
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.19, April 2013

12

A Novel Technique for Generation of Test Cases Based on
Bee Colony Optimization and Modified Genetic Algorithm

(BCO-mGA)

 Sandeep Dalal
 Assistant Professor,
 Department of Computer Science and
 Applications, M.D.University, Rohtak,
 (Hr)-India-124001

 Rajender Singh Chhillar, PhD.

 Professor & Head,
 Department Computer Science and
 Applications, M.D.University, Rohtak
 (Hr)-India-124001

ABSTRACT

Software testing is the most important phase of software

development life cycle which ensures the quality of software

systems. This paper proposes a novel approach for generation of test

cases from “Unified Modeling Language” (UML). The Test Case

Selection and Reduction is done by using Stratified Sampling, Bee

Colony Optimization and Genetic Algorithm. This aims to save

cost, time and effort by efficiently minimizing the test suite to

ensure maximum coverage. We have applied this technique to a

module of a Card Administration System project taken from

Software Company. The result shows that the proposed approach

effectively detects all the flaws by covering all possible paths of the

system. The proposed software testing technique (BCO-mGA)

ensures maximum coverage in minimum possible timeframe by

executing the final minimized test suite.

General Terms:
Algorithm, Design, Standardization and Verification

Keywords:
Software Testing, Test Cases, UML, Activity Diagram, Activity

Diagram, Genetic Algorithm, Stratified Sampling, Bee Colony

Optimization, Cross-over, Progeny

1. INTRODUCTION
Software testing is a process that is used to validate and verify the

developed program to ensure that it satisfies the customers and

developers requirements [1] [2]. Now industry is in mature stage

and lots of upgrades are done to the current projects as part of

maintenance. Based on the previous study of root cause analysis of

some of the most critical failure, [3] [4] [7] it is observed that lots of

software fail due to lack of testing. Quality of the delivered software

depends heavily on the methodical action of software. Software

testing plays a crucial role in assuring software quality. It can be

used for the purposes of quality assurance, reliability, estimation,

verification and validation [5]. Software testing is difficult due to

large number of test cases. Test Case Execution is cost and

investment intensive. We propose a novel technique for generation

and reducing test cases, based on bee colony optimization and

modified genetic algorithm (BCOmGA). Our testing strategy

derives test cases using full predicate coverage criteria.

1.1 Stratified Sampling
A method of sampling that involves the division of population into

smaller groups known as strata. In stratified sampling the strata are

formed based on members shared attributes or characteristics [26].

A sample for each stratum is taken in a number proportional to the

spectrums size when compared to the size of population. These

subsets of strata are then pooled to form a random sample. Stratified

sampling ensures that atleast one observation is picked from each of

the strata, even if the probability of it being selected is far less than

one [27].

1.2 Bee Colony Optimization
Bee colony Optimization is an emerging field for researchers. Bee

colony optimization is the name given to the colony formed from

the mutual understanding and terms work of the natural bees in the

process of foraging [6]. The bee colony optimization has been used

for understanding the concept of software test suite optimization [8].

The bee‟s concept has also been used for optimization approaches

in the field of engineering. In spite all the creatures on the earth

follow one or the other mechanism to find food that suite them and

these mechanism are found in insects like ants, bees and

cockroaches etc. There are three types of bees queen bees, male

drone bees, workers bees. Queen bee (one) is responsible to lay eggs

which are used to build new colonies. Male drone bees are

responsible for mating with queen bee. Worker bees (thousands)

perform all the maintenance and management jobs in the hive.

Honey bee comb build-up and management is a classic example of

team work, co-ordination and synchronization. The way the honey

bees find, build and maintain their comb and hive is remarkable.

These are the factors which have given rise to interest of researchers

to find solutions to their problem.

1.3 Genetic Algorithms
GA is adaptive search procedures which were introduced by John

Holland [13] and widely studied by Goldberg [14].Genetic

algorithm is well suited to identify UML testing. Genetic algorithms

work on the basis of combination of „genes‟, which are created

randomly; followed by a directed evolution phase wherein the

“combination of genes” evolve under a desired selection pressure.

High scoring combinations are kept for next phases, while others are

discarded. In short, genetic algorithms optimize test parameters that

satisfy a predefined test criterion.

In this paper we design new test cases and testing techniques that

are based on root cause analysis of software failure. In Section 2, we

discuss related work and research in field of software testing to

optimize test cases. Section 3 describes proposed model. Section 4

presents proposed algorithm prioritization and maximizing

coverage, while in Section 5 discussion about reduction of nodular

path. Some future directions have been presented in section 6.

