
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.2, April 2013

38

A Systematic Review of Techniques for Test
Case Prioritization

Aman Jatain

Assistant Professor
ITM University, Gurgaon-122017

Garima Sharma
ITM University,Gurgaon-122017

ABSTRACT

In software development life cycle, maintenance phase is an

important phase as it deals with the activities like error

correction, upgradation, deletion and optimization of software

capabilities. For this reason, regression testing is required in

order to revalidate the modifications in the software. It is an

expensive process. Various techniques of performing regression

testing are available. Software testers can select the technique

that suit their requirement as well as optimize the basic cost and

time factors. This paper mainly discusses various test case

prioritization techniques for regression testing presented by

various researchers and the various search algorithms used in

the test case prioritisation process.

General Terms

Test Case prioritization techniques, Search Algorithm.

Keywords

Regression testing, Test case prioritization, algorithms,

Requirement Based Test Case Prioritisation, Chronographic.

Hybrid.

1. INTRODUCTION

Regression testing is used to uncover any new software bugs or

error in the existing system after changes, such as

enhancements that have been made to them. Let any program P

and P’ be its modified version T on P’ along with the new test

cases needed to effectively test the newly added code or

functionality in producing. T be the test suite for P, then

regression testing aims at reusing P’. Various techniques for

regression techniques are [1]:

a. Retest all: It is one of the conventional methods which

performs regression testing by rerunning all the test cases

in the test suite and is therefore very expensive as

compared to others. This requires more time as well as

budget to be performed.

b. Regression test selection: In order to reduce the cost of

running all the tests again we use RTS which selects a

portion of test suite to rerun so that the cost of running

selected tests is less than running the test cases that RTS

allows us to omit. RTS may add new tests in order to cover

the areas that are not covered by existing tests. Various

researchers have given various techniques of RTS[1] for

instance, modified non-core function technique [2],

modification focussed minimization technique[3],coverage

focussed minimization technique[4] etc.

c. Test case prioritization: Test case prioritization techniques

[5] aim to schedule test cases in an execution order

according to some criteria in order to meet some objectives

which could be the likelihood of revealing faults earlier or

increase the rate of fault detection, locating the high risk

faults earlier, increasing the likelihood of revealing the

errors related to specific code changes earlier, or to

increase the confidence in reliability of system. Various

prioritization criteria can be applied to a test suite

according to the objective that needs to be met. Section 2

describes various techniques given by researchers in order

to perform test case prioritization.

d. Hybrid approach: The hybrid approach is based on both

the selection as well as prioritization of the test cases.

Researchers working on this have proposed many

algorithms [1], for instance, Test Selection algorithm by

K.K.Aggrawal et al[6], Hybrid technique by Wong et

al[7].

2. TEST CASE PRIORITIZATION

TECHNIQUES

Rothermel [8], mentioned that the process of test case

prioritization is needed in software testing because: (a) the

regression testing consumes a lot of time and cost, (b) time or

resources to run the entire test suite are not available, therefore

(c) there is a need to identify which test cases should be run

first.

“4C” classification of existing test case prioritisation techniques

was introduced in [8] based on the prioritization algorithm

characteristics. This classification is discussed below:

TECHNIQUES DESCRIPTION

Customer

requirement - based

techniques

Customer requirement factors are

taken into account and provided

some weights and based of these

values test case weight for

requirement is evaluated. Test cases

with high weight value are executed

first following the ones with lower

value.

Table1. Test case prioritization techniques catalogue

http://en.wikipedia.org/wiki/Software_bug

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.2, April 2013

39

2.1 Customer Requirement-based techniques

Hema[9] proposed the requirement based test case prioritisation

technique based on 3 factors associated with the customer

requirements and proposed to use those factors to assign weight

to test cases. Those factors are: (1) customer-assigned priority

on requirements(CP) is the priority value between 1-10 i.e

assigned by the customer based on the importance of the

requirement , (2) requirement complexity(RC), is the value

between 1-10 assigned by the developer based on the

implementation complexity (3) requirements volatility(RV) is

the value based on the how many times consumer is modifying

the project requirements during the software development cycle

.Higher the values of these factors (PFvalue), more is the need

of prioritization required. The development team assigns weight

to each of these factors (PFweight).Based on these, the

following equation is used to calculate the weighted

prioritization (WP) factor that measures the importance of

testing a requirement earlier.

