain standards for each 

domain will help vendors to interoperate. Development and 

publishing of toolkits would help many developers to start 

working in this area. 

17. CONCLUSIONS 
The article gives a very brief overview of the modern 

autonomic computing journey after IBM has taken the 

initiative to introduce this technology to the IT segment. 

Further, an analysis of the possible reasons for the non-

penetration of this technology is made. The simple generic 

architecture is described and its deployment as various classes 

is detailed. Also, differential evolution as a mathematical base 

is being examined. 

Specific implementation of autonomic components for an 

online retail system is being examined. A simulation for 

human associative manager is carried out with the outcome 

that the manager is as good as or sometimes even better than 

the human manager itself. Sample implementation for AdMgr, 

DemographicMgr, and DiscountMgr is provided. A metrics 

for measuring autonomicity, volatility, stability of 

autonomous system has been discussed. 

Development of autonomous components for more 

applications, establishments for domain specific as well as 

interoperability standards, availability of toolkits, etc. are 

some requirements to take autonomous computing to a 

ubiquitous technology. 
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