
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.13, April 2013

7

An Approach to Handwriting Recognition using

Back-Propagation Neural Network

Pijush Chakraborty
Student (B.Tech, CSE)

Calcutta Institute of Engineering and Management

Paramita Sarkar
Asst. Professor, CSE dept.

Calcutta Institute of Engineering and Management

ABSTRACT
Handwriting Recognition is an important topic in Computer

Science. In this paper a procedure is presented to identify

characters that are drawn using stylus with the help of Back-

Propagation Neural Network. The paper describes the entire

procedure from feature extraction to the training of the

network. Feature extraction includes pixel grabbing, finding

character bounds and down-sampling of the image to 7*5

pixel size. The neural network is trained by supervised

learning which includes error calculation using back-

propagation approach. After the training is completed the

network is ready to identify characters that are drawn in the

computer. This same approach given in this paper can be

extended to recognize handwritten documents and also for

recognizing multilingual characters.

Keywords
Handwriting Recognition, Back-propagation, Feed-forward,

Neural Network, Pattern Recognition.

1. INTRODUCTION
Recognizing hand drawn characters is an important topic in

Computer Science. This paper shows how a Back-Propagation

Network can be trained to recognize hand drawn characters. A

GUI tool is to be used in which characters will be drawn with

the help of a stylus. The user interface will have support for

adding patterns, training the Neural Network and recognizing

characters.

The important steps that are to be followed is given in Fig. 1.

 Fig. 1: Steps used in the entire process

Whenever a character is added to the list, the input pattern is

generated and added using Feature Extraction. Then the

Neural Network is then trained with the given input patterns

using Back-Propagation approach. After the training is

complete, the neural network is ready to recognize characters

drawn in the GUI.

Each step is described with more details.

2. FEATURE EXTRACTION
Initially a binary image is received having two colors, black

and white. The steps in the feature extraction process [1] are

shown in Fig 2.

 Fig. 2: Steps in Feature Extraction

The following steps are now looked into:

 Pixel Grabbing

 Finding bounds

 Down sampling image to 7*5 blocks

2.1 Pixel Grabbing
Pixel grabbing is the first step in which the pixel values

of the image are taken into an array so that the image

manipulation can be done using simple array

manipulations. Black pixels are given value 0 and white

pixels 1. Pixel grabbing is necessary for the next step in

feature extraction.

2.2 Finding Bounds
The character bounds are found after the pixel grabbing

step is completed. An image with N Height and M Width

can be represented as a discrete function

f(x,y) = (xi,xj), where 0<=i<N and 0<=j<M

Here (xi,yj) is considered as a particular pixel. The top

bound can be found by scanning the image from top to

bottom and searching if there is a black pixel in each row

of width W. A black pixel in a row denotes that the top

bound is the row number. In similar ways the bottom

bound can be determined. The left bound is determined

by scanning the image from left to right and searching

for a bound and in similar ways the right bound can be

found. Fig. 3 gives the bounds of a character drawn on

the GUI tool.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.13, April 2013

8

 Fig. 3: Character bounds of an image drawn

2.3 Down-sampling of the image
The down sampled image is considered to have dh

Height and dw Width. Down-sampling [2] is necessary

to produce input neurons for the neural network. The

sampling procedure begins with dividing the bounded

image of H height and W width into dh*dw block each

of height H/dh and width W/dw. Here H/dh is the height

ratio [3] and W/dw is the width ratio.

The algorithm then iterates through each of the blocks

and search if there is a black pixel in the block. If there is

a black pixel value, the pixel (xi,yj) of the down sampled

image is marked as black else the pixel is marked as

white. The height of the down sampled image is 7 pixels

and width 5 pixels. Thus have dh=7 and dw=5.

\

Fig. 4 shows the down sampled image conversion.

 Fig. 4: Sampling of the image

There are 35 input neurons from the 7*5 pixels in the down

sampled image as shown in Fig. 4. These 35 input neurons are

used in the next step.

This completes the feature extraction process and the next

process follows. The next step is Training Process for the

Back Propagation Network.

3. BACK-PROPAGATION NEURAL

NETWORK TRAINING
Back-Propagation Network [3], [4] is a kind of Network used

for supervised learning. The network consists of three layers.

The first layer is the input layer, the second layer is the hidden

layer and the third layer is the output layer.

Fig. 5 gives the architecture of the BPN used for identifying

input patterns.

