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ABSTRACT 

The aim of this discussion is to introduce a new fuzzy 

regression model, based on the distance between the outputs 

of the model in terms of its measurements along with the 

optimal confidence level ‘h’ using the shape preserving 

operations.  Simple fuzzy regression models with fuzzy input- 

fuzzy outputs are also considered in which the coefficients of 

the models are themselves triangular fuzzy numbers.  In the 

proposed method, the arithmetic operations are based on Tw 

norm, which preserves the shape during multiplication of two 

fuzzy numbers and it also satisfies the scale independent 

property. The numerical examples indicate that the proposed 

method has effective performance, especially when the data 

set includes some outliers. 
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Keywords 
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1. INTRODUCTION 
Regression analysis has a wide spread applications in various 

fields such as business, engineering and economics to explore 

the statistical relationship between input (independent or 

explanatory) and output (dependent or response) variable. In 

the year 1970, Bellman and Zadeh [1] proposed the concept of 

fuzzy set theory.  Since then several authors have constructed 

different fuzzy regression models and proposed the associated 

solution methods. The first approach, which is called the 

possibilistic regression, was introduced by Tanaka et al. [2]. 

They considered the regression problem with fuzzy dependent 

variable and crisp independent variable which was formulated 

as a mathematical programming problem. In their study, a 

regression problem with fuzzy dependent variable and crisp 

independent variable was formulated as a mathematical 

programming problem.  The objective of Tanaka’s method 

was to minimize the total spread of the fuzzy regression 

coefficients subject to the constraint that the regression model 

needed to satisfy a pre-specified membership value in 

estimating the fuzzy responses.  The main drawback of 

Tanaka’s approach is the scale dependent.  Although this 

approach was later improved by Tanaka [3], Tanaka and 

Watada [4] and Tanaka et al. [5] and still suffered the problem 

of being extremely sensitive to outliers as pointed out by 

Redden and Woodall [6].                                           

 

The main purpose of fuzzy regression models is to find the 

best model with the least error. Based on this, the methods are 

classified as follows: 

(1) Possibilistic approach, which tries to minimize the 

fuzziness of the model by minimizing the total spread of 

its fuzzy coefficients, subject to include the data points of 

each sample within a specified feasible data interval. 

(2) Least square approach, which minimizes the total spread 

of errors in the estimated value, based on their 

specification.  This approach is an extension of ordinary 

least squares which obtains the best fitting to the data, 

based on the distance measure under fuzzy consideration. 

Fuzzy linear regression by fuzzy least square approach is 

proposed by Celmins [7] and Diamond [8].  Some recent 

works on this topic are as follows: Hong et al. [9] studied the 

fuzzy least squares regression modeling by using shape 

preserving operations.  Mohammadi and Taheri [10] 

explained the application of least square method in soil 

sciences when the data for the response variable are fuzzy 

numbers.  Coppi et al. [11] studied the dependence of an LR 

fuzzy response variable on a set of crisp explanatory 

variables.  Using a generalization of the Diamond’s metric, 

Arabpour and Tata [12] investigated a fuzzy least squares 

regression method.  Kim et al. [13] investigated some 

asymptotic properties of least square estimators for fuzzy 

regression models.  Lu and Wang [14] proposed an enhanced 

fuzzy regression model, in which the spreads of the estimated 

dependent variables fit the spreads of the observed dependent 

variable. 

Regression analysis based on the method of least-absolute 

deviation has been used as a robust method.  When outlier 

exists in the response variable, the least absolute deviation is 

more robust than the least square deviations estimators.  Some 

recent works on this topic are as follows: Chang and Lee [15] 

studied the fuzzy least absolute deviation regression based on 

the ranking method for fuzzy numbers. Kim et al. [16] 

proposed a two stage method to construct the fuzzy linear 

regression models, using a least absolutes deviations method. 

