
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.13, April 2013

34

Performance Evaluation of Weighted Round Robin
Grid Scheduling

N.Krishnamoorthy
Assistant Professor

(Senior Grade)
Department of CSE

Kongu Engineering College
Perundurai, Erode-638052

Tamilnadu

R.Asokan, PhD.
Principal

Kongunadu College of
Engineering and Technology,

Tholurpatti, Thottiam,
Thiruchirapalli - 621215

Tamilnadu

S.Sangeetha
Assistant Professor

Department of Computer
Technology-PG

Kongu Engineering College
Perundurai, Erode-638052

Tamilnadu

ABSTRACT

Grid systems interconnect heterogeneous and

geographically distributed resources to form a network

which satisfy user’s needs. Resource Management is its

central component and involves managing system

resources. It is responsible for accepting user’s requests

and matching it to available resources which can be

accessed by the user. Schedulers are applications which

manage jobs including allocating resources for specific

jobs. When there are many processes in a queue, the order

in which jobs are executed is decided by a scheduling

algorithm. This paper proposes and investigates the

performance of varied task execution for proposed

weighted round robin scheduling algorithm. Simulations

evaluate the proposed method’s performance and results

demonstrate that the proposed method performs

satisfactorily.

Keywords: Grid computing, Schedulers, Resource

management, Round Robin scheduling.

1. INTRODUCTION

“Grid computing” ensures large-scale resource sharing,

wide-area communication and multi-institutional

collaboration. “Open Grid Services Architecture” helps

service and resources integration across distributed

heterogeneous dynamic virtual organizations helping

users with an easy request grid services [1] platform.

The resource management system (RMS) controls

service/resource integration, request and management.

Grid computing is harnessing computer systems to solve

problems cooperatively, requiring huge data storage and

processing which is more than what a single system can

handle [2]. Initially used in technical and scientific

projects, grid computing is now popular in the corporate

world due to its cost-savings potential.

In a grid system, an end user submits to the management

system the job to be executed along with some

constraints like job execution deadline, the maximum

cost of execution. The function of the resource

management is to take the job specification and from it

estimate the resource requirements like the number of

processors required, the execution time, and memory

required. After estimating the resource requirements

RMS discovers available resources and selects

appropriate resources for job execution. It also finally

schedules jobs on these resources by interacting with the

local resource management system.

A RMS also names system resources, monitors and reports

jobs, resource status and accounts for resource usage. RMS

enables a security system to validate user requests, the

information service to know about resource availability, and

schedules jobs through the local resource management

system. Three phases of grid scheduling [3] include Resource

discovery, Scheduling and job completion. Resource

discovery starts a list of potential resources, while resource

Scheduling pair’s jobs with application requirements [4] and

Job Completion includes file staging and executing clean-up.

Grid resource management face many issues because of the

nature of Grid environment that complicates scheduling tasks

[5] some of which include:

Resource discovery process is required as resources are

geographically distributed.

• Grid resources are dynamic as resources move in and out

of the grid. Thus, resource information should be regularly

updated to reflect status change.

• Grid resources are heterogeneous with different

architectures and operating systems and hence resource

management should allocate jobs to suitable resources.

• Each resource’s local access and security policies vary

and this should be supported by the management model.

• Grid security is important to encourage resource

providers and users in grid participation without fearing any

attack. Authentication/authorization should safeguard

resources and jobs against attacks.

• Users submitting jobs for execution have no control over

their jobs resulting in inaccurate completion time prediction

leading to some not meeting their deadlines.

The following are various grid scheduling schemes which

schedule jobs on resources. Centralized scheduling scheme: In

this, a central processor (centralized domain) takes charge of

scheduling; the scheduler has information on all domains and

their resources [6]. All domain jobs are submitted to the

centralized scheduler that regulates jobs to suitable resources.

Centralized scheduling ensures simple structure and easy

maintenance. Grid domains are uninvolved in scheduling and

send information to the scheduler about resources like

availability, speed and memory. The former decides job flow

based on information forwarded by domains. Centralized

scheduling’s advantages are it un-scalability due to

voluminous information retained by centralized scheduler,

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.13, April 2013

35

and if scheduler fails, user-resource provider interaction

stops as there is only one scheduler. Jobs also suffer

from long access delay as jobs are submitted to the same

scheduler.

