
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.16, April 2013

38

Implementation of Modified Booth Multiplier using
Pipeline Technique on FPGA

Navdeep Kaur

Post Graduate Student
Department of Electronics and communication
Lovely Professional University Punjab, India

Rajeev Kumar Patial
 Assistant Professor VLSI Design

Department Of Electronics and communication
Lovely Professional University Punjab, India

ABSTRACT

This paper presents 16×16 bit Radix-4 Modified Booth’s

Multiplier (MBM) optimized for high speed multiplication by

using pipeline Technique. This paper aims at reduction of

hardware utilization. This is accomplished by the use of 3:2

compressor adders. An efficient VHDL code has been written,

successfully simulated on Modelsim 10.2 simulator and

Xilinx 12.4 navigator is used for synthesizing the code.

Simulation result shows the clock period of 2.689ns. The

selected device to synthesize the code is xc3s500e-4pq208 of

Sartan-3E family. The area utilization is shown as 222

numbers of slices and 383 numbers of LUTs.

General Terms: Multiplier, Pipelining Technique

Keywords: Compressor, Modified Booth Recoding,

Pipelining, Radix-4, Xilinx navigator

1. INTRODUCTION
The multiplier is one of the key hardware blocks in most of

the digital and high performance systems such as digital

signal processors and microprocessors [1]. An increasing

number of high-speed DSP applications have need of a high

precision fixed- or floating-point multiplier suitable for VLSI

implementation [2]. The multipliers are the better option for

high-speed data processing. Various algorithms and

architectures have been proposed to accelerate multiplication

are Booth Algorithm [3], Modified Booth Algorithm [4],

Braun and Baugh-Wooley. This paper enhances the

performance of pipelined MBM. The computation of the

multipliers manipulates two input data to generate many

partial products for subsequent addition operations [5].

The multiplier can be divided into three stages: Partial

products generation stage, partial products reduction stage,

and the final addition stage. First stage comprises Radix-4

Booth encoder logic to generate partial products. To

determine the speed of the overall multiplier, the second stage

is the most important, as it is the most complicated stage.

Here, Wallace tree which is composed of 3:2 compressor is

used for partial products reduction which rapidly reduce the

number of partial product rows to the final two (sums and

carries). (3:2) compressor is the leaf cell of hierarchy. The last

stage comprises of a simple adder, which adds the sum and

carry output of the previous stage to provide the final result.

The pipelining is a popular technique to increase throughput

of a high speed system, which divides total system into

several small cascade stages and adds some registers to

synchronize outputs of each stage [6]. As the number of

stages increases, the power consumption and area gets

increased. Thus, pipeline technique can be introduced in

Wallace Tree in order to improve the performance. The block

diagram of MBM using pipelining is shown in Figure 1.

 X [15:0] Y [15:0] X [15:0] Y [15:0]

 Result [30:0] Result [30:0]

Fig 1: Block diagram of Proposed Pipelined Modified

Booth Multiplier

The remainder of this paper is organized as follows: Section 2

deals with Partial Product Generation, Section 3 deals with

3:2 compressors used in Wallace tree structure, final adder

that is for addition of last sum and carry bits is discussed in

section 4, Section 5 gives the result analysis of the simulated

modules and demonstrates the efficiency of the designed

multiplier in terms of delay and area. Finally a concluding

remark is given in Section 6.

2. PARTIAL PRODUCT GENERATION
Radix-2 Booth algorithm does not work well when the

multiplier has isolated ones. In such case the recorded

multiplier has more number of one’s when compared to the

actual multiplier. So we group 3 bits for finding the recorded

multiplier which will help to overcome the above said

disadvantage. To multiply X by Y, the Radix 4 Booth

algorithm starts from grouping Y by three bits and encoding

into one of {-2, -1, 0, 1, 2} [7]. Block Diagram of Modified
Booth Encoder as shown in Figure 2. The Table 1 shows rules

to generate the encoded signals by Modified Booth recoding

scheme [8].

