
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.18, April 2013

12

A Total Need based Resource Reservation Technique for

Effective Resource Management

Smriti Agrawal

Department of Information
Technology,

JB Institute of Engineering and
Technology, Hyderabad, India

Madhavi Devi Botlagunta
Department of Information

Technology,

JB Institute of Engineering and
Technology, Hyderabad, India

Chennupalli Srinivasulu
Department of Information

Technology,

JB Institute of Engineering and
Technology, Hyderabad, India

ABSTRACT
In multiprocessor environment when processes content for

system resources, Deadlocks may occur. Deadlock is highly

undesirable as it degrades the system performance largely. This

paper aims to present technique to facilitate the resource

allocation decision. It also strives to reduce the time cost for

making this decision. It presents a Total Need Based Resource

Reservation (TNRR) that suggests reserving some resources so

as to ensure that at least one process will complete after it. The

motivational example illustrate that the proposed technique is

capable of performing resource allocation without checking the

safety sequence as proposed by existing Banker’s algorithm. The

overhead for this decision for proposed TNRR is merely

as compared to Banker’s algorithm of the . The

simulation results indicate that the frequency of deadlocks has

reduced by approximately 75% for higher load (above 80%) as

compared to the Deadlock Recovery technique, while for lower

load it tends to be zero. The turnaround time of the TNRR is

approximately 9% better than the existing Banker’s algorithm.

General Terms
Algorithms, Deadlock, Deadlock avoidance, Deadlock Recovery

Keywords

Banker’s Algorithm, Deadlock, Deadlock avoidance, Deadlock

Recovery, Operating systems, Scheduling, Safety sequence.

1. INTRODUCTION

In a system, processes may be interleaved in time to give the

user a feel that they are running simultaneously. They are being

executed on a single processor, who switches back and forth

between them. A process apart from the processor may require

other resources for its successful completion. These resources

may be sharable or non-sharable. A sharable resource is one that

can be shared by more than one process at any given time.

Resources that cannot be acquired by more than one process at

any time are referred to as non-sharable. Sharable resources do

not lead to any conflict of interest between any two processes.

However, when two or more process demand for a non sharable

resource the decision of to whom the resource is granted or not

granted at all becomes crucial. This decision if not wisely taken

may lead the system into a deadlock state. Formally, Deadlock

can be defined as the permanent blocking of a set of processes

that demand for a set of non sharable resources [1, 2, 3, 8, 13].

Deadlocked processes never terminate their executions and the

resources held by them are not available to any other process. It

is a permanent situation as none of the demand imposed by any

of the process can ever be met. This in turn leads to poor

resource utilization, lower throughput, i.e., performance

degradation. Deadlock is a common problem where conflicting

demand for the resources by two or more processes occur

including multiprocessing systems [18, 19, 22], parallel

computing [5, 6], cloud computing [14, 15, 16, 17, 22] and

distributed systems [4, 8, 9, 21]. The present paper discusses the

resource reservation technique for single processor system;

however, it can be adapted for the multi-processor systems, i.e.,

parallel, cloud and distributed systems.

For systems such as automated manufacturing systems,

distributed systems, control systems etc. deadlock is highly

undesirable, because it may lead to catastrophic losses. Coffman

[1, 8, 9] studied and suggested necessary conditions for a

deadlock to occur. These conditions are: Mutual exclusion, Hold

and wait, No preemption and Circular wait condition. The

authors [1, 8, 9], suggested the deadlock prevention, deadlock

avoidance and deadlock detection techniques for handling the

deadlocks.

The deadlock prevention technique can prevent deadlock if and

only if, one of the four necessary conditions stated above fails to

hold. However, Mutual exclusion, Hold and wait, and No

preemption conditions are system dependant and may not be

prevented [1, 8, 9]. Thus, preventing circular wait from

occurring is the best way for preventing deadlock. This can be

achieved by using a hierarchy to determine a partial ordering of

resources [8, 9]. However, it may not be possible to implement it

in most cases.