WP= Σ(PFvalue * PFweight); PF=1 to n

 According to the WP values, test cases are order and the ones

with higher values are executed first. Thereafter, Hema[10]

presented a new value driven approach named PORT

(Prioritization of Requirements for Testing) which aims to

prioritize tests based on four requirement assess factors:

requirements volatility (RV), customer priority(CP),

implementation complexity (IC) and fault proneness of the

requirements (FP).

PFVi = Σ4j=1(FactorValueij *FactorWeightj)

In the above equation PFVi is the prioritization factor value for

any requirement I, FactorValueij is the value for factor j for

requirement i and FactorWeightj is the factor weight for the jth

factor for a particular product.

Various research has been done in this field of test case

prioritisation using the factors mentioned in[3] and [10]. Ashraf

et al[11] presented a value based prioritisation technique in 2

levels i.e on requirement level in which is provided by the

stakeholders based on requirement factors and further on

second level prioritisation, the development team provided

grades to the test cases according to the respected requirements.

These test cases were scored according to some pre-defined

factors. (1) customer priority (2) implementation complexity (3)

requirement volatility (4) requirements traceability (5)

execution time and (6) fault impact of requirement. Values

obtained from these two levels were calculated to get the net

value and based on these values test cases were ordered for

execution. Also[12] proposed some similar requirement factors

to prioritise test cases on the basis of fault severity and further

in [13] they proposed a genetic algorithm using a fitness

function and analysed that this approach gave better and

effective set of test cases as compared to random prioritisation

technique. In [14]changing requirements and the impact of

these changes on other modules is considered, two requirements

based factors are considered i.e Rfactors and requirement

priority (RPriority) computed from those two Reactor’s R-value

and Reweight. Rfactors include Requirement Modification

Impact Localization (RMIL) value calculated by dividing the

number of changes for any requirement R divided by the

maximum number of changes to be made as a result of change

in that requirement R among entire project requirements; and

Degree of Coupling (DCP) value which is calculated according

to the levels mentioned in[14].

2.2 Coverage - based techniques

The coverage-based technique is a white-box testing technique

i.e a method that tests internal structures of a software. Unlike

black-box testing, this tests the program behavior against

requirements specifications. The coverage based techniques

uses the coverage factors like branch testing, statement level

testing, function level testing, requirement coverage.

Gaurav[1] presented a grouping of various coverage based

techniques based on statement level and function level. The

various prioritization techniques are implemented based on

code coverage information include (i) Statement based coverage

which prioritises test cases based on no. of statements covered

by test cases, (ii) Branch based coverage which prioritises test

cases based on the no. of branches executed, (iii) Loop based

coverage which prioritises based on no. of loops executed and

(iv) Condition based coverage which prioritises based on

coverage measured in terms of numbers of basic Boolean terms

executed.[8] Jeffrey presented a new approach for the

Prioritisation of test cases that is based the number of

statements executed that influence or have the potential to

influence the output produced by the test case. The set of such

statements corresponds to the relevant slice, that is computed

based on the output of the program when executed by the test

case [8]. The factors they used in their approach to prioritize

test cases are (a) the number of statements in the relevant slice

of output for the test case as any change should necessarily

affect some computation in the relevant slice to be able to

change the output for this test case and (b) the number of

statements executed by the test case but not in the relevant slice

of the output. Jeffrey [8] determined the weight of test cases

according to the formula

TW = ReqSlice + ReqExercise

Where TW is a weight prioritization calculated for each test

case, ReqSlice is the no. of requirements presented in the

relevant slice of output for each test case and ReqExercise is the

no. of requirements exercised by the test case.Prakash and

Rangaswamy[15] multiple criterion based merging technique

for tests case prioritization method where the test cases are

prioritized based on more than one coverage criteria such as

fault coverage, statement coverage, path coverage, function

coverage, etc and it was seen that the proposed method

considerably improves the rate of coverage criteria.