In radix-4 Booth Algorithm, multiplier operand Y is

partitioned into 8 groups having each group of 3 bits. In first

group, first bit is taken zero and other bits are least Significant

two bit of multiplier operand. In second group, first bit is most

significant bit of first group and other bits are next two bit of

multiplier operand. In third group, first bit is most significant

bit of second group and other bits are next two bits of

multiplier operand. This process is carried on. For each group,

Adder

Radix-4 Booth

Encoder
Partial product generator

Wallace

tree
3:2 compressors

Output register

Output register

Output register

Adder

Output register

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.16, April 2013

39

Partial product is generated using multiplicand operand X. For

n-bit multiplier, there are n/2 or n/2+1 groups are formed [9],

which generate the partial products as PP [n+m-1], where n, m

are the number of bits in multiplier and multiplicand

respectively. It is based on encoding the two’s complement

multiplier where Y can be represented as:

Y = ∑ (-2Y2i+1+Y2i+ Y2i-1)2
2i; 0 ≤ i ≤ n-2 (2.1)

 X [15:0]

 Y [3:0]

Fig 2: Block Diagram of Modified Booth Encoder

Table1: Radix-4 Modified Booth recoding table

Y2i+1 Y2i Y2i-1 Recorde

d Digits

Operand

Multiplication

0 0 0 0 0×Multiplicand

0 0 1 +1 +1×Multiplicand

0 1 0 +1 +1×Multiplicand

0 1 1 +2 +2×Multiplicand

1 0 0 -2 -2×Multiplicand

1 0 1 -1 +1×Multiplicand

1 1 0 -1 -1×Multiplicand

1 1 1 0 0×Multiplicand

3. WALLACE TREE STRUCTURE
The Wallace tree shows a good performance by using the

carry save adders instead of the ripple carry adders. It is,

however, still the most critical part of the multiplier because it

is responsible for the largest amount of computation [10]. In

the proposed architecture, 3:2 compressors are used for

realizing the reduction in the number of partial product

addition stages.

 X1 X2 X3

 Sum Carry

Figure 3: A 3:2 Compressor

A 3-2 compressor takes 3 inputs X1, X2, X3 and generates 2

outputs, the sum bit ‘s’, and the carry bit ‘c’ as shown in

Figure 3 [11]. In this A+B+C+D= (A+B) + (C+D). A, B, C

and D are added in parallel and then they are added together.

They require only two full adder delays where as A+B+C+D

requires three full adder delays. This is shown in Figure 4

[12].

 A B A B A B C D

 (a) (b)

Fig 4: (a) Two adder delay level and (b) Three adder delay

level

The 3-2 compressor can be employed as a full adder cell when

the third input is considered as the Carry input from the

previous compressor block or X3 = Cin.

 p1 p2 p3 p4 p5 p6

 s1 c1 s2 c2 p7 p8

 s3 c3 s4 c4

 s5 c5

 s6 c6

Fig 5: Wallace tree for eight partial products

3:2 compressors are the key microcell used in the arithmetic

multiplication [13]. The equations governing the existing 3-2

compressor outputs are shown below

Sum = x1 x2 x3 (3.1)

Carry = (x1 x2) x3 + (x1 x2) x1 (3.2)

The 3:2 compressor structures for eight partial products are

shown in Figure 5. The first row compresses partial products

as p1, p2, p3 p4, p5 and p6 by the use of two compressor

blocks to produce sum (s1, s2) and carry (c1,c2). The second

row adds the s1, c1 and s2 also the remaining partial products

p7, p8 get adds with c2. At last number of partial product

Radix-4 Booth

Encoder+ Sign

Extension

3:2 compressor

+ + +

+

+

+

3:2

compressor

3:2

compressor

3:2

 Compressor

3:2

 Compressor

3:2

 Compressor

3:2

Compressor

PP [30:0]

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.16, April 2013

40

reduce to final sum and carry. This approach is much faster

approach used for Wallace multiplier. The delay of the basic

pipelined stages of multiplier is reduced by applying 3-stage

pipelines in the Wallace tree. The delay of the critical path is

again reduced. The 3:2 compressors make use of a carry save

adder. In carry save adder, the carry digit is taken from the

right and passed to the left, just as in conventional addition;

but the digit carry is passed to the left which is the result of

the previous calculation and not the current one [14]. The

number of levels in the Wallace tree using 3:2 compressors

can be approximately given as

 Log (k/2)