Hierarchical scheduling scheme: This is based on job

scheduling’s layered structure. [7]. Here jobs submitted

to a central scheduler are forwarded to domains which

meet their requirements. After forwarding jobs, the

central scheduler has no control on such jobs. Different

scheduler levels execute domain defined scheduling

policies. This scheme’s advantage is that each domain

can use its own scheduling policy which can differ from

other scheduling domains. Inability to reschedule jobs

on locating a better resource is its only disadvantage.

Distributed scheduling scheme: Distributed

scheduling has no central or hierarchical schedulers [6].

Each domain has its own scheduler, and interacts with

domains periodically or when a job is executed. When a

job needs to be executed regularly, the local scheduler

assigns job to suitable local resource or to another

domain resource if it is more suitable than local

resources. Centralized scheduler issues like scalability,

reliability, easy implementation and no single point of

failure are addressed by the distributed scheduler.

Literature proposes many distributed scheduling

algorithms which are adaptable to resource usage

changes [8].

Schedulers are applications responsible for job

management including allocating resources for a

specific job, partitioning jobs to ensure parallel task

execution, data management, event correlation, and

service-level management capabilities [9]. Schedulers

are structured hierarchically with meta-schedulers

forming the root and lower level schedulers and

simultaneously providing specific scheduling

capabilities that become leaves. Schedulers can be built

with a local scheduler implementation approach for

execution of particular jobs or another meta-scheduler

or a cluster scheduler for parallel executions.

Jobs with Grid Computing schedulers are evaluated

on a service-level requirement basis, and reallocated to

respective resources for execution involving complex

workflow management and data movement activities

regularly. Schedulers should provide capabilities for

areas like:

• Advanced resource reservation

•Service-level agreement, validation and

enforcement

•Job and resource policy management/enforcement

for best turnaround times within budget constraints

• Monitoring job execution/status

• Rescheduling and corrective action for partial

failover situations

Though Grid computing has advanced much, QoS is

an issue as Grid systems cannot be scaled

proportionately to user expectations. A computational

grid works in a dynamic environment with resources

like bandwidth and processor time availability changing

continuously to ensure no guaranteed QoS. Global

applications grid applications also compete for shared

resources leading to QoS degradation [10].

Grid service performance is directly linked to the

collective workload on many processors globally and on

participating grid sites. Predicting workload completion time

is very challenging task [11, 12]. Scaling many processors to

complete collective work load is not an option as bandwidth

has a crucial role for data intensive workloads involving

heavy data transfer loads.

When a large number of jobs are presented for Grids, these

applications take overall processing including high overhead

time and cost in terms of: to and from Grid resources, the job

transmission and at the Grid resources, the job processing. In

this paper, it is proposed to investigate the performance of

schedulers for executing different number of tasks; round

robin and weighted round robin scheduling algorithm are

evaluated. The rest of the paper is organized as follows:

Section II reviews some of the related works in literature,

Section III describes the experimental setup and section IV

discusses the results and Section V concludes this paper.

2. RELATED WORKS

Muthuvelu et al., [13] introduced a scheduling strategy to

perform dynamic job grouping activity during runtime. Job

processing granularity size is presented to allow job grouping

activity to identify overall jobs to be processed at a resource at

a specific time. Job grouping aims to minimize the total

processing time and cost. The small scaled user jobs are

grouped as few job groups considering available grid

resources processing capabilities by the proposed strategy

that lowers communication overhead and processing overhead

times of every user job.

William M. Jonesy et al., [14] introduced a bandwidth-

centric job communication model which captures interaction

when applied across multiple clusters and effects co-

allocating jobs simultaneously. This model is compared with

earlier models which opt for a fixed execution time penalty

for such co-allocated jobs. This paper also presents many

bandwidth-aware co-allocating meta-schedulers. Performance

of multi-cluster scheduling algorithms is estimated with a

bandwidth-centric parallel job communication model

harnessing time-varying utilization of shared inter-cluster

network resources. Different algorithm were employed with

co-allocating jobs when allocating a large fraction (85%) on a

single cluster provides top performance in lowering effects

that co-allocated jobs meet with due to inter-cluster network

saturation slow down.

