
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.16, April 2013

26

An Open Source Tesseract based Tool for Extracting

Text from Images with Application in Braille Translation

for the Visually Impaired

 Pijush Chakraborty
 Student (B.Tech, CSE)

Calcutta Institute of Engineering and Management

 Arnab Mallik
Asst. Professor, CSE Dept

Calcutta Institute of Engineering and Management

ABSTRACT:

Many valuable paper documents are usually scanned and kept

as images for backup. Extracting text from the images is quite

helpful and thus a need for some tool for this extraction is

always there. One of the important applications of this tool is

its use in Braille Translation. Braille has been the primary

writing and reading system used by the visually impaired

since the 19th century. This application that extracts text from

images and then converts it to Braille will prove to be quite

useful for converting old valuable documents or books into

Braille format. In this paper the complete methodology used

for the extraction of texts from scanned images and for the

translation of texts to Braille is presented. The scanned images

are initially pre-processed and converted to grayscale and then

passed through an adaptive threshold function for conversion

to binary image. Then it is sent for Recognition using

Google’s powerful Tesseract recognition engine which is

considered to be the best Open Source OCR Engine currently

available. The generated text is then post-processed using a

spell checking API JOrtho for removing the errors in the

previous step. The final corrected text is then translated to a

six dot cell Braille format using a set of rules provided by

www.iceb.org. The translation to Braille includes conversion

of numbers, alphabets, symbols and compound letters. The

translated text can then be saved for printing the document

later or for sending it to a Refreshable Braille Display.

Keywords

OCR, Tesseract, Tess4J, JOrtho, Phonetic Matching,

Soundex, Braille, Braille Translation, Braille ASCII

1. INTRODUCTION
Many valuable documents are scanned and kept for backup.

Converting the scanned text images to machine readable text

is termed as Optical Character Recognition (OCR) and this

topic have always been an interesting topic in Computer

Science. Braille has been the primary reading and writing

system for the Visually Impaired since 19th century. A tool is

always required that can be used to extract text from the

images using the powerful Open-Source Tesseract OCR

Engine and then apply it in Braille Translation by converting

the extracted text to Braille. The application is thus useful for

the visually impaired as it can make Braille texts from

scanned image documents and can be used for translating old

valuable books to Braille format.

2. RELATED WORKS
Optical Character recognition is not a new field and a lot of

papers have been published in this field. Tesseract [1], [3], [4]

is the best Open Source OCR Engine currently available. But

there are only a few GUI tools that uses the power of

Tesseract API. For post processing the text, the application is

using an open-source spell checker API JOrtho [7]. There

have been many developments in the algorithms used for

suggesting correct words for those words not found in the

dictionary using phonetic algorithms such as Soundex [8].

Until now no work has been done in using OCR Engines for

Braille Translation. BrailleOCR [14] is currently the only

open-source GUI application at present that uses the power of

Tesseract Engine in extracting text from images and

converting it to Braille which can eventually help a lot of

visually impaired people.

3. METHODOLOGY
The steps used for extracting text from scanned image

documents and then converting the text to Braille is shown in

Fig. 1. Using this process one can convert old documents and

books to Braille for the visually impaired.

Fig. 1: Steps to be used for the entire conversion

The steps to be followed:

1. Image Pre Processing: In this step the scanned color image

is converted to grayscale image to increase accuracy in the

recognition step.

2. Recognition step: In this step the text is extracted from the

image using Tesseract OCR Engine.

3. Post Processing of the Text: In this step the errors generated

in the last step are corrected by using a spell checking API

JOrtho.

4. Braille Translation: In this step the corrected text is

converted to Braille using a set of predefined rules. The

converted Braille text can then be saved as a Braille Ready

Format or can be sent to a Braille embosser for printing the

Braille text.

Each step is described with more details.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.16, April 2013

27

4. IMAGE PRE PROCESSING
Initially a color image is generated after scanning a paper

document. The color image has to be converted to grayscale

for more accurate recognition in the second step of the four

stage process [5].

An image with M width and N height is represented as a

discrete function f(x,y) such that,

f(x,y) = (xi,yj), where 0<=i<N, 0<=j<M

Here the pair (xi,yj) is known as a pixel. The pair (0,0) is the

first pixel and the pair (N-1,M-1) is the last pixel. Every pixel

has its own RGB value and using the values the grayscale

value is calculated.