Torabi and Behboodian [17] investigated the usage of 

ordinary least absolute deviation method to estimate the fuzzy 

coefficients in a linear regression model with fuzzy input – 

fuzzy output observations. Considering a certain fuzzy 

regression model, Chen and Hsueh [18] developed a 

mathematical programming method to determine the crisp 

coefficients as well as an adjusted term for a fuzzy regression 

model, based on L1 norm (absolute norm) criteria. Choi and 

Buckley [19] suggested two methods to obtain the least 

absolute deviation estimators for common fuzzy linear 

regression models using Tw norm based arithmetic operations.  
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The objective of this study is to minimize distance between 

the outputs of the model and the measurements. The proposed 

objective function estimates an optimal confidence level 

namely ‘h’ too. In this paper, section II focuses on some 

important preliminaries on fuzzy arithmetic operations based 

on the weakest T-norm.  In section III, the new approach is 

presented and in section IV, the proposed method is analyzed 

with different data types. Comparison between the proposed 

approach and existing approaches are made to assess the 

performance of the proposed method. 

2. TW BASED ALGEBRAIC 

OPERATIONS OF FUZZY NUMBERS 

A fuzzy number is a convex subset of the real line with a 

normalized membership function.  A triangular fuzzy number 

a (a, , )    is defined by 

a t
1 , if a t a

a t
a(t) 1 ,if a t a

0 , otherwise

 
    


 

     






 

where a  is the center, 0    is the left spread and 0    

is the right spread of  a .  If     , then the triangular fuzzy 

number is called a symmetric triangular fuzzy number and it 

is denoted by (a, ) .  A fuzzy number LRa (a, , )    of 

types L-R is a function from real number into the interval (0, 

1) satisfying 

t a
R , a t a

a t
a(t) L ,a t a

0 , otherwise

  
     

 


 
      

 




  

where L and R are non increasing and continuous functions 

from (0,1) to (0,1) satisfying L(0)=R(0)=1 and L(1)=R(1)=0.  

A binary operation T on the unit interval is said to be a 

triangular norm [22] (t-norm) if T is associative, commutative, 

non-decreasing and T(x,1)=x for each x [0,1]  .  Moreover, 

every t-norm satisfies the inequality, 

w MT (a,b) T(x,y) T (a,b) min(a,b)  
,
 where

 

w

a ,if b 1

T (a,b) b ,if a 1

0 ,otherwise




 



  

The critical importance of  
wmin(a,b), a b, max(0,a b 1) and T (a,b)    is emphasized 

from a mathematical point of view in Ling [22], among 

others.  The usual arithmetic operations on real numbers can 

be extended to the arithmetic operations on fuzzy numbers by 

means of extension principle by Zadeh [23], which is based 

on a triangular norm T.  Let A   and B  be fuzzy numbers of 

the real line .  The fuzzy number arithmetic operations are 

summarized as follows: 

Fuzzy number addition  : 

 
x,y,x y z

A B (z) sup T A(x),B(y) .
 

  
 

 
Fuzzy number multiplication  :

  
x,y,x.y z

A B (z) sup T A(x),B(y) .


  
 

 
The addition and subtraction rule for L-R fuzzy number is 

well known in case of TM based addition, in which the 

resulting sum is again an L-R fuzzy number, i.e., the shape is 

preserved. Let A A LR B B LRA (a, , ) ,B (b, , )       . Then 

using TM in the above definition,  

M A B A B LRA B (a b, , )        

It is also known that the wT   based addition and 

multiplication preserves the shape of L-R fuzzy numbers [24, 

25, 26, 27]. It is known that TM based multiplication does not 

preserve the shape of L-R fuzzy numbers.  In this section, we 

consider wT  based multiplication of L-R fuzzy numbers.  

Let wT T  be the weakest t-norm and let 

 A A LRA (a, , ) ,    B B LRB (b, , )    be two L-R 

fuzzy numbers, from D.H. Hong [28].  