 Log (3/2)

Where, k is the number of partial products

4. FINAL STAGE ADDITION
The final stage in the Wallace tree multiplier for addition of

partial products can be further reduced by the use of tree

adders. This stage is also crucial for any multiplier because in

this stage addition of large size operands is performed so in

this stage fast carry propagate adders like Carry-look Ahead

Adder or Carry Skip Adder or Carry Select Adder can be used

as per requirement [15]. Instead of using carry select adder

which reduce the delay but increase the complexity, in present

architecture, the 32 bits of the sum and carry operands with

sign extension get added with simple addition operation for

binary arithmetic. For implementation of simple addition

operation need to declare library during coding.

5. IMPLEMENTATION RESULT
This section describes the simulation results of Modified

Booth Multiplier circuit in VHDL using Wallace tree

approach and pipelining technique are shown in figure 6 and

7. The 12.4 navigator is used for synthesizing the code. The

code is synthesized using Spartan3E family with device

selected as xc3s500e-4pq208. As compressors form the

essential requirement of high speed multipliers. Table 2 shows

the utilization of hardware by the given MBM with pipelining.

Fig 6: RTL view of pipelined Radix-4 MBM

Fig 7: Internal Schematic view of MBM

The results are for the signed and unsigned multiplication of

16-bit multiplicand and 16-bit multiplier depending upon

partial product generation by Radix-4 Booth encoder Logic,

partial product reduction by 3:2 compressors and final adder

addition. The choice of optimum multiplier involves three key

factors: Area, propagation delay, reconfiguration time. The

MBM reduce the partial products to half to provide the speed

advantage. The primary source of propagation delay in circuit

is the adder, so the 3:2 compressor used for Wallace tree to

add the partial products, the layers of 3:2 compressors is used

to decrease the propagation delay is formulated as Wallace

Tree [10].The area utilization depends upon the number of

LUT’s (Look Up Table) and SLICES used for synthesizing

the code. The minimum clock period of 2.689ns is produced

and the clock frequency is 371.8MHz. The pipelined

organization requires sophisticated complication techniques

for modem processors [16].

Table 2: Hardware Utilization by MBM

Logic Utilization Used Utilization

Number of Slices 222 4%

Number of Slice Flip Flops 306 3%

Number of 4 input LUTs 383 4%

Number of bonded IOBs 97 41%

Number of GCLKs 1 4%

Number of MULT18X18SIOs 1 5%

Clock period 2.689ns -

Clock frequency 371.8MHz -

The given MBM is able to test the pipelining approach in

order to reduce the critical path. In order to test the

performance of MBM a comparative analysis is done as

described in Table 3.

Number of levels =
 (3)

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.16, April 2013

41

Table 3: Comparison

Logic

Utilization

MBM

using

CLA

[12]

MBM

using

CSA

[12]

Proposed

MBM

%

reductio

n

Number of

slices

394 377 222 - 43.6% -41%

Number of

LUTs

794 718 383 -51.7% -46.6%

Delay

calculation

51.92

ns

22.38

ns

26.89ns - 48% +20%

It is clear from above comparative analysis that hardware

utilization in terms of number of slices of proposed MBM is

43.6% less as compare to MBM using CLA and 41% less as

compare to MBM using CSA, similarly in terms of LUTs

51.7% and 46.6% less. The calculated delay is as 26.89ns

which is 48% less as compare to MBM with CLA and 20%

more when compared with CSA by introducing pipelining in

the Booth Multiplier and Wallace Tree.

6. CONCLUSION
The pipelining is the most widely used technique to improve

the performance of digital circuits. In this paper, a 16 × 16 bit

Radix-4 Modified Booth Multiplier with pipelining technique

is designed. Both the delay time and area of MBM is found to

be 26.89ns and 222 slices, 383 LUTs respectively. The delay

of proposed MBM is 48% less as in case of MBM with CLA

and 20% more than MBM with CSA. There is a tradeoff

existing between proposed and other two in term of delay.