Some prior knowledge about the upcoming resource requirement

if available can be used for taking wise decisions so as to avoid

deadlocks. A well known deadlock avoidance algorithm used in

operating systems is the Banker’s algorithm which was proposed

by Dijkstra to handle a single resource type [4, 5]. This

Banker’s algorithm required time and space for

handling requests of ‘n’ processes. It was extended by

Habermann to handle multiple resource types [4, 5, 6, 7, 13, 18]

leading to the time requirement of and space as .

Banker’s algorithm assumes that the maximum resource

requirement at any given time by a process in the system is

known in advance. The resource demand of a process is granted

if the system remains in a “safe” state. In other words, Banker’s

algorithm does a forward calculation keeping in account the

pending demands of the present process set, such that no

deadlock would occur.

The Deadlock Prevention and Deadlock Avoidance strategies,

lead to lower device utilization and throughput. Authors [8, 9]

suggested Deadlock Recovery technique wherein corrective

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.18, April 2013

13

measures are taken only when the deadlock actually occurs.

System constantly performs a self Deadlock Detection Test to

ensure that it is deadlock free. Deadlock Recovery technique is

most efficient till a deadlock does not occur. When a deadlock

actually occurs the system is in blocked state as no process is

capable of executing. The system throughput and resource

utilization tends to zero. Deadlock Recovery technique

strategically does a forceful preemption of the resources or

partial/complete termination of processes executing. The system

in recovery phase does not respond to user requests for some

finite amount of time.

This paper presents a Total Need based Resource Reservation

(TNRR) Technique for effective resource management. It

proposes to reserve some instances of a resource based on the

total demand placed (i.e., need) for it by all the processes in the

system. The remaining resources can be allocated to any

process requesting them as in Deadlock Recovery technique.

When a process requests for resource instances available only

in the reserve pool then the proposed technique will grant it

only if its total need can be satisfied. In other words, the

reserved pool of resource instances is allocated to only those

processes that are likely to complete. The proposed technique

reduces the overhead incurred by the Deadlock Avoidance. But

it does not guarantee that a deadlock will never occur. On the

other hand, as compared to the Deadlock Recovery strategy, it

reduces the frequency of deadlock occurrence in the system. The

simulation results indicate that the system performance is

improved with respect of both the frequency of deadlocks as

well as in terms of turnaround time as the overhead incurred

during both the Deadlock Avoidance and Recovery is reduced.

The rest of the paper is organized as follows: section 2,

illustrates a motivational example while section 3 describes the

system model. Section 4 elaborates the proposed approach

followed by results and analysis in section 5. Finally, paper

concludes with section 6.

2. MOTIVATIONAL EXAMPLE

This section presents a motivational example which will

illustrate the limitations of existing techniques.

Example [9, 13]: Consider a system consisting of five processes

 through and three resource types and with

instances 10, 5 and 7 respectively. This is illustrated in the table

1. Where Execution Time is the worst case execution time that a

process requires to complete its execution;

Allocation , represents the number of instances of a resource

type allocated to a process ;

Maximum , represents the at most demand for resource type

 by process during its entire execution;

Request , represents the demand for resource type by

process when it starts execution;

Available , is the number of resource type available in the

system at any time.

Thus, after allocation of the requested resources, suppose, at

time , the snapshot of the system has been taken as given in

table 2, where Need , represents the remaining need for

resource type by the process ;

Suppose at time a process request for one additional

resource type , and two instances of resource type , i.e., (1,

0, 2), the decision that whether this request can be granted

immediately by the existing techniques is done as follows:

Deadlock Avoidance (Banker’s Algorithm) [4, 5, 9, 19, 20]:

At time , when request for (1, 0, 2) resources, then the

Banker’s algorithm will calculate the safety sequence, i.e., a

sequence with worst case resource allocation that will lead to

completion of all processes. Thus, in case the requested

resources are granted the snapshot of the system can be seen in

the table 3a. Banker’s algorithm will estimate the safety

sequence (refer section 3) as . Thus, it will

allocate the requested resources to process at time , causing

an overhead of . Suppose at time , process request

for (0, 2, 0) resources then the snapshot can be seen in the table

3b. Banker’s algorithm will again estimate the safety sequence

causing overhead. However, this time it is unable to find a single

process whose need is less than available, hence, no process will

be able to complete itself as the need for all the process as can be

seen in the table 3b is greater than the available. Thus, the

Banker’s algorithm declines this request.