Different systems allocate resources using market

mechanisms, but performance was not studied properly.

Gomoluch, et al., [15] examined scenarios which outperform

a traditional round-robin technique obtained through market-

based resource allocation with continuous double auctions

and proportional share procedure, equally. A model is

developed for servers, clients and the market and simulation

results discussed. The results, limited to independent tasks

allocation are: 1) Continuous Double Auction Protocol (CDA)

performs best in a cluster of homogeneous resources and

slight communication delays, 2) Proportional Share Protocol

(PSP) has similar performance to CDA during low load and

has less difference among the three protocols, 3) Round-

Robin performs worse than both market-based protocols with

heterogeneous resources. PSP works better during high

communication delays. Thus in most cases, CDA is the best

protocol.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.13, April 2013

36

Volker Hamscher et al., [16] investigated typical

scheduling structures in computational grids.

Scheduling algorithms and selection strategies are

presented and classified by these structures. To estimate

these features on combining various Job and Machine

Models, discrete-event simulation was performed.

Results are discussed quantitatively and qualitatively.

Backfill’s importance for hierarchical scheduling is

proven from through simulation. Use of a central job-

pool led to unexpected results as FCFS confirmed better

performance than Backfill.

Bansal et al., [17] proposed a novel grid-scheduling

heuristic that schedules tasks adaptively and

dynamically without requiring prior workload

information on incoming tasks. The approach models

the grid system as a state-transition diagram, using a

prioritized round-robin algorithm with task replication

to schedule tasks optimally, using prediction

information on individual nodes processor utilization.

Simulations, comparing the proposed approach with the

round robin heuristic revealed the heuristic to be better

at scheduling tasks when compared to the latter.

Hiranwal et al., [18] proposed “Adaptive Round

Robin Scheduling using Shortest Burst Approach Based

on Smart Time Slice”, a Priority Driven Scheduling

algorithm based on burst processes time. Processes are

arranged based on execution time/burst time in an

ascending order; the smaller the burst time, higher the

priority of running process. This approach’s idea is to

select a smart time slice (STS) depending on many

processes. The smart time slice equals mid process burst

time of all CPU burst time when having odd number of

processes. When this number is even then the time

quantum is chosen according to average CPU burst of

total running processes. Based on

experiments/calculations the proposed algorithm

radically solved fixed time quantum problem usually

considered a challenge for Round Robin Scheduling

Algorithm. The use of scheduling algorithm increased

operating system performance and stability and built

support for a self-adaptation operating system, meaning

that the system will adapt itself to user requirements and

not vice versa.

3. METHODOLOGY

When many jobs are presented to Grids, they take

overall processing including high overhead time and

cost in terms of: to and from Grid resources, job

transmission at Grid resources and job processing. CPU

scheduler executes processes when they have schedules.

The algorithm which decides order of execution when

there are many processes in a ready queue is the

scheduling algorithm. Various well known CPU

scheduling algorithms are First Come First Serve

(FCFS), Shortest Job First (SJF) and Priority scheduling

[19] all of which are non-pre emptive and unsuitable for

time sharing systems. Shortest Remaining Time First

(SRTF) and Round Robin (RR) are pre-emptive in

nature with RR being highly suitable for time sharing

systems.

 Round Robin (RR) algorithm overcomes this by

assigning time intervals called quantum to jobs when

they are run. If a job is incomplete during a quantum it

reverts back to the queue awaiting the next round [20].

The only challenge with this algorithm is finding a

suitable quantum length. Round Robin Algorithm drawbacks

are that it gives equal time to all processes (processes are

scheduled in a first come first serve manner) as Round Robin

Algorithm drawbacks ensure it is inefficient for processes

with smaller CPU bursts leading to increased waiting and

response times thereby lowering system throughput. The

proposed algorithm eliminates drawbacks of round robin

algorithm implementation by scheduling processes through

weight assignment. The proposed Weighted Round Robin

algorithm depends on:

1. Number of hops from task allocating server to job

performing cluster.