2. RELATED WORKS
In this section we describe the number of approaches which have

been proposed for test case optimization. UML is the most widely

used language; many researchers are using UML diagrams such as

state chart, Activity and sequence diagrams to generate test cases

[12]. P.R. Srivastava and T.H.Kim [24] proposed a technique for

generating test cases using „path coverage testing criteria‟ and

genetic algorithm many researchers have been working in

generating optimal test cases based on specification. Boghdady et al

[11] proposed an approach for generating test cases from activity

diagram. The proposed model includes validation of generated test

cases during generation process to ensure their coverage and

efficiency. Automatic test case generation was proposed by

Monalisa et al [15] from UML design diagrams. The concept of

Artificial Bee Colony algorithm was introduced by Karaboga [16]

[20].Genetic algorithm (GA) is an optimization technique which can

be applied to various problems, including those that are NP-hard

[22]. With this the genetic algorithm is also used to generate test

data automatically [17]. A lot of work is done by researchers on

optimization of test cases. Mala et al has developed a hybrid genetic

algorithm based approach for quality improvement and optimization

of test cases [19]. Dahiya et al [23] presented an ABC algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.19, April 2013

13

based approach for automatic generation of structural software tests.

Bharati et al [25] have used a combination of BCOGA for a test

case generation; however the method of determination of estimated

time is not clear in her paper whereas in this paper we have based

our approach on fitness score (which is a combination of

“Information flow” and “Stack based weight”).

3. PROPOSED MODEL
This proposed model studies the Activity diagrams of UML as a

building block to reduce the number of nodular paths to be tested

for the validation of the software. From the Activity diagrams a

Activity dependency table (ADT) is generated and Activity

dependency graph (ADG) is created. By the application of depth

first search algorithm (DFS) we have generated the test cases. On

the basis of the generated test cases stratified sampling, bee colony

optimization and modified genetic algorithm is applied to reduce the

number of nodular paths to be tested for the validation of the

software.

 Figure 1: The Proposed Model Architecture

4. PROPOSED ALGORITHM

The proposed approach reduces the nodular path options by a

combined application of bee colony optimization and modified

genetic algorithm. Our proposed algorithm involves the following

steps.

Assumption: AD and AG will be generated for each module.

START

INPUT: AUT (Application under test)

 Test Data: B (B1, B2 -----------Bn)

 Variables: C (C1, C2-----------Cn)

STEP 1:- Generate Activity Diagram (AD) from AUT

 - Generate ADG (Activity Dependency Graph) from AD

 - Calculate total set of employee class by stratified

sampling

STEP 2: Generate and evaluate Nodular Path (NP)

- Use depth first search to traverse the graph following each

node

/*Application of BCO-mGA*/

- Get all Paths (test cases) P[] = P1, P2……Pn.

- Randomly Select “m” Employees Classes(ECMs) for initial

foraging

- Each Employee Class Member (ECM) will randomly start

foraging

- Calculate the number of Decision nodes covered (DNC) and

Fitness score (FS) on the basis of Path foraged

- The Paths of returning ECM will be stored in memory

- Second Path would be randomly assigned to the ECM

- DNC and FS calculated for new Path Combination

- Best Fit solutions would be crossed

- Select progeny with Path combinations of cross over having

higher FS than parents

- The new ECM would be assigned to the Progeny Path

- The steps of foraging, FS calculation and Crossover would be

repeated till either

 Number of fixed iterations

 OR

 No more improvement of Progeny path

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.19, April 2013

14

Figure 2: Activity diagram “Card Management system”

Figure 2 represents the Activity diagram of the card management

system. On the basis of Activity diagram, the ADT is accomplished

to automatically generate the Activity dependency graph. In figure 3

the symbols given for each activity are used to name the nodes in

the ADG where each node represents an activity diagram.

 Figure 3: Activity dependency graph

Depth First Search (DFS) is applied on the ADG to obtain all the

possible test paths. The flow chart of the methodology is presented

in figure 4. It can be said that the methodology will accept raw

sequence set as the input and will generate the optimal test

sequence. All the possible test sequences are needed to be generated

to perform the given task.