Deadlock Recovery: Deadlock Recovery technique does not do

any pretesting, it will simply grant the requests as and when

made by processes and . However, immediately the system

may not be in deadlock state, but over time all the processes will

eventually ask for the resources mentioned in their need column

of table 3b without releasing any resources up to their

completion. Thus, a deadlock will eventually occur. Hence, the

preemption of the resources or process needs to be done causing

an overhead and degraded performance.

The motivational example clearly demonstrate that the above

approaches either perform rigorous testing or no testing leading

to no or frequent deadlocks. This paper strives to balance

between the two and suggest an approach which will produce

higher performance by performing a lower cost test. The

following section presents the assumption and the terminologies

used.

Table 1: Snapshot of the system at the start time

 Execu

tion

Time

Allocation Maximum Request Available

 2 0 0 0 7 5 3 0 1 0 1

0

5 7

 10 0 0 0 3 2 2 2 0 0

 11 0 0 0 9 0 2 3 0 2

 12 0 0 0 2 2 2 2 1 1

 24 0 0 0 4 3 3 0 0 2

Total_Need[j]=

2

5

1

2

1

2

Table 2:Snapshot of the system at time

 Allocation Maximum Need Available

 0 1 0 7 5 3 7 4 3 3 3 2

 2 0 0 3 2 2 1 2 2

 3 0 2 9 0 2 6 0 0

 2 1 1 2 2 2 0 1 1

 0 0 2 4 3 3 4 3 1

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.18, April 2013

14

3. SYSTEM MODEL

This paper deals with resources allocation technique that

allocates the resources to the requesting processes. The system is

assumed to have resource types, i.e., , with

 instances of each type. Further, it consists of

 independent processes where, each process

has the attributes , that is the arrival and worst-case

execution time respectively. The processes are scheduled using

Round Robin scheduling [9, 10, 11]. The following data

structures are used for maintaining the state of the resource

allocation in the system:

 Available: An array of m elements, indicating the number of

instances available for each resource type. Thus,

Available , is the number of resource type available in

the system.

 Maximum: A two dimensional array , defining the

maximum resource demand of each process. If Max[i][j]

equal k, then process may request at most k instances of

resources type in its life time.

 Allocation: A two dimensional array , defines the

number of resources of each type currently allocated to each

process. If Allocation[i][j] equals k, then process is

currently allocated k instances of resources type .

 Need: A two dimensional array , indicates the

remaining resource need of each process. If Need[i][j] equals

k, then process may need k more instances of resources

type to complete its execution. It can estimated as

 – .

 Total_Need: An array of elements, indicating the total

maximum resource requirement for all the processes. If

Total_Need[j] equals k, then sum of the maximum

requirement of any resource by all the processes is k.

Mathematically,

 Request: A two dimensional array , indicating the

number of resource requested by process during its

execution. If Request[i][j] equals k, then process request k

instances of resource type for current execution.

 Reserve: A two dimensional array , where Reserve[j] equals

 indicate that instance of the resource of type are

reserved.

Average Turnaround Time: is the difference in time between

the submission of a process to its completion.

Safe State [8, 9, 18]: The system is said to be in Safe State, if

allocation to each process can be made in some order (Safety

Sequence) and still avoid a deadlock.