Coverage - based

techniques

It is based on code coverage analysis

or the quantity of code covered by a

test case. Various coverage

criterions are taken into account and

the amount of coverage is evaluated

and used to prioritize the test cases.

Cost Effective -

based techniques

This technique prioritizes the test

cases based on costs factors, such as

cost of running test cases, cost of

analysis etc.

 Chronographic

history-based

techniques

This technique prioritizes the test

cases based on test case’s prior

executions in order to increase or

decrease the likelihood that it will be

taken into account in current test

execution.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.2, April 2013

40

[19] proposed the technique to build reusable cluster-based test

cases during the framework domain engineering stage. It

introduced a methodology that experimentally estimated the

possible coverage of the reusable cluster-based test cases that

are generated using the framework hook descriptions. The

study results showed that the coverage results of the reusable

class-based test cases are better than the coverage results of the

reusable cluster-based test cases which proved that hook

descriptions can be used to build reusable test cases.

In [20], version specific test case prioritisation was considered

which deals with prioritisation of test cases based for a

particular version of software and effectiveness of this

technique is studied over the general prioritisation and

moreover prioritisation techniques are divided into three

groups namely: control level, statement level and function level

and the results are shown that show statistical differences in

various coverage prioritisation techniques. Also [21] proposed a

test case selection as well as version specific prioritisation

technique where all the changes that are made in a software are

available and the prioritisation focuses only on the modified

parts and aims to execute all modified lines of source code with

a minimum number of selected test cases. This works by

executing the modified lines of source code at least once and

Executing the lines of source code after deletion of deleted lines

from the execution history of the test case and that are not

redundant.

2.3 Cost Effective - based techniques:

Cost effective-based techniques are prioritization techniques in

which test cases are ordered for execution based on costs, such

as cost of analysis and cost of prioritization. [8]Leung and

White presented a cost model that incorporates various costs of

regression testing i.e. the cost of executing and validating test

cases, and the cost analysing the test selection. This model

divided the costs into direct cost including test selection, test

execution and result analysis; and indirect costs including

overhead cost and tool development cost. This model also had a

disadvantage that it ignored the cost of undetected faults [17].

Alexey Malishevsky [8] used the cost factors like cost of

analysis, Ca(T) and cost of the prioritization algorithm, Cp(T)

to calculate the weight of a test case and then arrange them

accordingly.Also Malishevsky divided testing process in

prilimnary and critical phase where the prilimnary phase

activities had different costs than critical phase as there may be

greater changes in the critical phase for things like release time

of the software. The cost of a test case depends upon the

resources required to execute the test case as well as validate it.

These resources can be machine or human time, hardware cost

for execution of test case, wages etc.APFD(average percentage

of faults detected) metric measures the average percentage of

faults detected while executing the test cases in a test suite in a

given order. [18]The APFD metric is based on two

assumptions: (1) all faults have equal costs (fault severities),

and (2) all test cases have equal costs(test costs).The cost-

cognizant prioritization techniques are used when these

assumptions do not hold. It requires an estimate of the severity

of each fault that can be revealed by a test case as it reflects the

cost if a fault persists and affect the users using the software

and also if it doesn’t reach the users. In [8], some additional

cost factors are proposed like execution cost, cost of analysis,

cost of data preparation and cost of validation.[23] used a cost

and coverage factors and presents a metric for assessing the

rate of fault detection of prioritized test cases, APFDc, that

incorporates varying test cases and fault costs.

2.4 Chronographic history based

prioritisation techniques

This technique takes into account test execution history in order

to prioritise the test cases. Only a few researchers have

researched in this area. Some research ideas like exponential

weighted moving average and exponential smoothing have

taken the base from statistical quality control and exponential

smoothing respectively [8].Also another approached also listed

in [8] is the use selection probabilities of each test case at some

particular time based upon time-ordered observations taken by

executing the test case again and again and a smoothing

constant used to weight individual historical observations. The

higher the value of the probability the recent is the observation.