W A B A B LRA B (a b,max( , ),max( , ))        

 

 

A B A B LR

A B A B RL

W A B A B LL

A A LR

A A RL

LR

(ab,max( b, a),max( b, a)) ,

for a,b 0

(ab,max( b , a ),max( b , a )) ,

for a,b 0

A B (ab,max( b, a ),max( b, a )) ,

for a 0,b 0

0, b, b , for a 0,b 0

0, b, b , for a 0, b 0

(0,0,0) , for a 0,b 0

    



   



    

 

   

   

 

















 

In particular, if ( , ), ( , )   A BA a B b are symmetric 

fuzzy numbers, then the multiplication of A and B is written 

as, w A B LLA B (ab,max( b , a ))  
 

3. FUZZY LINEAR REGRESSION 

USING THE PROPOSED APPROACH 
In this section, the proposed approach based on the 

absolute distance between spreads and centers of the observed 

and estimated values of the outputs to the fuzzy linear 

regression models using Tw norm is discussed here, with 

crisp/fuzzy input- fuzzy output data, in which the coefficients 

of the models are also considered as fuzzy numbers.  

Consider the set of observed data  (X ,Y ),i 1,...,ni i  where 

X (x , )i i i  and  Y (y ,e )i i i  are symmetric fuzzy numbers.  

Our aim is to fit a fuzzy regression model with fuzzy 

coefficients to the   aforementioned data set as follows: 

i 0 w 1 w i1 w w p w ip w i
ˆ
Y A (A X ) ..... (A X ) A X       

                                   
, 1,....i n

 (1)
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where  A a , , j 1,...pj j j    are symmetric fuzzy numbers 

and the arithmetic operations are based on the weakest Tw 

norm. 

It is known that  the overlap of the given outputs Yi and the 

estimated fuzzy number 
ˆ
Yi  is not empty (conjuncture 

problem).  Based on this concept, an objective function is 

proposed, which minimizes the inequality of the given outputs 

Yi and the estimated fuzzy number Yi  in order to maximize 

the possibility of equality of those fuzzy numbers.  Therefore 

the objective function minimizes the sum of the absolute 

difference between upper limits and lower limits of the 

observed and estimated values of the outputs with arithmetic 

operations using Tw norm, 

    

   

n
T 1 1a x L (h) max a , x y L (h)ei j ij ij j i i

m 1 j p1
min

n
i 1 T 1 1a x L (h) max a , x y L (h)ei j ij ij j i i

1 j p1

  
          
    

 
  

          
     






   (2) 

In this approach, h is included in the objective function to 

estimate its value optimally with high accuracy. To obtain the 

constraints, the possibility of the equality of observed and 

estimated outputs is with atleast ‘h’ degree of belongingness.  

Here we use the reference function 1L (x) 1 x   , for 

triangular fuzzy number [29], 

 

   

T
i i

i i T
i i

T
i i

T
i i

T
i i

T
i i

T
i i

T
i i

T T T
i i i i i i

a x yˆ
Poss(Y Y ) L h

x e

a x y
1 h

x e

a x y
1 h

x e

a x y
(1 h) (1 h)

x e

(1 h) x e a x y (1 h) x e

 
   
   


  

 


  

 


    

 

         

 

(3) 

Then the optimization problem is summarized as follows: 

   

   

n
T 1 1a x L (h) max a , x y L (h)ei j ij ij j i i

m 1 j p1
min

n
i 1 T 1 1a x L (h) max a , x y L (h)ei j ij ij j i i

1 j p1

  
          
    

 
  

          
     







 

subject to 

 

 

 

 

n n
1 1a x L (h) max a , x y L (h)ej ij j ij ij j i i

1 j pj 0 1

n n
1 1a x L (h) max a , x y L (h)ej ij j ij ij j i i

1 j pj 0 1

0 h 1,

max a , x 0, i 1,2,...mj ij ij j
1 j p

     

 

     

 

 

    

 

 

 

(4) 

Solving this optimization problem using LINGO, the fuzzy 

coefficients of the model are estimated. 