The present code is synthesizable on Spartan-3E efficiently.

The simulation results prove that code is efficient in terms of

delay and area. This approach will be well suited for

multiplication of numbers with more than 16-bit size for high

speed applications. Modified Booth multiplier using Radix-4

Modified Booth algorithm and Wallace tree using

compressors is very a good technique for high speed

applications and its implementation with different logics in

VLSI. Further work can be extended for optimization of the

given multiplier in terms of both factors as area and delay.

7. ACKNOWLEDGMENTS
The authors would like to thank the generous support of the

faculty of Electronics Department of Lovely Professional

University. The authors are grateful to the university to

provide great opportunity to work in VLSI design field and

permission to publish this paper.

8. REFERENCES
[1] Wen-Chang Yeh and Chein-Wei Jen, “High-speed Booth

encoded parallel multiplier design”, IEEE Transaction on

Computers, vol. 49, pp. 692-701, July 2000.

[2] A.R. Cooper , “ Parallel architecture modified Booth

multiplier” IEEE Proceedings, Vol.135, Pt. G, No. 3,

June 1988.

[3] A. D. Booth, “A signed binary multiplication technique”,

Quarterly J. Mechanical and Applied Math, vol. 4, pp.

236-240, 1951.

[4] O. L. Mac-Sorley, “High Speed Arithmetic in Binary

Computers”, Proceedings of IRE, Vol.49, No. 1,

January, 1961.

[5] D. Jackuline Moni, P. Eben Sophia, “Design of low

power and high speed Configurable Booth Multiplier”

IEEE Transaction, 2011, 978-1-4244-8679.

[6] Hwang-Cherng Chow and I-Chyn Wey, “A 3.3V 1GHz

high speed pipelined Booth multiplier”, Proceedings of

IEEE ISCAS, vol. 1, pp. 457-460.,May 2002 .

[7] Soojin Kim and Kyeongsoon Cho., “Design of High

speed Modified Booth Multipliers Operating at GHz

Ranges”, World Academy of Science, Engineering and

Technology, 2010.

[8] Chetan Gupta, “Design and implementation of a 32 bit

MAC unit with pipelined variable stage Carry Select

Adder” Electronics Dept., Thapar University, June 2012.

[9] ‘Modified Booth Multiplier’ Digital Electronics Project 2

in 2008.

[10] J. Fadavi-Ardekani, “M × N booth encoded multiplier

generator using optimized Wallace trees”, IEEE

Transaction on Very Large Scale Integration (VLSI)

System, vol. 1, pp. 120–125, 1993.

[11] S. F. Hsiao, M. R. Jiang, and J. S. Yeh, “Design of high

speed low-power 3-2 counter and 4-2 compressor for fast

multipliers,” Electron. Lett, vol. 34, no. 4, pp. 341–343,

1998

[12] Kulvir Singh Research Scholar, Dilip Kumar, “Modified

Booth Multiplier with Carry Select Adder using 3-stage

Pipelining Technique” International Journal of Computer

Applications (0975 – 8887) Volume 44– No14, April

2012.

[13] P. J.; De Michelli, G., “Circuit and Architecture Trade

for High-Speed Multiplication”, IEEE Journal Solid

State Circuits, vol. 26, pp. 1184-1198, Sept. 1991.

[14] C. S.Wallace, “A suggestion for a fast multiplier,” IEEE

Trans. Electron Computers, vol. EC-13, pp. 14–17, 1964.

[15] V. Oklobdzija, “High-Speed VLSI Arithmetic Units:

Adders and Multipliers in Design of High-Performance

Microprocessor Circuits”, Book Chapter, Book edited by

A Chandrakasan, IEEE Press, 2000.

[16] S. B. Tatapudi and J. G. Delgado-Frias, “Designing

pipelined systems with a clock period Approaching

pipeline register delay,” Proceedings of IEEE MWSCAS,

vol. 1, pp. 871-874, Aug. 2005.

