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ABSTRACT
In this paper, the fuzzy solution of the initial boundary
value problem of hyperbolic one-dimensional wave equation
is considered. The solution by finite difference method is observed
by using fuzzy intervals.
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1. INTRODUCTION
In the context of fuzzy theory, first introduced by Zadeh [1], the
arithmetic operations on fuzzy numbers are usually ap-
proached
either by the use of the extension principle (in the domain of
the membership function) or by the interval arithmetics (in the
domain of the α-cuts). The exact analytical fuzzy operations
dates back from the early 1980s and are outlined by Dubois and
Prade [2] ; the same authors have introduced the well-known L-R
model and the corresponding formulas for the fuzzy opera-
tions [3]. The fuzzy
differential equations and fuzzy initial value problem were
regularly treated by Kaleva [4, 5]. The numerical methods
for
solving fuzzy differential equations are introduced in [6, 7, 8, 9].
In this paper, first finite difference method to solve one-
dimensional wave equation is applied using fuzzy in-
terval arithmetics
[10, 11, 12] , numerically.

2. BASIC CONCEPT OF FUZZY SET THEORY
A triangular fuzzy number u can be defined as a triplet [a, b, c].
Its membership function is defined as:

µu(x) =

{
x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

To find the α-cut of u, αε[0, 1] to both left and right refer-
ence functions of u is set. That is, α = x−a

b−a and α = c−x
c−b .

Expressing x in terms of α , x = (b − a)α + a and
x = c − (c − b)α is obtained, which gives the α-cut of u is
uα = [(b− a)α+ a, c− (c− b)α].
If u = [u−, u+] and v = [v−, v+] are two given fuzzy numbers,
the arithmetic operations are defined for 0 ≤ α ≤ 1 as follows:
1. u = v if and only if u−α = v−α and u+

α = v+α .
2. u+ v = [u−α + v−α, u

+
α + v+α ].

3. ku = [min{ku−α, ku+
α},max{ku−α, ku+

α}] , (kε<)

4. u+ v = [u−α − v+α , u+
α − v−α].

3. APPLICATION OF FINITE DIFFERENCE
METHOD IN WAVE EQUATION

Consider the initial boundary value problem of hyperbolic
one-dimensional wave equation [13]

∂2u

∂t2
= a2

∂2u

∂x2
, 0 ≤ x ≤ L, t ≥ 0 (1)

initial condition

u(x, 0) = f(x) (2)

subject to boundary conditions

u(0, t) = u(L, t) = 0 (3)

with initial velocity

ut(x, 0) = f(x). (4)

Using finite difference method and substituting
utt =

1
k2

(ui,j+1 − 2ui,j + ui,j−1) and
uxx = 1

h2 (ui+1,j − 2ui,j + ui−1,j)
we get

ui,j+1 = rui+1,j + (2− 2r)ui,j + rui−1,j − ui,j−1 (5)

where r = a2k2

h2 .This explicit method converges and stable for
0 < r ≤ 1. For a given a2 , choose h and k such that r = 1.
Hence, (5) becomes

ui,j+1 = ui+1,j + ui−1,j − ui,j−1. (6)

For the initial condition ut(x, 0) = f(x), central difference
approximation for the derivative is used and ui1 =

fi+1+fi−1
2

is
written.

4. FUZZIFICATION OF WAVE EQUATION
Let ui−1,j−1 = [W01,W02,W03] and
ui+1,j−1 = [W21,W22,W23].
[ui,j ] = [W01+W21

2
, W02+W22

2
, W03+W23

2
] = [E11, E12, E13]

is obtained. Firstly, fuzzy membership function for ui−1,j−1 is

µui−1,j−1(X) =

{
X−W01
W02−W01

, W01 ≤ X ≤W02
W03−X
W03−W02

, W02 ≤ X ≤W03
(7)

Then, [ui−1,j−1]α = [W01 + (W02 −W01)α,W03 − (W03 −
W02)α] is the α-cut of fuzzy number ui−1,j−1.
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Secondly, fuzzy membership function for ui+1,j−1 is

µui+1,j−1(X) =

{
X−W21
W22−W21

, W21 ≤ X ≤W22
W23−X
W23−W22

, W22 ≤ X ≤W23
(8)

Then, [ui+1,j−1]α = [W21 + (W22 −W21)α,W23 − (W23 −
W22)α] is the α-cut of fuzzy number ui+1,j−1.
Hence α-cut for ui,j is [14]

[ui,j ]α = 1
2

[{(W01 +W21) + {(W02 −W01) + (W22 −W21)}α,
(W03 +W23)− {(W03 −W02) + (W23 −W22)}α] .