4.1 Conversion to Grayscale
A pixel (xi,yj) having the same RGB values falls in the gray

color family and using this observation an algorithm is

derived as bellow.

Algorithm:

for i=0 to N-1

 for j=0 to M-1

 gr(xi,yj)

 = 0.299*r(xi,yj)+0.587*g(xi,yj)+0.114*b(xi,yj)

where r,g,b are red color, blue color and green color values of

pixel (xi,yj) and 0<=r,g,b<256. gr(xi,yi) is the converted

grayscale value.

4.2 Implementing the Algorithm
Using the Algorithm the scanned color image is converted to

grayscale as in Fig. 2.

 Fig. 2: Converted Grayscale Image

The algorithm converts the color image to grayscale image

and the conversion is suitable for application. The conversion

to grayscale image is followed by conversion to binary image.

4.3 Need for Adaptive Threshold
The grayscale image is first converted to binary using an

Adaptive threshold [2]. Adaptive threshold is necessary to

convert the grayscale image to binary image because it is

difficult to convert some images to binary by applying a

constant global threshold.

Adaptive threshold can help in the following situations:

 Originals printed with very fine strokes. The fine

strokes combined with the limited resolution of the

scanner disappears when global threshold is applied.

 Badly reproduced copies. Lightening of text can have

the same effect as thin strokes.

 Text printed on a colored or half toned background.

Such text can easily be lost by global threshold.

In the above cases, applying a constant threshold would not

work.

Fig.3 shows such a image which cannot produce good result

with a constant global threshold.

 Fig. 3: Grayscale image to be converted to binary

Using a threshold that is half the range of the gray scale to

convert a grayscale image to binary does not always produce a

good result.

Fig. 4 shows the effect of choosing a constant threshold and

passing the image for recognition X-axis shows the error rate

and the Y-axis shows the number of documents in the test set

that produces less than or equal to X errors per 2000

characters in the corrected text [2].

Fig. 4: Effect of choosing threshold at half the range

The upper curve denotes the optimal global threshold while

the lower curve denotes the threshold at half the range of gray

scale. It is seen that selecting a constant threshold does not

quite fit the purpose and thus an Adaptive Threshold is used.

The application uses Tesseract OCR engine and the first step

in Tesseract Architecture is conversion of the grayscale input

image to binary image using Adaptive Threshold.

5. OVERVIEW OF TESSERACT

5.1 History
Tesseract is an open-source OCR engine that was developed

at HP between 1984 and 1994. The OCR engine was sent to

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.16, April 2013

28

UNLV for the 1995 Annual Test of OCR Accuracy [3], where

it proved its worth against the commercial engines of the time.

In late 2005, HP released Tesseract for open source and since

then Google has taken over the project. Tesseract is currently

the best open-source OCR Engine available. Tesseract is now

available at google code [1].

5.2 Architecture

 Fig. 5: Tesseract Architecture

Text regions of a roughly uniform text size are provided by

page layout analysis and a simple percentile height filter

removes drop-caps and vertically touching characters

The first step in the recognition process after layout analysis is

connected component analysis. Using this, the outlines of the

components are stored. This outlines are gathered together

into Blobs [3]. Blobs are organized into text lines, and the

lines are then analyzed for fixed pitch or proportional text.

The Line finding algorithm is designed in such a way so that a

skewed page can be recognized without having to de-skew.

The blobs are initially filtered and sorted along by x

coordinate and assigned to unique text lines. After which

blobs overlapping by half horizontally are merged together.

Finally the baselines are fitted more precisely using a

quadratic spline.

Fixed pitch text is chopped immediately by character cells.

Proportional text is broken into words using definite spaces.

Recognition is done by a two pass method. In the first pass, an

attempt is made to recognize each word in turn. Each word

that is satisfactory is passed to an adaptive classifier as

training data. The adaptive classifier then gets a chance to

more accurately recognize text lower down the page. Since

the adaptive classifier may have learnt something useful near

the end of the text, a second pass is done for accurate

recognition as shown in Fig. 5

Recognition of characters are done using polygonal

approximation for extracting features and then matching it

with the prototype as shown in Fig. 6 [4].

Fig. 6: Matching features to Prototypes

A JNA Wrapper Tess4J [6] is used so that the Java based

application can use the powerful Tesseract API for

recognizing characters. Tess4J is released and distributed

under the Apache License, v2.0. Tess4J enables us to use

Tesseract in our Java application.