 

When outliers exist in the dataset, Chen’s [30] approach of 

modifying the outlier data is applied for crisp/ fuzzy input and 

fuzzy output data.  The modified proposed optimization 

problem to estimate the fuzzy coefficients using Chen’s 

approach of modifying the outlier data is explained below: 

For detecting outliers, the width between the spread of 

estimated value and dependent value must be below a certain 

specified value ‘k’.  If this difference is larger than ‘k’, the 

problem has no feasible solution and the equation must be 

added to the constraints  max a , x e k,j ij ij j i
1 j p

   

 

the 

optimization problem becomes, 

   

   

n
T 1 1a x L (h) max a , x y L (h)ei j ij ij j i i

m 1 j p1
min

n
i 1 T 1 1a x L (h) max a , x y L (h)ei j ij ij j i i

1 j p1

  
          
    

 
  

          
     







 

subject to 

 

 

 

n n
1 1a x L (h) max a , x y L (h)(1 )ej ij j ij ij j i i

1 j pj 0 1

n n
1 1a x L (h) max a , x y L (h)(1 )ej ij j ij ij j i i

1 j pj 0 1

0 h 1,

max a , x e k, i 1,2,...mj ij ij j i
1 j p

       

 

       

 

 

     

 

 

 

(5) 

The difference between estimated spread and the observed 

spread is below a certain specified value ‘k ‘, Where 

   
j Mi M

i ji 1 j 1i j
k max e max e



 
   can be used.  

i.e.        max a , x e kj ij ij j i
1 j p

   

 

  

If this difference is greater than ‘k’ the problem has no 

feasible solution.  Generally a normal ie  value should be 

either i 1 i i 1 i 1 i i 1e e e or e e e       , Therefore to modify 

the outlier data, the corresponding constraints are modified as, 

 

 

n n
1 1a x L (h) max a , x y L (h)(1 )ej ij j ij ij j i i

1 j pj 0 1

n n
1 1a x L (h) max a , x y L (h)(1 )ej ij j ij ij j i i

1 j pj 0 1

       

 

       

 

 

 

 

 

The value of e .... e e e e ...ei r i 2 i 1 i 1 i 2 i r1
2rei

              

where r  value is reasonably large.  

4. EXAMPLE 

In this section, the proposed method is compared with some 

well-known methods using data sets.  In Example 1, a 

comparative study is provided based on a data set with fuzzy 

input-fuzzy output observations.  In Example 2,  a crisp input-

fuzzy output data set is illustrated for the performance of the 

proposed approach.  A real data set with fuzzy input- fuzzy 
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output data is used in example 3 to assess the performance of 

the proposed method in the case of large sample size.  For the 

above examples, the sensitivity of the proposed approach with 

respect to outlier data points is studied with Chen’s [30] 

outlier treatment. 

 

To investigate the performance of the fuzzy regression 

models, we use similarity measure based on the Graded mean 

integration representation of distance proposed by Hsieh and 

Chen [31] where the degree of similarity S(A,B)  between 

A and B are calculated as 
1

S(A,B)
1 d(A,B)




, 

d(A,B) P(A) P(B)  ,  P(A) and P(B) are the graded mean 

integration representation distance. 

Example 1: Consider the data set in Table .1 in which the 

observations of the input and output variables are symmetric 

triangular fuzzy numbers. Our proposed method is compared 

with other methods such as Hong et al. [9], Nasrabedi and 

Nasrabedi [32] and Diamond [8], they applied least-square 

method. The results of fitting models to the data set in 

TABLE 1 are as follows: 

The fuzzy regression model obtained by the proposed 

approach,
w wY (3.78,0.5) (0.49,0.074) X    with 

optimum value h=0 and the graph is shown in Figure 1. 

 

D.H. Hong et al. [9] proposed the Tanaka’s model using 

Tw - norm and obtained the fuzzy regression model for the 

given data as: w wY (4.153,2.643) (0.459,0.281) X    

 

 

Figure 1. Data set in Table 1 using proposed approach. 

 

Using Nasrabedi and Nasrabedi (2006) method of approach 

for the given fuzzy input and fuzzy output data, The 

regression model is given below: 

Y (3.39,0.75) (0.5454,3.045)X   with h=0.6 

Diamond [8] also proposed the least square approach for 

fuzzy observations in TABLE 1, for which the following 

fuzzy regression model is constructed: 

Y 3.57 (0.547,0.1)X   

 

The similarity measures between the observed and estimated 

fuzzy responses for the aforementioned models are given in 

TABLE 1, the proposed fuzzy model obtained by the absolute 

deviation between the observed and estimated responses using  

Tw norm based operations  has larger similarity measure than 

Hong et al., Nasrabedi and Diamond approach.  