Safety Sequence [9]: A sequence of process
is safe sequence for the current allocation state if, for each ,

the resource requests that can still make can be satisfied by

the currently available resources plus resources held by all ,

 . It can be estimated as suggested in the Banker’s

Algorithm as follows:

Safety Sequence Algorithm [9]:

Begin

1. Let Work and Finish be vectors of length m and n

respectively. Initialize Work=Available and

Finish[i]=false for i=1,2, … n

// Finish indicates if a process has completed or not

2. For x= 1 to n

do

a. For i= 1 to n

do

i. If (Finish[i] = true) then goto step 2 a.

ii. For j= 1 to m

do

1. If (Need[i][j] ≤ Work[j]) then

a. Can_exe=1;

Else

b. Can_exe=0;

c. Goto step 2 a.

End for

iii. For j= 1 to m

do

1. Work[j]=Work[j] + Allocation[i][j]

2. Finish[i]=true;

3. Goto step 2

End for

b. If (Finish[x] =true) for all x, then system is in safe

state

End for

End

The following section illustrates the proposed resource

reservation technique for effective utilization of the resources.

Table 3: a)Snapshot of the system, after the probable

allocation to (1, 0, 2)

 Allocation Maximum Need Available

 0 1 0 7 5 3 7 4 3 2 3 0

 3 0 2 3 2 2 0 2 0

 3 0 2 9 0 2 6 0 0

 2 1 1 2 2 2 0 1 1

 0 0 2 4 3 3 4 3 1

Request Granted by Banker’s Algorithm and safety sequence is

b) Snapshot of the system, after the probable allocation to

(0, 2, 0)

 Allocation Maximum Need Available

 0 3 0 7 5 3 7 2 3 2 1 0

 3 0 2 3 2 2 0 2 0

 3 0 2 9 0 2 6 0 0

 2 1 1 2 2 2 0 1 1

 0 0 2 4 3 3 4 3 1

Request Not Granted by Banker’s Algorithm, since no safety

sequence exist

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.18, April 2013

15

4. PROPOSED TOTAL NEED BASED

RESOURCE RESERVATION (TNRR)

TECHNIQUE

The motivational example in section 2, demonstrate that
Banker’s Algorithm will always estimate the safety sequence by
considering the requirement for all the processes in the system.
However, this cross checking incurs as overhead .

This paper proposes the resource reservation techniques in
which the system reserves a pool of resources. These reserved
resources can be allocated to only those processes those total
resources need can be satisfied by them, i.e., a process who will
not require any resources further and will finish its execution.
The remaining resources are freely available and can be
allocated to any requesting process. Thus, when a process
demands for resources which are not freely available then the
system must release the reserve pool resources provided the total
need of the process can be satisfied. Hence, it will complete and
relieve all the resources it is holding.

The proposed resource reservation technique will reserve the
resources based on total need of resources requested by
processes seen so far. Mathematically,
 where is the number of

instances of a resource type reserved. This technique will

only considers the requesting process detail along with the
system data structure to take the decision for granting or not
granting of the resources incurring an overhead of mere .
The proposed Total Need based Resource Reservation (TNRR)
technique can be summarized as follows:

TNRR Algorithm:

Input: Process Priority Queue

begin

1. Initially

a. /*whenever a process arrives

it has no resource allocated to itself hence, the need

is same as the maximum*/

b.

c.

d. Allocation=0

2. Till no request

a. Wait // Do nothing

3. If an ith process requests for “Request[i][j]”, a vector

of size m for each resource then

a. If
 then

1. Allocation[i][j]= Allocation[i][j] +

Request[i][j]

// grant the request

2. Available [j]=Available [j] – Request[i][j]

// since the resources are allocated hence, they

are no

 // more available

3. Need[i][j]=Maximum[i][j]–

Allocation[i][j]

Else

b. If

then

1. Allocation[i][j]= Allocation[i][j] + Need[i][j]

/* grant the request by allocating maximum

number of resource it may need so that this

process will definitely complete */

2. Available [j]=Available [j] –Need[i][j]

// since the resources are allocated hence, they

are no

 // more available

a. Need[i][j]=0

Else

//decline the request

a. Goto step 2

End for

4. If a process completes then

a. For j= 1 to m

do

i. Available [i][j] = Available[i][j] +

Allocation[i][j]

End for

b. Remove from the queue, goto step 2.