Table 1 shows the accuracy of the Tesseract OCR Engine

using both color and grayscale image as Input.

Table 1: Accuracy of Tesseract OCR Engine

Input Image Type No of Images Accuracy

Color Image

(Scanned Document)

10 89%

Grayscale Image

(Scanned Document)

10 93%

Grayscale Image

(Noise Added)

10 79%

Thus it is seen that grayscale image provides better accuracy

for recognizing text using Tesseract API.

6. POST PROCESSING STEP
After the text has been extracted from image, it is corrected

using a spell checking API. The application uses JOrtho[7],

which searches the texts for words that are not found in the

dictionary and gives a list of suggestions for the correct word.

One of the key algorithms used by all spell checking systems

is the use of a phonetic matching algorithm such as Soundex

[8] to give a list of suggestions for the correct word that are

phonetically similar.

The Soundex code for a word consists of a letter followed by

three numerical digits. The letter is the first letter of the word,

and the digits encode the remaining consonants. The

algorithm is given bellow.

The following steps are continued until there is one letter

followed by three numbers

 Retain the first letter of the name and drop all other

occurrences of a, e, i, o, u, y, h, w.

 Replace consonants with digits as follows (after the

first letter):

b, f, p, v = 1

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.16, April 2013

29

c, g, j, k, q, s, x, z = 2

 d, t = 3

l = 4

m, n = 5

r = 6

 Two adjacent letters with the same number are

coded as a single number. Two letters with the same

number separated by 'h' or 'w' are coded as a single

number, whereas such letters separated by a vowel

are coded twice. This rule also applies to the first

letter.

If there are too few letters in the word such that three numbers

cannot be assigned, then zeroes are appended until there are

three numbers. Using this algorithm “Metacalt” and

“Metacalf” return the same string M324 as they are

phonetically same.

Suggestions for the misspelled word “Metaclalt” is shown in

Fig. 7.

Fig. 7: Suggestion for word “Metacalt”

After this post processing step is completed, the extracted text

is corrected. Thus the entire text has been extracted from the

image and then corrected to produce the final text which can

then be used for conversion to Braille.

7. BRAILLE TRANSALTION
Braille is the primary reading and writing system used by the

visually impaired. It is the way for blind people to participate

in a literate culture. Braille characters are represented using

Braille cells. Braille characters are represented using a six-dot

Braille cell arranged in the way as shown in Fig. 8. Any of the

dots may be raised or lowered giving a total of 64 possible

characters that can be represented using the six-dot Braille

cell. These Braille cells are arranged together to form words.

 Fig. 8: Braille six-dot cell

After the extraction of the text from the image is completed,

the text is converted to Braille using Braille ASCII characters

and a set of guidelines provided by www.iceb.org [9].

7.1 Electronic Braille Display
Braille characters are displayed using Unicode. In Unicode,

Braille characters are represented using a 8-dot cell and ranges

from U+2800 to U+28FF consisting of 256 characters. Thus

of the 256 characters only 64 consists of six-dot cell

representation (U+2800 to U+283F) which are supported by

Braille ASCII.

Braille ASCII [10] is a subset of the ASCII character set

which uses 64 of the printable ASCII characters to represent

all possible dot combinations in six-dot Braille [11]. It uses

one to one mapping of ASCII character set to Braille

characters.

Fig.9. shows all the 64 Braille ASCII representations.

Fig. 9: Braille ASCII representation

For representing an uppercase alphabet, a Braille character

having only the sixth dot raised precedes the Braille

representation of the letter. For representing a number, a

Braille cell having the dots numbered (3,4,5,6) raised

precedes the representation for Braille character denoting the

number. The Braille representation for numbers 1 through 9

and 0 corresponds to the letters a through j.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.16, April 2013

30

The following string gives the Braille ASCII mappings for

Unicode Braille characters U+2800 to U+283F starting from

U+2800.

" A1B'K2L@CIF/MSP\"E3H9O6R^DJG>NTQ,*5<-

U8V.%[$+X!&;:4\\0Z7(_?W]#Y)="

Using the ASCII mappings the Braille Unicode characters are

converted to the respective ASCII characters that are

supported by all modern Braille embossers and Braille

Refreshable Displays.