Consider the data set in TABLE 2 with fuzzy input and fuzzy 

output spread with outlier. The fuzzy regression model using 

the proposed approach for the data with outlier is, 

w wY (3.397,0.709) (0.568,0.2212) X    with h= 

0.5588 (given in Figure 2). 

 
Figure 2. Data set in Table 2 using proposed approach 

with outlier.  

 

The fuzzy regression model obtained by the proposed 

approach modifying the outlier data using Chen’s [30] 

approach is given below: 

w wY (4.4406,2.5) (0.432,0.2) X    with h=0.3475 

(given in Figure 3)  

 

 

 
Figure 3. Data set in Table 2 using proposed approach 

with modified outlier data. 

 

Figure 3 displays the observation intervals (bold lines) and the 

proposed method fuzzy band (dotted line).  Looking at the 

results, the proposed method provide a more balanced result, 

which has relatively low values for sum of half width of  

regression coefficients 2.7  js and the sum of half width 

of predicted intervals 17.74  T

js x .   

This conclusion is confirmed by the average similarity 

measure which is comparatively better for the proposed 

method.  Note that the average similarity measure 60% 

indicates a fairly good fuzzy linear relationship which can  
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Table 1: Data set and Similarity measures for different models without any outlier. 

 

Explanatory 

variable 

Response 

variable 

Proposed 

method 

D.H. 

Hong 

method 

Nasrabedi 

method 

Diamond 

method 

(2.0, 0.5) (4.0, 0.5) 0.5682 0.4829 0.5703 0.5831 

(3.5, 0.5) (5.5, 0.5) 0.9950 0.7840 0.9330 0.8234 

(5.5, 1.0) (7.5, 1.0) 0.4938 0.5487 0.6395 0.5490 

(7.0, 0.5) (6.5, 0.5) 0.5848 0.5359 0.5049 0.5131 

(8.5, 0.5) (8.5, 0.5) 0.6431 0.6918 0.8325 0.8127 

(10.5, 1.0) (8.0, 1.0) 0.5195 0.5070 0.3756 0.4143 

(11.0, 0.5) (10.5, 0.5) 0.4292 0.4352 0.5441 0.5368 

(12.5, 0.5) (9.5, 0.5) 0.7117 0.7192 0.5050 0.5109 

 Average 0.6182 0.5893 0.6131 0.5929 

 

also be observed graphically.  Also the effect of outlier in 

fuzzy input and fuzzy output data is discussed in TW- norm 

with proposed method and it is shown in Figure 2 and Figure 

3. 

 

Example 2: Consider the data set in Table 3 used by Chen 

[30] with crisp input and fuzzy output.  The fuzzy regression 

model obtained by the proposed approach for the data set 

given in Table 3 is given below: 

 

Table 2: Data set (fuzzy input and fuzzy output) with and 

Similarity measure for proposed model and Chen’s model 

with modified outlier. 

 

Explanatory 

variable ( , )
i i

x   

Response 

variable 

( , )i iy e  

Proposed 

method 

Chen’s 

method 

(2.0,0.5) (4.0,0.5) 0.6576 0.4159 

(3.5,0.5) (5.5,0.5) 0.0.8797 0.6441 

(5.5,1.0) (7.5,1.0) 0.4965 0.6741 

(7.0,0.5) (6.5,0.5) 0.5466 0.4844 

(8.5,0.5) (8.5,2.5)* 0.7532 0.7768 

(10.5,1.0) (8.0,1.0) 0.4356 0.4594 

(11.0,0.5) (10.5,0.5) 0.5199 0.4530 

(12.5,0.5) (9.5,0.5) 0.5209 0.6942 

 Average 0.6013 0.5752 

 

* Outlier 

 

 

wY (4.125,4.8) (1.98,0.3649) X    with confidence 

level h=0.3479 (shown in Figure 4).  Chen’s method of 

modifying outlier in Tanaka approach for the given data is 

given below:  

Y (4.25,5.63) (1.933,0.489)X   

with confidence level h= 0 level. 