2. Average bandwidth between allocation server and cluster

Weighted round robin algorithm’s performance is compared

to simple RR for specific resource cluster number and varying

tasks number.

4. EXPERIMENTAL SETUP AND

RESULTS

Simulations were carried out in Simgrid framework. The

simulation parameters are shown in table 1.

Table 1: Simulation parameters

The simulations were conducted using 5 clusters of The

resources are located at different locations connected using

switches. The resources are scheduled using Round robin

scheduling algorithm and the proposed weighted round robin

scheduling algorithm. The number of jobs of uniform size is

varied from 10 to 500. The Simgrid test bed master process

created to assign tasks to available resources in round robin

mode. The steps involved in round robin mode are explained

as follows.

Preliminary

(i) Initiate message_launch_application

(ii) Calculate number of tasks to distribute

(iii) Compute size of each task

(iv) Compute size of files associated with the task

(v) Identify resource (Cluster) available for assigning

task

(vi) Initialize variables to zero for Number of task,

communication size and computation size

Number of node

clusters

5

Number of jobs

used in the

simulation

100,200,300,400,500

jobs of uniform size.

Job workload Uniform size

Job failure

probability-

0.2

Scheduling

schemes used

Round Robin and

Weighted Round Robin.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.13, April 2013

37

(vii) Task creation

(viii) Assign computation size, communication

size for the task

(ix) Process organization

(x) Identify Resource available

(xi) Assign task to resource

(xii) Intimate assigned task to Server

(xiii) As resource finishes a task, it is ready to

accept next task

(xiv) Once all task are completed, inform

resources that computation is complete

Return

Table 2 tabulates part of the simulation results of the

time taken to execute the varying number of tasks for

Round Robin (RR) and Weighted Round Robin (WRR).

Figure 1 shows the same.

TABLE 2. SIMULATION RESULTS FOR TIME

TAKEN TO EXECUTE VARYING NUMBER OF

TASKS

Number of

tasks

Round Robin (RR)

Weighted Round

Robin (WRR)

10 2.41724 2.41724

50 19.7992 17.4503

100 41.1152 37.5915

150 64.7802 54.6829

200 87.0025 74.8248

250 106.709 91.5223

300 128.025 112.058

350 151.69 129.149

400 173.912 148.9

500 214.935 185.35

FIG.1 Time Taken to execute varying Number of Tasks

It is observed from Figure 1, the time required to carry out

the scheduled tasks is comparatively lower for the proposed

weighted round robin. The round robin technique produces a

near linear output compared to the weighted round robin

technique where nodes with higher processing power and

lower number of hops are given higher preference to nodes that

are can be reached only with multiple hops with constrained

bandwidth. The assigning of weights with respect to number of

hops and bandwidth during scheduling streamlines the process

leading to efficient scheduling in less time.

5. CONCLUSION

Scheduling’s goals are achievement of high performance

computing and high throughput computing. The former is

achieved through every jobs execution time reduction and

generally used for parallel processing. This paper proposes to

investigate time to execute various tasks for a novel weighted

round robin scheduling algorithm. The proposed weighted

round robin scheduling algorithm considers the hops number

and bandwidth between server and the resource clusters.

Simulation results prove that proposed scheduling improves

grid performance. The performance improvement of the

proposed technique improves over the round robin scheduling

by 15.96%.

6. REFERENCES

[1] Grimshaw, Andrew, Mark Morgan, Duane Merrill,

HiroKishimoto, Andreas Savva, David Snelling, Chris

Smith, and Dave Berry: An open grid services architecture

primer, Computer 42, no. 2, 27-34, 2009.

[2] Yu, J., &Buyya, R.: A taxonomy of workflow

management systems for grid computing., Journal of Grid

Computing, 3(3), 171-200,2005.

[3] Jennifer M. Schopf: A General Architecture for

Scheduling on the Grid, special issue of JPDC on Grid

Computing, April, 2002.