Let
X1 = {(W01+W21)+{(W02−W01)+(W22−W21)}α

2

⇒ α = 2X1−(W01+W21)
(W02−W01)+(W22−W21)

and
X2 = {(W03+W23)−{(W03−W02)+(W23−W22)}α

2

⇒ α = 2X2−(W03+W23)
(W03−W02)+(W23−W22)

.
Thus, fuzzy membership function for ui,j is µui,j

(X) ={
2X−(W01+W21)

(W02+W22)−(W01+W21)
, (W01+W21)

2
≤ X ≤ (W02+W22)

2
−2X+(W03+W23)

(W03+W23)−(W02+W22)
, (W02+W22)

2
≤ X ≤ (W03+W23)

2

Now,let ui−1,j = [E01, E02, E03] , ui+1,j = [E21, E22, E23]
and ui,j−1 = [W11,W12,W13]. We get
[ui,j+1] = [E01 +E21−W11, E02 +E22−W12, E03 +E23−
W13]. Firstly, fuzzy membership function for ui−1,j is

µui−1,j (X) =

{
X−E01
E02−E01

, E01 ≤ X ≤ E02
E03−X
E03−E02

, E02 ≤ X ≤ E03
(9)

and [ui−1,j ]α = [E01 + (E02 − E01)α,E03 − (E03 − E02)α]
is the α-cut of fuzzy number ui−1,j .
Then, fuzzy membership function for ui+1,j is

µui+1,j
(X) =

{
X−E21
E22−E21

, E21 ≤ X ≤ E22
E23−X
E23−E22

, E22 ≤ X ≤ E23
(10)

and [ui+1,j ]α = [E21 + (E22 − E21)α,E23 − (E23 − E22)α]
is the α-cut of fuzzy number ui−1,j .
Then, fuzzy membership function for ui,j−1 is

µui,j−1(X) =

{
X−W11
W12−W11

, W11 ≤ X ≤W12
W13−X
W13−W12

, W12 ≤ X ≤W13
(11)

and [ui,j−1]α = [W11+(W12−W11)α,W13−(W13−W12)α]
is the α-cut of fuzzy number ui,j−1.
Hence,α-cut for ui,j+1 is [ui,j+1]α =
[(E01 +E21−W13)+ {(E02−E01)+ (E22−E21)+ (W13−
W12)}α, (E03+E23−W11)−{(E03−E02)+(E23−E22)+
(W12 −W11)}α].
Let
X1 =
(E01+E21−W13)+{(E02+E22−W12)−(E01+E21−W13)}α
⇒ α = X1−(E01+E21−W13)

(E02+E22−W12)−(E01+E21−W13)

and
X2 =
(E03+E23−W11)−{(E03+E23−W11)−(E02+E22−W11)}α
⇒ α = −X2+(E03+E23−W11)

(E03+E23−W11)−(E02+E22−W11)
.

Then, fuzzy membership function for ui,j+1 is on the way
A = E01 +E21 −W13, B = E02 +E22 −W12 and
C = E03 +E23 −W11

µui,j+1
(X) =

{
X−A
B−A , A ≤ X ≤ B
C−X
C−B , B ≤ X ≤ C

(12)

With the help of this fuzzy membership function of different u’s
of j + 1th level can be found out.

5. NUMERICAL EXAMPLES
Consider the one-dimensional wave equation
∂2u
∂t2

= 16 ∂
2u
∂x2

with the conditions
u(x, 0) = x2(5− x)
u(0, t) = u(5, t) = 0
ut(x, 0) = 0
Let u00 = [−0.001, 0, 0.001] and u20 = [11.999, 12, 12.001].
and u11 = [5.999, 6, 6.001].
Firstly, fuzzy membership function for u00 is

µu00(x) =

{
x+0.001
0.001

, −0.001 ≤ x ≤ 0
12.001−x

0.001
, 0 ≤ x ≤ 0.001

and α-cut for u00 is [u00]α = [0.001α−0.001, 0.001−0.001α]
Secondly, fuzzy membership function for u20 is