End

The effectiveness of proposed Total Need based Resource

Reservation (TNRR) Technique can be seen by the motivational

example in section 2. Here, for the same example resource

allocation is done using the proposed approach. Thus,

considering the system snapshot as illustrated in table 1. The

Total_Need can be estimated as 25, 12, 12 for the resources

 and respectively. The number of instance of

and resources reserved by the system are thus, (3, 2, 1)

respectively leaving the available resources as (7, 3, 6).

At time , the request made by all the processes is also

indicated in the request column of the table 1. Since, the request

made by all the processes is not more than the available

resources in the system, they all are granted and the snapshot of

the system can be seen in the table 2. However, the available

resources will only be (0, 1, 1) while those reserved are still

unused and (3, 2, 1).

At time , when request for (1, 0, 2) resources. The resources

available are (0, 1, 1), which are insufficient to cadre the request

(step 3a. of the proposed TNRR algorithm). However, the

system has a reserve pool of (3, 2, 1). The proposed TNRR

algorithm releases the reserved pool resources, only to a process

that promises to complete and return the reserved resources.

Thus, instead to granting the requested amount of (1, 0, 2)

TNRR will grant the total needed resources by , i.e., (1, 2, 2)

and ensure that it will complete. The snapshot thus, attained can

be seen in the table 4. If the safety sequence test is performed

on table 4, the safety sequence turns out as .
This safety sequence check is not required by the proposed

TNRR algorithm. However, it is used to demonstrate that the

system is in safe state. It may be noted that as per the Banker’s

algorithm the average turnaround time as per the safety sequence

of (estimated in section 2) will be 38.6 while

that of the proposed TNRR algorithm is 30 which is

approximately 22.3% lower.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.18, April 2013

16

At time , process request for (0, 2, 0) resources, by this time

the process may or may not have completed. This lead to

following two cases:

Case1: If process hasn’t completed then as can be seen from

the table 4, no resources are in the available pool. The resources

in the reserved pool can be used only and only when a processes

total need can be satisfied. The process ’s need as indicated in

the table 4 is (7, 4, 3) while reserve pool contains only (2, 1, 0)

resources. Hence, no resource can be allocated to process .

 Case2: If process has completed and relinquishes the

resources. This scenario can be seen in the table 5. Still, the

resources in the available pool are (2, 1, 1) when request is for

(0, 2, 0) resources. The available pool and reserve pool put

together has (5, 3, 2) resources while the process ’s need as

many as (7, 4, 3) resources. Thus, the request by cannot be

granted as number of resources are not sufficient.

The proposed TNRR algorithm does not allocate any resource to

 under any circumstances. Thus, the system remains in the

safe state and the safety sequence also remains unaltered.
The following section present the results obtained by
implementation of the technique discussed in this section.

5. SIMULATIONS RESULTS

In this section simulation on synthesized process sets is
performed to evaluate the performance of the proposed Total
Need based Resource Reservation (TNRR) technique.
Comparison is done with the Banker’s Algorithm (BA) and
Deadlock Recovery (DR). The key parameters used for
comparison are the Frequency of Deadlock and Average
Turnaround time, defined as follows:
The Average Turnaround Time is the difference in time between
the submissions of a process to its completion.
The Frequency of Deadlock is the frequency of the deadlocks
occurring in the system.

Processes where generated by an exponential distribution using
with inter arrival time (1/λ) and service time (1/μ) with
parameters λ and μ, simulation is run for 1000 processes. The
resources are also picked from a pool, randomly generated at the
beginning.