Fig. 5: BPN Architecture used for Recognizing Characters Drawn

For each character in the list there are 35 input neurons as

there are 7*5 pixel values in the down sampled image. The

inputs can be ‘0’ or ‘1’. There can be a maximum of 26 output

neurons denoting 26 English alphabets. For every input

pattern only one of the 26 output patterns will be 1

representing the index in the list and the rest will be 0. Fig 5

gives the architecture of the BPN neural network. ‘0’ here

denotes white pixel (pixel value ‘1’) and ‘1’ denotes a black

pixel (pixel value ‘0’).

The steps for training the network is given in Fig. 6.

 Fig. 6: Steps in BPN Training

The weight matrix is initialized along with other parameters.

After initialization, the following step is continued up to

60000 epochs or until the max error is in the feed-forward

step is less than equal to 0.005.

Thus for each pattern in the list the following loop is

continued

Epoch=0

While maxError>0.005 and Epoch<=60000

 For i = 0 To No. of training patterns added

 FeedFowrd(inpuPattern(i))

 BackPropagationError()

 UpdateWeigt()

 Epoch=Epoch+1

 End Loop

End Loop

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.13, April 2013

9

Here maxError is calculated as the absolute error produced or

the maximum difference between the expected output pattern

and the generated output pattern.

Table 1 gives the list of parameters used and their initial

values.

 Table 1: Parameters used in Training

Parameters Denoted By Initialized values

No. of input

Neurons

n 35

No. of hidden

layer Neurons

m 20

No. of output

Neurons

k 26

Input Neurons x(i) where 0<=i<n 0

Hidden Neurons Zhid(i) where

0<=i<m

0

Output Neurons Zout(i) where

0<=i<k

0

Weights from

input layer to

hidden layer

V(i,j) where

0<=i<n and

0<=i<m

Random numbers

between -0.5 and

+0.5

Weights from

hidden layer to

output layer

W(i,j) where

0<=i<m and

0<=i<k

Random numbers

between -0.5 and

+0.5

Bias for hidden

layer

hidBias(i) where

0<=i<m

Random numbers

between 0 and 1

Bias for output

layer

outBias(i) where

0<=i<k

Random numbers

between 0 and 1

Error information

for hidden layer

δout(i) where

0<=i<m

0

Error information

for output layer

δhid(i) where

0<=i<k

0

Learning rate α 0.5

Momentum μ 0.4

Each step is described with more details.

3.1 Initialization Step
The down-sampled image has 7*5 blocks [4] and thus there

are 35 input neurons considering each block as one input

neuron.

The weights of the input layer to hidden layer are given

random values. Similarly the weights of the hidden layer

neurons to output layer neurons are assigned random values

between -0.5 to +0.5.

3.2 Feed Forward
The sigmoid function is used as the threshold function for the

feed-forward step. (Fig. 7)

Function thresh(x)

 Return 1/(1+exp(-x))

End

 Fig. 7: Sigmoid Function

Every input neuron receives the input x(i) and transmits them

to the hidden layer neurons [5], [6], [7]. For each hidden unit,

Zhid, the hidden layer input denoted by Zhidin is calculated as

give bellow:

For j=1 to m

 Zhidin(j) = hidBias(j)

 For i=1 to n

 Zhidin(j) = Zhidin(j) + x(i)*V(i,j)

 End Loop

End Loop

The output of each hidden layer unit is calculated by using the

following loop.

For i=1 to m

 Zhid(i) = thresh(Zhidin(i))

End Loop

The hidden layer output is transmitted to the output layer. For

each output layer neurons Zout, the input to the neurons

denoted by Zoutin is calculated as

For j=1 to k

 Zoutin(j) = outBias(j)

 For i=1 to m

 Zoutin(j) = Zoutin(j) + Zhid(i)*W(i,j)

 End Loop

End Loop

The output of each output layer unit is calculated by using the

following loop.

For i=1 to k

 Zout(i) = thresh(Zoutin(i))

End Loop

After the feed-forward step ends, the back propagation step

for finding the errors starts. The next step is used to get the

errors in the feed-forward step.

.