 

Figure 4 displays the observation intervals (dotted lines) and 

the proposed method fuzzy band     (bold line).  The proposed 

method provide a more balanced result, which has relatively 

low values for sum of half width of regression coefficients 

5.165  js and the sum of half width of predicted 

intervals 31.667  T

js x .  Note that the average similarity 

measure 50% indicates a fairly good fuzzy linear relationship 

which can also be observed graphically for the proposed 

method in crisp input and fuzzy output data set.  Also the 

effect of outlier in crisp input and fuzzy output data is 

discussed in Tw - norm with proposed method and the 

parameter values for both the proposed method and Chen’s 

method almost have the same values. 

 

Example 3.  Consider the real data set given in TABLE 4. 

The fuzzy regression model using the proposed approach is 

given as follows: w wY (1.33,0.6922) (0.123,0) X    

Hong et al. [33] used the above data set and obtained the 

following regression model based on their approach as, 

Y (1.38,0.4320) (0.12,0.032) X    
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Table 3: Data set (crisp input and fuzzy output) and 

Similarity measure for Proposed and Chen’s models with 

modifying outlier. 

Explanatory 

variable
ix  

Response 

variable 

( , )i iy e  

Proposed 

method 

Chen’s 

method 

1 (8.0,1.8) 0.3454 0.3549 

2 (6.4,2.2) 0.3724 0.3682 

3 (9.5,2.6) 0.6329 0.6456 

4 (13.5,2.6) 0.4073 0.3971 

5 (13.0,2.4) 0.4938 0.5222 

6 (15.2,2.3) 0.5540 0.5214 

7 (17.0,2.2) 0.5038 0.5615 

8 (19.3,4.8)* 0.6006 0.7072 

9 (20.1,1.9) 0.3515 0.3926 

10 (24.3,2.0) 0.7273 0.5814 

 Average 0.4995 0.5052 

* Outlier 

 

Table 4: Data set and Similarity measures for Proposed 

and Hong et al.’s method 

Explanatory 

variable ( , )i ix  

Response 

variable 

( , )i iy e  

Proposed 

method 

D.H.Hong  

method 

(21.0,2.1) (4.0,0.8) 0.9199 0.9091 

(15.0,2.25) (3.0,0.3) 0.8511 0.8475 

(15.0,1.5) (3.5,0.35) 0.7547 0.7576 

(9.0,1.35) (2.0,0.40) 0.6959 0.6849 

(12.0,1.2) (3.0,0.45) 0.8375 0.8475 

(18.0,3.6) (3.5,0.70) 0.9579 0.9616 

(6.0,0.6) (2.5,0.38) 0.6983 0.7143 

(12.0,2.4) (2.5,0.5) 0.7657 0.7576 

 Average 0.8101 0.8099 

 

The similarity measure between the observed and the 

estimated values for aforementioned model is given in 

TABLE 4 and 81% of average similarity measure shows the 

good relationship.  From the above example, it is clear that the 

parameters estimated by the proposed method and by Hong et 

al. [33] method are almost same, which shows that the 

proposed method using TW norm is also effective when 

compared to the existing methods. 

 
Figure 4. Data set in Table 3 using proposed approach 

with modified outlier data. 

 

5. Conclusion 

Based on the distance between the centers and spreads, a new 

method is proposed for fuzzy simple regression using Tw -

norms.  The models which used here have the input and the 

output data as well as the coefficients are assumed to be 

fuzzy.  The arithmetic operations based on the weakest t-norm 

are employed to derive the exact results for estimation of 

parameters.  The efficiency of the proposed approach is 

studied by similarity measure based on the graded mean 

integration representation distance of fuzzy numbers.  In 

addition, the effect of the outlier is discussed for the proposed 

approach. By comparing the proposed approach with some 

well known methods, applied to three data sets, it is shown 

that the proposed approach is effective. Studying the effect of 

outlier in center value of response variable using proposed 

method with TW norm operation is our future work. 
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