The effect of increase in the process load over the frequency of
the deadlock can be seen in the figure 1. The Banker’s algorithm
is complete Deadlock Avoidance approach, wherein it ensures
that system is always in safe state, hence, no deadlock ever
occurs. The Deadlock Recovery technique simply grants the
resources requested, hence, as the process load increases the
frequency of deadlock also increases. The proposed technique
TNRR performs resource reservation to ensure that at least one
process will always complete. However, the resources released
by a process on its completion may not be sufficient for the
remaining processes and a deadlock may occur. It may be noted
from the figure that the frequency of deadlock has decreased
approximately by 75%. Further, the system is able to survive for
longer time without deadlocks.

Figure 2, depicts the effect of increase in the process load over
the average turnaround time. The average turnaround time
increases for all the techniques as the load increases. This is
because, more loads leads to higher contention for the resources
and more frequent deadlocks. However, the performance of the
proposed TNRR is approximately 9% better for all ranges,
especially for higher ranges, because the overhead involved for
resource allocation is much lower than that of the Banker’s
algorithm and hence, it is able to handle more processes
efficiently. Thus, each process completes earlier, relinquishing
the resources, leading to lower average turnaround time.

6. CONCLUSION
The existing techniques either perform costly tests (both with

respect to time as well as space) or do no test at all. This imply

that a deadlock will never occur or will occur very frequently.

This paper presents intermediate solution by not performing the

test but still reserve some resources so as to ensure that at least

one process always has the requisite number of resources to

complete. The proposed technique is referred to as Total Need

based Resource Reservation (TNRR).

The proposed TNRR technique maintains the resource needed

by all the processes seen so far in a data structure. The allocation

to the requesting process is made based on it. The motivational

example illustrate that without performing the safety sequence

check, the proposed algorithm is capable of taking a decision for

Table 4: Snapshot of the system, after the allocation to

(1, 2, 2)

 Allocation Maximum Need Available

 0 1 0 7 5 3 7 4 3 0 0 0

 3 2 2 3 2 2 0 0 0

 3 0 2 9 0 2 6 0 0 Reserved

 2 1 1 2 2 2 0 1 1

 0 0 2 4 3 3 4 3 1 2 1 0

Table 5: Snapshot of the system, after the completion of

process

 Allocation Maximum Need Available

 0 1 0 7 5 3 7 4 3 2 1 1

 Completed

 3 0 2 9 0 2 6 0 0 Reserved

 2 1 1 2 2 2 0 1 1

 0 0 2 4 3 3 4 3 1 3 2 1

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6 0.8 1 1.2

F
re

q
u

en
cy

 o
f

D
ea

d
lo

ck
s

→

Process load →

Figure 1: Process Load Vs. Frequency of

Deadlocks

BA DR TNRR

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.18, April 2013

17

the allocation of resource instances to a requesting process while

maintaining the system in safe state. The overhead incurred for

this decision is mere for the proposed TNRR as compared

to existing Banker’s algorithm of the . The simulation

results indicate that the the system is able to survive for longer

time without deadlocks. Further, the turnaround time of the

TNRR is approximately 9% better than the existing Banker’s

algorithm.

7. REFERENCES

[1.] Goswami, Vaisla and Ajit Singh, “VGS Algorithm: An

Efficient Deadlock Prevention Mechanism for Distributed

Transactions using Pipeline Method” International Journal

of Computer Applications (0975 – 8887) Volume 46–

No.22, May 2012

[2.] U. Kapasi, W. Dally, S. Rixner, J. Owens, and B. Khailany,

“The Imagine stream processor”, Proc. International

Conference of Computer Design, 2002, 282–288.

[3.] D. Zobel, “The Deadlock problem: a classifying

bibliography”, ACM SIGOPS Operating Systems Review,

vol. 17, October 1983.

[4.] Sheau-Dong Lang, “An Extended Banker’s Algorithm for

Deadlock Avoidance”, IEEE Transactions On Software

Engineering, VOL. 25, NO. 3, MAY/JUNE 1999

[5.] E.W. Dijkstra, “Cooperating Sequential Processes,”

Programming Languages, F. Genuys, ed., pp. 103-110,

New York: Academic Press, 1968.