3.3. Back Propagation of Error

 In this step the error in the previous step is calculated and that

error is used to train the network again [8]. The error of the

output layer is calculated first and then the hidden layer error

is calculated. The error information term is denoted as δout for

output layer errors and δhid for hidden layer errors which are

calculated using the following delta rules. The error

information for the output layer is calculated as follows

For i = 1 to k

 δout(i) = (actual(i)-Zout(i)) * thresh(Zoutin(i))

 * (1-thresh(Zoutin(i))

End Loop

Similarly the error information for the hidden layer is

calculated as follows

For i = 1 to m

 temp=0

 For j=1 to k

 temp=temp+ δout(i)*W(i,j)

 End Loop

 δhid(i) = temp * thresh(Zhidin(i))

 * (1-thresh(Zoutin(i))

End Loop

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.13, April 2013

10

After the completion of this step the errors of the Feed-

forward steps are calculated.

3.4. Weight Update
In this step the errors calculated in the previous step are used

to update the weights before the next epoch begins. The

weights are updated as follows [9], [10], [11].

Initially the weights of the hidden to output layer are updated.

For i = 1 to m

 For j = 1 to n

 W(j,i,)t+1 = W(j,i)t + α*δout(i)*Zhid(j) +

 μ*(W(j,i)t - W(j,i)t-1)

 End Loop

End Loop

In the above loop α*δout(i)*Zhid(j) is the weight correction

term denoted by ΔW(j,i) .

The output of each hidden layer unit is calculated by using the

following loop.

For i=1 to m

 Zhid(i) = thresh(Zhidin(i))

End Loop

The bias of the output layer units are updated as follows

For i = 1 to k

 outBias(i)= outBias(i) + α*δout(i)

End Loop

The new weights of input layer neurons to the hidden layer

neurons are now calculated.

For i = 1 to k

 For j = 1 to m

 V(j,i,)t+1 = V(j,i)t + α*δhid(i)*x(j) +

 μ*(V(j,i)t - V(j,i)t-1)

 End Loop

End Loop

The bias of the hidden layer units are updated as follows

For i = 1 to m

 hidBias(i)= hidBias(i) + α*δhid(i)

End Loop

4. APPLYING THE NEURAL NETWORK
The neural network is trained for all the letters added to the

list. For each character in the list there are 35 input neurons

and 26 output neurons. For every input patter only one of the

26 output patterns will be 1 representing the index in the list

and the rest will be 0.

The parameters used in this algorithm are same as in the

Training step [12], [13].

Every input neuron receives the input x(i) and transmits them

to the hidden layer neurons.

For each hidden unit, Zhid(i), the hidden layer input Zhidin(i)

is calculated as give bellow:

For j=1 to m

 Zhidin(j) = hidBias(j)

 For i=1 to n

 Zhidin(j) = Zhidin(j) + x(i)*V(i,j)

 End Loop

End Loop

The hidden layer output is transmitted to the output layer. For

each output layer neurons Zout(i), the input to the neurons,

Zoutin(i) is calculated as

For j=1 to k

 Zoutin(j) = outBias(j)

 For i=1 to m

 Zoutin(j) = Zoutin(j) + Zhid(i)*W(i,j)

 End Loop

End Loop

The output of each output layer unit is calculated

by using the following loop.

For i=1 to k

 Zout(i) = thresh(Zoutin(i))

End Loop

Only one of the 26 output neurons will be activated that

represents the list index of the added alphabets.

5. IMPLEMENTATION
The algorithms used above are now tested and with the help of

a GUI, English alphabets are added to the list. Initially some

training data is added to the list by drawing characters in the

user interface. After every character is added, an input pattern

is generated using the Feature Extraction process. The next

step which is the Training Process follows the algorithms

discussed in this paper. A GUI is used for drawing characters

and identifying them. Initially 10 alphabets are added.

[A,B,C,D,E,P,K,R,S,T] are added as shown in Fig. 8.

Fig. 8: Adding Alphabets to be Trained

The GUI tool has a space provided for drawing characters and

options for showing the down sampled image, training the

neural network and for recognizing characters drawn.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.13, April 2013

11

The training process is now started and after every epoch the

error is shown in the command line window (Fig. 9). It is seen

that initially the error is quite high and after every epoch it

reduces and finally when it reaches a max error of 0.005 the

training is completed.

Fig. 9: Training Process showing Error after every epoch

After the training is completed, the network can be used to

identify alphabets drawn in the interface.

Table 2 shows the accuracy of recognizing each character

 Table 2: Accuracy of the 10 characters in the list

Characters

Drawn

No. of

times

drawn

No. of times

Recognized

Accuracy

A 10 9 90%

B 10 7 70%

C 10 10 100%

D 10 9 90%

E 10 9 90%

P 10 8 100%

K 10 7 70%

R 10 8 80%

S 10 9 90%

T 10 10 100%

The recognition output generated by drawing a character ‘A’

is shown in Fig. 10.