µu20(x) =

{
x−11.999

0.001
, 11.999 ≤ x ≤ 12

12.001−x
0.001

, 12 ≤ x ≤ 12.001

and α-cut for u20 is [u20]α = [0.001α + 11.999, 12.001 −
0.001α]. Thus, α-cut for u11 is [u11]α = [0.001α +
5.999, 6.001 − 0.001α]. Let X1 = 5.999 + 0.001α⇒ α =
X1−5.999

0.001
and

X2 = 6.001− 0.001α⇒ α = −X2+6.001
0.001

.
Hence, fuzzy membership function for u11 is

µu11(x) =

{
x−5.999
0.001

, 5.999 ≤ x ≤ 6
6.001−x
0.001

, 6 ≤ x ≤ 6.001

Now, let u01 = [−0.001, 0, 0.001], u21 = [10.999, 11, 11.001],
u10 = [3.999, 4, 4.001]. and u12 = [6.997, 7, 7.003]. Firstly,
fuzzy membership function for u01 is

µu01(x) =

{
x+0.001
0.001

, −0.001 ≤ x ≤ 0
0.001−x
0.001

, 0 ≤ x ≤ 0.001

and [u01]α = [0.001α− 0.001, 0.001− 0.001α].
Then, fuzzy membership function for u21 is

µu21(x) =

{
x−10.999

0.001
, 10.999 ≤ x ≤ 11

11.001−x
0.001

, 11 ≤ x ≤ 11.001

and [u21]α = [0.001α+ 10.999, 11.001− 0.001α].
Then, fuzzy membership function for u10 is

µu10(x) =

{
x−3.999
0.001

, 3.999 ≤ x ≤ 4
4.001−x
0.001

, 4 ≤ x ≤ 4.001

and [u10]α = [0.001α+ 3.999, 4.001− 0.001α].
Thus, [u12]α = [0.003α+ 6.997, 7.003− 0.003α].
Let X1 = 6.997 + 0.003α⇒ α = X1−6.997

0.003
and

X2 = 7.003− 0.003α⇒ α = −X2+7.003
0.003

.
Hence, fuzzy membership function for u12 is

µu12(x) =

{
x−6.997
0.003

, 6.997 ≤ x ≤ 7
7.003−x
0.003

, 7 ≤ x ≤ 7.003

Similarly, fuzzy membership functions can be found out at dif-
ferent grid points. In Table 1-2, the α-cut with left and right func-
tions of fuzzy number u is shown for α = 0 , respectively.

6. CONCLUSION
In this paper, fuzzy membership functions to find solution of
wave equation has been shown in numerical fuzzified form. Nu-
merical computations have been made to illustrate ability and
reliability of the method.
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Table 1. The left side of fuzzy number u for α=0.
j\i 0 1 2 3 4 5
0 -0.001 3.999 11.999 17.999 15.999 -0.001
1 -0.001 5.999 10.999 13.999 8.999 -0.001
2 -0.001 6.997 7.997 1.997 -2.003 -0.001
3 -0.001 1.995 -2.007 -8.007 -7.005 -0.001
4 -0.001 -9.011 -14.015 -11.015 -6.011 -0.001
5 -0.001 -16.021 -18.033 -12.033 -4.021 -0.001
6 -0.001 -9.035 -14.069 -11.069 -6.045 -0.001
7 -0.001 1.909 -2.137 -8.147 -7.091 -0.001
8 -0.001 6.817 7.693 1.703 -2.193 -0.001
9 -0.001 5.601 10.373 13.353 8.611 -0.001

10 -0.001 3.189 10.647 16.677 15.159 -0.001

Table 2. The right side of fuzzy number u for α=0.
j\i 0 1 2 3 4 5
0 0.001 4.001 12.001 18.001 16.001 0.001
1 0.001 6.001 11.001 14.001 9.001 0.001
2 0.001 7.003 8.003 2.003 -1.997 0.001
3 0.001 2.005 -1.993 -7.993 -6.995 0.001
4 0.001 -8.989 -13.985 -10.985 -5.989 0.001
5 0.001 -15.979 -17.967 -11.967 -3.979 0.001
6 0.001 -8.955 -13.931 -10.931 -5.955 0.001
7 0.001 2.091 -1.853 -7.853 -6.909 0.001
8 0.001 7.183 8.307 2.307 -1.807 0.001
9 0.001 6.399 11.627 14.647 9.399 0.001

10 0.001 5.811 13.353 19.323 15.841 0.001
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