[6.] A. N. Habermann, “Prevention of System Deadlocks,”

Comm. ACM, vol. 12, no. 7, pp. 373-377, 385, July 1969.

[7.] R.C. Holt, “Some Deadlock Properties of Computer

Systems”, ACM Computing Surveys, vol. 4, no. 3, pp. 179-

196, Sept. 1972.

[8.] William Stallings, “Operating Systems: Internal and

Design Principles”, Fifth Edition, Pearson Publications,

2008.

[9.] A. Silberschatz, P. B. Galvin and G. Gagne, “Operating

System Principle”, Seventh Edition, Wiley India.

[10.] N. Ramasubramanian, Srinivas V.V., Chaitanya V, “

Studies on Performance Aspects of Scheduling Algorithms

on Multicore Platforms,” International Journal of

Advanced Research in Computer Science and Software

Engineering, Vol 2, Issue 2, February 2012.

[11.] H. S. Behera, Ratikanta Pattanayak, Priyabrata Mallick, “

An Improved Fuzzy-Based CPU Scheduling (IFCS)

Algorithm for Real Time Systems,” International Journal of

Soft Computing and Engineering (IJSCE) (2231-2307),

Volume-2, Issue-1, March 2012

[12.] Saroj Hiranwal, Dr. K.C.Roy, “Adaptive Round Robin

Scheduling using Shortest Burst Approach Based on Smart

Time Slice,” International Journal of Data Engineering

(IJDE), Volume 2, Issue 3 2012.

[13.] B Madhavi Devi, Smriti Agrawal, Ch. Srinivasulu, “An

Efficient Resource Allocation Technique for Uni-Processor

System” International Journal of Advances in Engineering

& Technology (IJAET) Volume 6 Issue 1, March 1, 2013.

[14.] W. Lin and D. Qi, “Research on Resource Self-Organizing

Model for Cloud Computing,” in Proc. IEEE International

Conference on Internet Technology and Applications, pp.

1–5, 2010.

[15.] H. Shi and Z. Zhan, “An optimal infrastructure design

method of cloud computing services from the BDIM

perspective,” in Proc. IEEE Computational Intelligence and

Industrial Applications, vol. 1, pp. 393–396, 2009.

[16.] X. Nan, Y. He, and L. Guan, “Optimal resource allocation

for multimedia cloud based on queuing model,” in IEEE

MMSP. pp. 1–6, Oct. 2010.

[17.] Nan, Xiaoming,” Optimal resource allocation for

multimedia cloud in priority service scheme “, in IEEE

International Symposium on Circuits and Systems (ISCAS),

2012.

[18.] Finkel and Madduri, “An Efficient Deadlock Avoidance

Algorithm”, Information Processing Letters 24 (1987) 25-

30 North-Holland 15 January 1987.

[19.] Ewa KLUPSZ, “A Linear algorithm of a deadlock

avoidance for nonpreemptible resources,” Information

Processing Letters 19 (1984) 87-94

[20.] Wojciech Cellary, “A New Safety Test For Deadlock

Avoidance,” Information Processing Letters, Volume 8,

number 8 , March 1979

[21.] Micha Hofri, “On timeout for global deadlock detection in

decentralized database systems”, Information Processing

Letters 51 (1994) 295-302

[22.] Yee Ming Chen1 Shin-Ying Tsai, Optimal Provisioning of

Resource in a Cloud Service,” IJCSI International Journal

of Computer Science Issues, Vol. 7, Issue 6, November

2010 ISSN (Online): 1694-0814

25

30

35

40

45

50

55

60

0 0.2 0.4 0.6 0.8 1

A
v
g

.
T

u
rn

a
ro

u
n

d
 T

im
e

→

Process load →

Figure 2: Process Load Vs. Turnaround Time

BA DR TNRR