 Figure 4: Flow chart of Algorithm stack based

 Table1: Node Weight table; Stack Based Weight (SBWi)

 and Ki=node number (i)

SBWi Wmax – Ki

1 14-1=13

2 14-2=12

3 14-3=11

4 14-4=10

5 14-5=9

6 14-6=8

7 14-7=7

8 14-8=6

9 14-9=5

10 14-10=4

11 14-11=3

12 14-12=2

13 14-13=1

14 14-14=0

 Table2: Information Flow Table

IF (Fanin(A) x Fanout(B))

2 1*2 = 2

6 2

11 2

10 2

 For iteration „l‟

0

0

0

0

1

1

1

1

ECM-Employ Class Member

DNC- Decision nodes covered

FS- Fitness score

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.19, April 2013

15

 Table 3: Cumulative Weight Table (Wi = IFi + SBWi)

Activity Node

Number

(i)

IF SBWi Wi

A 1 1 13 14

B 2 2 12 14

D 3 1 11 12

C 4 1 10 11

L 5 1 9 10

E 6 2 8 10

M 7 1 7 8

F 8 1 6 7

G 9 1 5 6

J 10 2 4 6

H 11 2 3 5

I 12 1 2 3

K 13 1 1 2

N 14 1 0 1

Table 4: Nodular Path Generation

S. No Nodular Path Sequence

NP1 A=>B=>D=>L=>M=>N

NP2. A=>B=>C=>E=>G=>H=>I=>N

NP3 A=>B=>C=>E=>G=>H=>F=>J=>N

NP4 A=>B=>C=>E=>G=>H=>F=>J=>K=>M=>N

NP5 A=>B=>C=>E=>F=>J=>N

NP6 A=>B=>C=>E=>F=>J=>K

 Table 5: Over all fitness of all Nodular Paths

5. CASE STUDY

Problem Statement

The study deals with the efficient and comprehensive testing of

various possibilities defined by the automated card management

system. Consider the Activity diagram derived from the proposed

algorithm; there are 6 unique nodular paths for each employee. If

there are „N‟ employees, then the total number of cases becomes

6N. For any organization with large number of employees it

becomes a mammoth task to verify the performance of algorithm on

each level. In the current case the application BCO-mGA steps.

DFS is applied AD for generation of test cases that produced all

possible paths. These will serve as input for the combination of

BCO-mGA. As shown in table 4 there are six test cases [NP1,

NP2……NP6]. The weight of each node (wi) is dependent on the

“Information Flow(IF)” and “Stack Based Weight(SBWi)” as

shown in Table 3. Fitness of a nodular path depends upon its ability

to unravel faults and therefore must be proportional to the number

of decision nodes it covers.

As seen in the “Activity Dependency Graph(ASDG)” nodes B, E, H

and J are decision nodes (IF > 1) with 14, 10, 5, 6 scores

respectively. As seen in Table 5 the scores of nodular paths are [14,

29, 30, 24, 20, 14] for [NP1, NP2 ……NP6] respectively. Assuming

the number of employee class after is 12 out of which only 4 (1/3)

start foraging. In first phase each of these employee class is

randomly assigned a test case (NPx;

where x =1...6) and fitness score (FSnpx) calculated as:

FSnpx = IFx + SBWx

Where, IFx = FaninA * FanoutA

Fitness Score = N∑x=1 NPx [where, N is the maximum test cases]

The numbers of decision nodes covered are calculated in binary

form. In second phase, the employee class members (ECM) of

phase 1 are randomly assigned a second path and FSx calculated.

The top scoring two ECM are selected as parents and crossed to

produce new combinations of test cases (for example in the phase2

ECM3 and ECM4 are selected as parents). The numbers of decision

nodes covered are calculated by using ADG. In case, the offspring

test case combinations have higher fitness score than any of the

parents, then the offspring is assigned to another randomly chosen

ECM for foraging. Else next best set of parents are chosen and

crossed. In third round, the ECMs are assigned another nodular path

randomly and FS is calculated and the parents for another round of

crossover selected. This process is repeated till one of the three

conditions is satisfied:

a. The number of iterations is exhausted.

b. None of the offspring (for any set of parents) show

higher fitness score. This is an indication that the

optimum combination has been reached.

c. All of the decision nodes are covered.