For black box testing when source code is not available, one

way to prioritise test cases for execution is to initialize the test

suite based history of test, and then adjusting the rest of the test

cases based on run-time information available to us by forming

a matrix and recording the values[8]. This can be done by

selecting a subset of test cases and ordering them according to

available historical information and then forming a matrix

based on available information, then running a test case from

the selected test case and reordering the rest test cases using

run-time information and information in the matrix that is

formed.[22] proposed a technique cost cognizant prioritisation

based on the historical test data. The test cost list, detected fault

list and fault severity list values are obtained from historical

information repository and then genetic algorithm is proposed

to obtain an efficient order and the results are again stored in

the repository. Experiments performed to study the

effectiveness of the technique indicated that this technique has

effective fault detection.

3. ALGORITHMS FOR TEST CASE

PRIORITISATION

Many search algorithms are being used as basis in test case

prioritisation process. 5 main algorithms explained in [16] are:

3.1 Greedy algorithm
 It uses the “next best” search terminology in which the element

with the the maximum weight is taken first followed by the next

maximum weight and so on. This search aims to minimize the

estimated cost to reach some goal. It is inexpensive in

implementation as well as execution time and thus

advantageous. For example, if there are 5 test cases say A, B, C,

D where A covers 7 statements, B covers 6 statements, C and D

both cover 5 each. If greedy algorithm is applied, the test case

A is selected first since it covers maximum statements i.e 7,.

Test case B is selected next which covers 6 statements, Now

since Test cases C and D cover the same number of Statements,

the Greedy Algorithm could return either A; B;C;D or A; B;

D;C, depending upon the order in which test cases are

considered. The cost of prioritisation for greedy algorithm is

O(mn) where m is the number of statement in program and n is

the no. of test cases in the test suite.

3.2 Additional Greedy Algorithm
It is a type of greedy algorithm with a slightly different

approach. This algorithm works by using feedbacks from

previous selections. It is more efficient as it selects the

maximum weight element from the space that that is not yet a

part of previously selected elements. For example when

applying additional greedy algorithm, if some test case A is

selected first from 4 test cases namely A, B, C and D (as it

covers maximum no. of statements) leaving statements 5 and 6

uncovered. Test case B will be skipped if it covers neither

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.2, April 2013

41

statement 6 nor statement 5. Then if Test cases C and D cover

statements 5 and 6,respectively.Additional Greedy would return

either A;C; D;B or A; D;C;B. The cost of prioritisation for this

algorithm is given as O(mn2) as cost of selecting a test case and

readjusting the test cases again is O(mn) and the process of

readjustment is done O(n) times.

3.3 2-Optimal Algorithm
The 2-Optimal (Greedy) Algorithm[16] is an instantiation of the

K-Optimal Greedy Approach when value of K is 2.The [16]

Traveling Salesman Problem (TSP) which is defined as “find

the cycle of minimum cost that visits each of the vertices of a

weighted graph G at least once” is an example of using 2-

optimal algorithm. The cost of prioritisation for this algorithm

is given as O(mn3) as cost of selecting a pair of test case and

readjusting the test cases again is O(mn2) and the process of

readjustment is done O(n) times.

3.4 Hill Climbing Algorithm
It is also known as local search algorithm.There are two basic

variations to this search algorithm i.e Steepest ascent and next

best ascent. It uses the concept of neighbourhood [16] which is

defined as any new ordering of a test suite that can be obtained

by exchanging the position of the first test case and any other

test case. It is easy and cheap to use. However it [1] has a con of

dividing the O(n2) neighbours and is unlikely to scale.

3.5 Genetic Algorithm
It is based on Darwins Theory of Survival of the Fittesst[1]. The

population initialy is a set of randomly generated individuals

where Each individual is represented as a sequence of

variables/parameters known as the chromosome[16].The steps

involved in this search algorithm are: Encoding, Selection,

Crossover and Mutation.

It was formulated in [16] that the Additional Greedy and 2-

Optimal Algorithms are the best approaches overall; Additional

Greedy, 2-Optimal, and Genetic Algorithms always outperform

the Greedy Algorithm. In [1], PORT version 1.1 is also listed as

a prioritisation algorithm for Requirement based prioritisation

of test cases.