Fig. 10: Recognizing character ‘A’

Table 3 gives the recognition accuracy rates after training the

network for a certain number of characters.

 Table 3: Results for recognizing English Alphabets

No. of

Training

patterns

Accuracy

No of

Epoch

Max

Error

10 86% 11000 0.005

18 81% 37000 0.005

26 79% 60000 0.008

The above results conclude that the back propagation

approach can be used for recognizing English alphabets drawn

by the help of a stylus.

The same network can be used for recognizing numbers and

the accuracy for using the same Network for recognizing

digits are given in Table 4.

 Table 4: Results for recognizing Numbers

No. of

Training

patterns

Accuracy

No of

Epoch

Max

Error

10 91% 13000 0.005

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.13, April 2013

12

6. CONCLUSION AND FUTURE SCOPE
Using the Back-Propagation Network, characters drawn with

the help of a stylus can thus be recognized. The algorithms

used are shown and the results using them are given. The

results of the shown back-propagation approach are

acceptable for recognizing characters. The time taken for

training is a factor and for large number of characters, the

neural network may take some time to train itself. Other

neural network models like Kohonen Network [14] also

provides good results. This approach can also be extended to

recognizing handwritten paper documents. For paper

documents, one can initially scan the document and convert it

to binary using an adaptive threshold and then segment the

lines and then find words. From the words one can find

character outlines and use the back-propagation approach to

identify the characters. The network can also be trained with

multiple languages so that it can be used to recognize multiple

languages by using different dataset for different languages.

7. REFERENCES
[1] C. Bahlmann. Directional features in online handwriting

recognition. Pattern Recognition, 39(1):115–125, 2006.

[2] Anil.K.Jain and Torfinn Taxt, “Feature extraction

methods for character recognition-A Survey,” Pattern

Recognition, vol. 29, no. 4, pp. 641-662, 1996.

[3] Jeff Heaton, Introduction to Neural Networks with Java,

Heaton Research

[4] Ernest Istook, Tony Martinez, IMPROVED

BACKPROPAGATION LEARNING IN NEURAL

NETWORKS WITH WINDOWED MOMENTUM,

International Journal of Neural Systems, vol. 12

[5] Vu N.P. Dao 1, Rao Vemuri, A Performance Comparison

of Different Back Propagation Neural Networks Methods

in Computer Network Intrusion Detection

[6] Magoulas, G.D., Androulakis, G. S., and Vrahatis, M.N.,

Improving the Convergence of the Backpropagation

Algorithm Using Learning Rate Adaptation Methods., in

Neural Computation, Vol. 11,MIT Press.

[7] Davis, R.H., Lyall, "Recognition of hand written

character, A review", Image and vision computing, 1986

 [8] R.G. Casey and E.Lecolinet, “A Survey of Methods and

Strategies in Character Segmentation,” IEEE

Transactions on Pattern Analysis and Machine

Intelligence, Vol. 18, No.7, July 1996

[9] C. L. Liu, H. Fujisawa, “Classification and Learning for

Character Recognition: Comparison of Methods and

Remaining Problems”, Int. Workshop on Neural

Networks and Learning in Document Analysis and

Recognition, Seoul, 2005.

[10] F. Bortolozzi, A. S. Brito, Luiz S. Oliveira and M.

Morita, “Recent Advances in Handwritten Recognition”,

Document Analysis, Umapada Pal, Swapan K. Parui,

Bidyut B. Chaudhuri, pp 1-30.

[11] J.Pradeep1, E.Srinivasan2, S.Himavath, "DIAGONAL

BASED FEATURE EXTRACTION FOR

HANDWRITTEN ALPHABETS RECOGNITION

SYSTEM USING NEURAL NETWORK" , IJCSIT, Vol

3, No 1m Feb 2011

[12] Anita Pal & Dayashankar Singh, “Handwritten English

Character Recognition Using Neural Network”, Network

International Journal of Computer Science &

Communication.vol. 1, No. 2, July-December 2010

[13] N. Arica and F. Yarman-Vural, “An Overview of

Character Recognition Focused on Off-line

Handwriting”, IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, 2001

[14] Dr. Pankaj Agarwal, Hand-Written Character

Recognition Using Kohonen NetworkIJCSt Vol. 2, ISSue

3, September 2011