Phase 1

EMP NPS FS DNC BIN

E1 NP1 14 0 0000

E2 NP2 29 3 1110

E3 NP3 30 3 1101

E4 NP4 24 2 1100

* Nodular Path Sequences (NPS); * Decision Nodes Covered

(DNC)

* Fitness Score (FS); * Binary representation of NPS (BIN)

Phase 2

EMP NPS FS DNC BIN

E1 NP1,NP5 34 2 1001

E2 NP2,NP6 43 4 1111

E3 NP3,NP1 44 3 1101

E4 NP4,NP5 44 4 1101

Crossover of Selected parents: from Phase 2

Phase 2 (after cross over)

NP DN1 DN2 DN3 DN4 Fitness

NP1 0 0 0 0 14

NP2 1 1 1 0 29

NP3 1 1 0 1 30

NP4 1 1 0 0 24

NP5 1 0 0 1 20

NP6 1 0 0 0 14

EMP NPS FS DNC BIN

E1 NP1,NP5 34 2 1001

E2 NP2,NP6 43 4 1111

E3 NP3,NP1 44 3 1101

E4 NP4,NP5 44 4 1101

E5 NP3,NP5 50 5 1101

Parents NPS

combination

Progeny Fitness

score

Status

E3 NP3,NP1 NP3-NP5 50 Selected

E4 NP4,NP5 NP4-NP1 38 Rejected

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.19, April 2013

16

Phase 3

EMP NPS FS DNC BIN

E1 NP1,NP5,NP4 58 4 1101

E2 NP2, NP6,NP3 73 7 1111

E3 NP3,NP1,NP5 64 5 1101

E4 NP4,NP5,NP2 73 7 1111

E5 NP3,NP5,NP1 64 5 1101

 Crossover of Selected parents: from Phase 3

Parents NPS combination Progeny Fitness

score

Status

E2 NP2,NP6,NP3 NP2-NP5NP2 78 Selected

E4 NP4,NP5,NP2 NP4-NP6NP3 68 Rejected

The process stopped as all of the decision nodes were covered in the

phase 3 (Emp2 and Emp4). These are the end result i.e. selected

final outcome of NPS combination that would cover entire set of

decision nodes.

6. REDUCTION OF NODULAR PATHS

Usually the nodular paths are generated to cover maximum routes

on an algorithm. In this case we have attempted to reduce the

nodular paths with respect to the decision nodes of the Activity

diagram. With each path a unique set of decision nodes are

associated and hence convey different fitness weight. The nodular

paths validate the putative routes that can be followed during the

operation of a desired activity (under some constraints). The

possible test cases are here in table 4. The test cases have been

defined on the basis of state flow diagram. It is evident that the

nodular paths can represent different options/choices before meeting

final objective. The nodular paths can be generated through the

analysis of state flow diagram. Some of the possible test sequences

are defined in table 4.

The above nodular path sequences (NPS) are defined with effect of

the nodes, here A, B, C etc represents the nodes. Let‟s say if we

have a sequence A=>B=>D=>L=>M=>N. In physical terms it

represents the activity sequence of login, employee status

determination (whether it exists or not), create employee id (if it

does not exist), activate its card, check if it is active, submit the

information.

From all the possible nodular paths it can be observed that there is

always one initial node and the related path verification represents

the completion of movement on the path. Initially the login of the

employee will trigger a decision by system: Whether the login exists

or not? This will produce two outputs either yes or no. Any later

movement on the path will be determined on the outcome of this

initial node.

7. CONCLUSION
The proposed approach reduces the nodular path options by a

combined application of bee colony optimization and modified

genetic algorithm. The technique developed using this approach

identifies and reduces the test data. This approach provides better

results in the initial iteration of the complete process. It provides

positive feedback and hence it can lead to superior solutions in

optimum time. This technique is particularly focused on the

decision nodes functioning which are major determinants of

downstream information flow routes. Tools based on such approach

will not only reduce the number of test cases for the comprehensive

validation of software but also will lead to over all improve the

quality of fault managements (specifically during testing phase;

which accounts for more than 31% software failures) as per our

previous findings of empirical study of root cause analysis of

software failure. Future outlook based on current algorithm would

be to develop another algorithm for automatic fault rectification.

8. REFERENCES

[1] Mathur Aditya P “Foundations of Software Testing” Pearson

Education India, 2008

[2] Pressman, R.S. 1997. Software Engineering: A Practitioner

Approach, 4th Edition, Tata McGraw Hill.

[3] Sandeep Dalal and Rajender Singh Chhillar,

“Software Testing Three P’s Paradigm and Limitations,” in

International Journal of Computer Applications, vol. 54, no.

12, pp. 49-54, September 2012

[4] Sandeep Dalal and Rajender Singh Chhillar “Case Studies of

Most Common and Severe Types of Software System Failure”

International Journal of Advanced Research in Computer

Science and Software Engineering Volume 2, Issue 8, August

2012.