4. PROPOSED APPROACH AND

CHALLENGES

Requirements prioritization is an essential area of research in

the field of test case prioritisation. It aims to maximize the

software value delivered to the clients and also consider

changing requirements. The order in which requirements are

implemented in a system affects the value of software that is

being delivered to the final users. The basic challenge that

developer faces are: a) to rank the requirements so as to trade

off user priorities and implementation constraints, such that the

technical dependencies among requirements and necessarily

limited resources are allocated to the software and the highest

priority requirements are implemented first, b) As requirements

change frequently there is a need of a flexible approach to

facilitate requirements change management. c) Also the

developer needs to make the prioritisation process more

interactive as the opinions of different developers may not be

the same about assigning the priority to the requirements. So,

there must be a mechanism which takes the perspective of

different users to prioritise the requirements rather than simply

relying on the single developer. This would make the

prioritisation process more efficient and interactive.

 Despite the clear need to prioritize requirements in software

projects, finding a practical method for requirements

prioritization is a difficult task. Existing requirements

prioritization methods that provide the most consistent results

are complex, and therefore the difficult to implement. So, there

is a need of more informal methods that save time and are

easier to apply, but may not be suitable for practical scenarios

because they lack the structure and consistency required to

properly analyse the requirements.

The possible approach to overcome the challenges that are

discussed above could be something that attempts to quantify

the quality of requirements to provide a measurement that is

representative of all quality criteria identified for a specific

software project. A quality measurement metric can be formed

using some new requirement quality attributes or even using

some existing ones as per the requirement of the software

developing team. This metric can be used as the main measure

for requirements prioritization and based on the results of these

,etric a function can be calculated that ranks the requirements

based on its values.

Requirement analysts possess relevant knowledge about the

relative importance of requirements. After prioritizing

requirements according to above metric, to further make the

process interactive, an algorithm can be further introduced into

this approach which considers second opinion from various

experts to produce a requirement ordering which complies with

the existing priorities, satisfies the technical constraints and

takes into account the relative preferences elicited from the

user. After considering the opinions from various analyst, a

genetic algorithm can be applied where these opinions can be

considered as the populations and a fitness function is

calculated so as to obtain a final set of prioritised requirements.

After the set of prioritised requirements is obtained, test cases

can be ranked based on the degree how a particular test case

meets the requirements, the test cases that meet the

requirements that appear early in the above obtained prioritised

sequence are runned first following the ones that cover the

requirements appearing lately in the requirement prioritisation

sequence.

5. CONCLUSION

Various regression testing techniques are discussed in this

paper, mainly focussing on test case prioritisation. The various

techniques of test case prioritisation are explained in detail to

make the researches understand the scope of working various

techniques. Also, various search algorithms used in the process

of test case prioritisation are listed along with explanation. This

paper also lists various challenges associated with the

requirement based prioritisation and also proposes an approach

to overcome these challenges.

6. REFERENCES

[1] Gaurav Duggal, Bharti Suri [2008],"Understanding

regression testing techniques" Proceedings of 2nd National

Conference on Challenges and Opportunities in

Information Technology.

[2] Y. Chen, D. Rosenblum, and K. Vo. Test Tube, “A system

for selective regression testing,” In Proceedings of the 16th

International Conference on Software Engineering, pages

211-220, May 1994.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.2, April 2013

42

[3] K. Fischer, F. Raji, and A. Chruscicki, “A methodology for

retesting modified software,” In Proceedings of the

National Telecommunications Conference B-6-3, pages 1-

6, Nov. 1981.

[4] R. Gupta, M. J. Harrold, and M. Soffa, “An approach to

regression testing using slicing,” In Proceedings of the

Conference on Software Maintenance, pages 299-308,

Nov. 1992

[5] S. Elbaum, A. G. Malishevsky and G. Rothermel, “Test

Case Prioritization: A Family of Empirical Studies,” IEEE

Transactions Software Engineering, Vol. 28, No. 2, 2002,

pp.159-182.

[6] K. K. Aggrawal, Yogesh Singh, A. Kaur, “ Code coverage

based technique for prioritizing test cases for regression

testing,” ACM SIGSOFT Software Engineering Notes,

vol 29 Issue 5 September 2004.

[7] W. E.Wong, J. R. Horgan, S. London and H.Agrawal, “A

study of effective regression testing in practice,” In

Proceedings of the 8th IEEE International Symposium on

Software Reliability Engineering (ISSRE' 97), pages 264-

274, November 1997.