7.2 The Conversion Process
Using the Braille representations as given in Fig 9, an

algorithm for converting the extracted text to Braille is made.

As given in the flow chart (Fig. 10), the algorithm does the

following

1. Search for compound letters and print Braille

representation for the compound letters if found.

2. Else If compound letters are not found and if the

character read is an alphabet, print the Braille

representation of the alphabet keeping in mind

about uppercase caps representation.

3. Else If the character is not an alphabet and the

character is a number then print the Braille

representation for numbers.

4. Else If character is any special character, print

representation for special characters.

5. Else Print Braille representation for Space.

Using this algorithm the text is converted to Braille and now

the converted text can be used in ways to help the visually

impaired.

Fig. 10: Flow Chart for Braille Conversion Algorithm

8. USING THE APPLICATION
The algorithms discussed in this paper are now implemented

in the application, BrailleOCR. The image document is

initially converted to grayscale using the algorithm discussed

above. As stated the image pre processing step is important

for increasing the accuracy in the recognition step. The text is

then extracted using Tesseract OCR Engine as shown in Fig.

11. The recognition step uses the algorithms for line finding,

word segmentation as discussed in this paper. The characters

are recognized by matching features with prototypes. After

the completion of this step the extracted text is corrected to

find minor errors in recognizing characters. In this step JOrtho

API is used for providing a list of suggestions for commonly

misspelled words. Fig. 11 shows the extraction of text and the

correction of the text using the interface.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.16, April 2013

31

Fig. 11: Extraction of Text from Image and Correction of errors

After correcting the text the next step is translation to Braille.

Using the algorithms discussed in this paper the text is

translated to Braille. Fig. 12 shows the conversion of text to

Braille. The Braille characters are displayed using Unicode

characters ranging from U+2800 to U+28FF. Out of the 256

Braille Unicode characters, only 64 characters are required

which uses the six-dot Braille cell representation.

Fig. 12: Converting Corrected text to Braille

9. CONCLUSION
In this paper the complete procedure used for extracting the

text from images and converting it to Braille is shown. It is

seen that converting the color image to grayscale increases the

accuracy of recognition. The need for using adaptive

threshold is also seen. This application converts an image

document to Braille format and thus this application can help

a lot of

visually impaired people. This application [14] is also

currently the only tool that extracts text from images and

converts it to Braille. This application can also be made

multilingual so that it can extract text of any language and

convert it to its respective Braille format [12]. The challenge

here is to train Tesseract for Multiple Languages [13] and

translate them to its respective Braille code.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.16, April 2013

32

10. REFERENCES
[1] Tesseract Project Site:

http://code.google.com/p/tesseractocr.

[2] Ray Smith, Chris Newton, Phil Cheatle, Adaptive

Threshold for OCR: A Significant Test, HP Laboratories

Bristol, March 1993

[3] R.Smith, An Overview of the Tesseract OCR Engine,

Proc. Ninth Int. Conference on Document Analysis and

Recognition , IEEE Computer Society (2007)

[4] Ray Smith, Tesseract OCR Engine, OSCON Conference

2007

[5] Chirag Patel, Atul Patel, Dharmendra Patel, Optical

Character Recognition by Open source OCR Tool

Tesseract: A Case Study, IJCA Volume 55 Issue 10,

October 2012

[6] Tess4J Project Site: http://tess4j.sourceforge.net/

[7] JOrtho Project Site: http://jortho.sourceforge.net/

[8] Soundex Reference:

http://en.wikipedia.org/wiki/Soundex

[9] The Rules of Unified English Braille, International

Council on English Braille(ICEB), June 2001

[10] Braille ASCII:

http://en.wikipedia.org/wiki/Braille_ASCII

[11] Paul Blenkhorn, A System for Converting Braille to

Print, IEEE Transactions on Rehabilation Engineering,

Vol. 3 No. , June 1995

[12] Manzeet Singh, Parteek Bhatia, Automated Conversion

of English and Hindi Text to Braille Representation,

IJCA Volume 4 Issue 6, April 2010

[13] Md. Abul Hasnat, Muttakinur Rahman Chowdhury,

Mumit Khan, An open source Tesseract based Optical

Character Recognizer for Bangla script, 10th

International Conference on Document and Recognition,

2009

[14] BrailleOCR Project Site:

https://code.google.com/p/brailleocr/