[5] Myers, G.J. The Art of Software Testing, New York: John

Wiley and Sons

[6] S.S.Dahiya, J.k.Chhabra, S.Kumar, “Application of Artificial

Bee Colony Algorithm to Software Testing”, Software

Engineering Conference (ASWEC), 21st Australian IEEE

Conferences,2010.

[7] Sandeep Dalal and Rajender Singh Chhillar “Role of Fault

Reporting in Existing Software Industry,”CiiT International

 Journal of Software Engineering and Technology July 2012.

[8] D. Jeya Mala, V. Mohan, “ABC Tester -Artificial Bee Colony

Based Software Test Suite Optimization Approach”, Int.J. of

Software Engineering, IJSE Vol.2 No.2 July 2009.

[9] Bertolino, A. and Basanieri, F. 2000. “A Practical approach to

UML-based derivation of integration tests”. In Proceeding of

the Fourth International Software Quality Week Europe and

International Internet Quality Week Europe(QWE), Brussels,

Belgium.

[10] Swain, S.K. Mohapatra, D.P. and Mall, R. 2010. “Test Case

Generation based on Activity and Sequence Diagram”, IJSE,

Vol. 3, 2010, 21-52

[11] Boghdady, P.N., Badr, N.L., Hashem, M. and Tolba, M.F.

2011. “A Proposed Test Case Generation Technique based on

Activity Diagrams”, IJENS, 11, 37-57

[12] Prasanna, M., Chandran, K.R. and Suberi, D.B. (2011):

“Automatic Test Case Generation for UML Class Diagram

using Data Flow Approach”, Academia.Education

[13] J.Holland, “Adaption in Natural and Artificial Systems”, Ann

Arbor, MI: University of Michigan Press,1975.

[14] D. Goldberg, “Genetic Algorithms in Search Optimization and

Machine Learning”, New York,Addision Wesely, 1989.

 [15] Sarma, M. and Mall, R. 2007. “Automatic Test Case

Generation from UML Models”, 10th International Conference

on Information Technology, pp. 196-201.

[16] D. Karaboga, B. Basturk, “A Powerful And Efficient

Algorithm for Numerical Function Optimization: Artificial Bee

Colony (ABC) Algorithm”, Journal of Global Optimization,

Volume:39 , Issue:3 ,pp: 459-471, Springer Netherlands,2007

[17] Marc Roper, Iain Maclean, Andrew Brooks, James Miller and

Murray Wood. Genetic Algorithms and the Automatic

Generation of Test data,1995.

[18] W.W.Eric, ,R.H.Joseph, L.Saul and Aditya P.Mathur,”Effect

of Test Case Minimization of Fault Detection

Effectiveness”,Software Practice and Experience,Vol.28,No.4,

pp. 347- 369, 1998.

[19] D.J.Mala , V.Mohan, “Quality Improvement and Optimization

of Test Cases-A Hybrid Genetic Algorithm Based Approach”,

ACM SIGSOFT ,May 2010

[20] D. Karaboga, B. Basturk Akay, “Artificial Bee Colony

Algorithm on Training Artificial Neural Networks, Signal

Processing and Communications Applications”, .SIU 2007,

IEEE 15th. 11–13 June 2007, Page(s):1 - 4, 2007.

[21] D. Goldberg, “Genetic Algorithms in Search Optimization and

Machine Learning”, New York,Addision Wesely, 1989.

http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Mathur+Aditya+P%22&source=gbs_metadata_r&cad=7

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.19, April 2013

17

[22] NP-Hard Problems”, ACM SIGACT, Volume 28 Issue 2, June

1997.

[23] S.S.Dahiya, J.k.Chhabra, S.Kumar, “Application of Artificial

Bee Colony Algorithm to Software Testing”, Software

Engineering Conference (ASWEC), 21st Australian IEEE

Conferences,2010

[24] P.R Srivastava,T.Kim,”Application of Gentic Algorithm in

Software Testing”, Internation journal of software engineering

and its applications,Vol.3,no4,oct 2009,pp-87-96.

[25] Bharti Suri, Isha Mangal & Varun Srivastava” Regression Test

Suite Reduction using an Hybrid Technique Based on BCO

And Genetic Algorithm” Special Issue of International Journal

of Computer Science & Informatics (IJCSI), ISSN (PRINT) :

2231–5292, Vol.- II, Issue-1, 2

[26] SARNDAL, C.-E., SWENSSON, B., AND WRETMAN, J.

1992. Model Assisted Survey Sampling. Springer-Verlag, New

York, NY.

[27] COCHRAN, W. G. 1977. Sampling Techniques. John Wiley &

Sons, Inc., New York, NY

.