[4] David Fernández-Baca. “Allocating modules to

processors in a distributed system”, IEEE Transactions on

Software Engineering, 15(11):1427-1436, 1989,

November.

0

50

100

150

200

250

1
0

5
0

9
0

1
3

0

1
7

0

2
1

0

2
5

0

2
9

0

3
3

0

3
7

0

4
1

0

4
5

0

4
9

0

Ti
m

e
 t

ak
e

n
 t

o
 e

xe
cu

te
 in

 s
e

co
n

d

Number of Tasks

Round Robin
Weighted Round …

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.13, April 2013

38

[5] Zhu, Y. : A survey on grid scheduling systems,

Department of Computer Science, Hong Kong

University of science and Technology, 2003.

[6] Xhafa, F., & Abraham, A.: Computational models

and heuristic methods for Grid scheduling problems,

Future Generation Computer Systems, 26(4), 608-

621.

[7] Kurowski, K., Oleksiak, A., Piątek, W., &Węglarz,

J.: Hierarchical scheduling strategies for parallel

tasks and advance reservations in grids. Journal of

Scheduling, 1-20, 2011.

[8] Mohsenian-Rad, A., Wong, V. W., Jatskevich, J.,

Schober, R., & Leon-Garcia, A.: Autonomous

demand-side management based on game-theoretic

energy consumption scheduling for the future smart

grid. Smart Grid, IEEE Transactions on, 1(3), 320-

331, 2011.

[9] Batista, D., & da Fonseca, N.: A survey of self-

adaptive grids. Communications Magazine, IEEE,

48(7), 94-100, 2010.

[10] LizheWang,Gregor von Laszewski and Marcel

Kunze : Grid Virtualization Engine:

Design,Implementation, and Evaluation" IEEE

SYSTEMS JOURNAL, VOL. 3, NO. 4, 2009,

December.

[11] AuverGrid Workload Report,

http://gwa.ewi.tudelft.nl/pmwiki/ reports/gwa-t-

4/trace_analysis_report.html, 2009.

[12] J. Schopf and F. Berman, “Performance Prediction

in Production Environments,” Proc. 12th Int’l

Parallel Processing Symp., pp. 647-653, 1998, April.

[13] N. Muthuvelu, J. Liu, N. L. Soe, S.rVenugopal, A.

Sulistio and R. Buyya, A Dynamic Job Grouping-Based

Scheduling for Deploying Applications with Fine-Grained

Tasks on Global Grids, Proceedings of the 3rd

Australasian Workshop on Grid Computing and e-

Research (AusGrid 2005), Newcastle, Australia, 2005,

January 30 – February 4.

[14] W. M. Jones, W. B. L. III, L. W. Pang, and D. C. S. Jr.

Characterization of bandwidth-aware meta-schedulers for

coallocating jobs across multiple clusters. The Journal of

Supercomputing, 34(2):135–163, 2005.

[15] J. Gomoluch and M. Schroeder : Performance evaluation

of market-based resource allocation for grid computing.

Concurrency and Computation: Practice and Experience,

16(5):469–475, 2004.

[16] Hamscher, V., Schwiegelshohn, U., Streit, A. and

Yahyapour, R., : Evaluation of Job-Scheduling Strategies

for Grid Computing. in 7th International Conference of

High Performance Computing, (Bangalore, India), 2010.

[17] Bansal, S., Kothari, B., &Hota, C. : Dynamic Task-

Scheduling in Grid Computing using Prioritized Round

Robin Algorithm. International Journal of Computer

Science, 2010.

[18] Hiranwal, S., & Roy, K. C. : Adaptive Round Robin

scheduling using shortest burst approach, based on smart

time slice. International Journal of Computer Science and

Communication, 2(2), 319-323, 2011.

[19] Pinedo, M. L.: Scheduling: theory, algorithms, and

systems. Springer,2012.

[20] Y.-H. Lee, S. Leu, and R.-S. Chang :Improving job

scheduling algorithms in a grid environment. Future

Generation Computer Systems, 27(8):991, 2011, October.