[8] Siripong Roongruangsuwan, Jjirapun Daengdej, “test case

prioritization techniques”, Journal of Theoretical and

Applied Information Technology, © 2005 - 2010

Autonomous System Research Laboratory, Science and

Technology, Assumption University, Thailand.

[9] Hema Srikanth, Laurie Williams,” Requirements-Based

Test Case Prioritization”.

[10] Hema Srikanth, Laurie Williams, Jason Osborne,” System

test case prioritisation of new and regression test cases,”

Proceedings of the seventh international workshop on

Economics driven software engineering research, pages

64-73, May 2005.

[11] E. Ashraf, A. Rauf, and K. Mahmood, ”Value Based

Regression Test case Prioritisation”, Proceedings of the

World Congress on Engineering and Computer Science

2012 Vol I WCECS 2012, October 24-26, 2012, San

Francisco, USA

[12] Varun Kumar; Mohit Kumar, “Test Case Prioritization

Using Fault Severity”. International Journal of computer

science and technology, Vol. 1, No. 1,p 67-71.

[13] Sujata, Mohit Kumar, Dr.Varun Kumar, “Requirements

based Test Case Prioritization using Genetic Algorithm”.

International Journal of computer science and technology

Vo l. 1, IS Su e 2, December 2010

[14] Aseem Kumar, Sahil Gupta, Himanshi Reparia, Harshpreet

Singh, “ An approach for test case prioritization based

upon varying requirements”. International Journal of

Computer Science, Engineering and Applications

(IJCSEA) Vol.2, No.3, June 2012

[15] N.Prakash, T.R.Rangaswamy, “Multiple Criteria Based

Test Case Prioritization for Regression Testing” European

Journal of Scientific Research,ISSN 1450-216X Vol.84

No.1 (2012), pp.36 – 45

[16] Zheng Li, Mark Harman, and Robert M. Hierons,”Search

algorithms for regression test case prioritisation,” IEEE

trans. On Software Engineering, vol 33, no.4, April 2007

[17] J u n g -Mi n Kim , A d a m P o r t e r,” A History-

Based Test Prioritization Technique for Regression

Testing in Resource Constrained ”

[18] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg

Rothermel, Sebastian Elbaum” Cost-cognizant Test Case

Prioritization” Technical Report TRUNL-CSE-2006-0004,

Department of Computer Science and Engineering,

University of Nebraska –Lincoln, 2006.

[19] Jehad Al Dallal, Paul Sorenson,” Estimating the Coverage

of the Framework Application Reusable Cluster-Based

Test Cases” . Information & Software Technology 50(6):

595-604 (2008).

[20] G. Rothermel, R.H. Untch, C. Chu, and M.J.Harrold,

“Prioritizing Test Cases for Regression Testing,” IEEE

Trans. Software Eng., vol. 27, no. 10, pp. 929-948, Oct.

2001.

[21] Ruchika Malhotra, Arvinder Kaur and Yogesh Singh,” A

Regression Test Selection and Prioritization Technique”,

Journal of Information Processing Systems, Vol.6, No.2,

June 2010

[22] Yu-Chi Huang, , Kuan-Li Peng, Chin-Yu Huang,” A

history based cost cognizant test case prioritisation

technique” Journal of Systems and Software Volume 85,

Issue 3, March 2012, Pages 626–637.

[23] A.Askarunisa, L.Shanmugapriya, Dr.N.Ramaraj,”Cost and

Coverage Metrics for Measuring the Effectiveness of Test

Case Prioritization Techniques”, INFOCOMP Journal of

Computer Science.

http://www.informatik.uni-trier.de/~ley/db/journals/infsof/infsof50.html#Al-DallalS08
http://www.sciencedirect.com/science/article/pii/S0164121211002780
http://www.sciencedirect.com/science/article/pii/S0164121211002780
http://www.sciencedirect.com/science/article/pii/S0164121211002780
http://www.sciencedirect.com/science/journal/01641212
http://www.sciencedirect.com/science/journal/01641212/85/3
http://www.sciencedirect.com/science/journal/01641212/85/3

