
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.12, April 2013

40

An Algorithmic Approach to Predict Fault Propagation

and Defects in Dependent Modules based on Coupling

Kireet Joshi
M.Tech Scholar, Computer Science

& Engineering
B.T.K.I.T, Dwarahat

Ramesh Chandra Belwal
Asst. Professor, Deptt. Of

Computer Science & Engineering
B.T.K.I.T, Dwarahat

Shailendra Mishra, PhD.
Prof. & H.O.D, Computer Science

& Engineering
B.T.K.I.T, Dwarahat

ABSTRACT

There is an enormous amount of research going on to

minimize the effect of coupling between the software modules

and to reduce the defects present in them. In this paper, an

algorithmic approach is proposed that gives a probability,

such that the highly dependent modules in system must be

analyzed by the development team for fault proneness and

defects. The higher the coupling, interdependency between

the modules is increased and it is alarming issue in software

engineering tasks. There is an enormous amount of research

done on direct and indirect coupling, but this paper

approaches on the effect of coupling to predict defects and

how they are propagating between the modules. Every

software product is tested for defects and bugs before it is

given to acceptance testing to users. The paper focuses on

testing the defect propagation percentage of every module in a

dependent system (dependent modules).The greater the

percentage of defect propagation factor between two

dependent module, implies that the coupling between them is

higher and the probability of the module to be fault prone

increases. Taking this into consideration, the testing team

saves the time by considering more on the modules for which

the percentage defect propagation factor is higher. It ensures

time, cost and efficiency which are the main factors of a

software industry.

Keywords

Coupling, Fault detection, Fault Prediction using Coupling,

Module Dependency, Testing Strategies, Fault Localization,

Defects, Debugging

1. INTRODUCTION
Dependency between the software modules is an issue in

software engineering tasks, but if the dependency is higher

than at the time of testing the modules the tasks become

cumbersome. In software engineering, coupling or

dependency means each program module relies on each one

of the other modules. Coupling is usually contrasted with

cohesion. Low coupling often correlates with high cohesion,

and vice versa. Low coupling is often a sign of a well-

structured computer system and a good design, and when

combined with high cohesion, supports the general goals of

high readability and maintainability. Coupling was introduced

in software engineering tasks for designing the modules. It

was observed by the developers that there are some programs

that were easier to implement in software processes , and

coupling in software engineering is a method of finding how

independent a proposed module or node is there from others

in the software system[17][18].The main idea of

incorporating coupling in program modules is to minimize the

cost and time of “debugging”. Coupling gives an idea and

concept of the strength of interconnections between program

units. Highly coupled system contains program units

dependent on each other. Loosely coupled modules constitute

some program units that are independent or almost

independent. There are some program or software modules

that are not correlated to each other if they can function

completely without the interference of the other. Obviously,

there can't be any modules that completely independent of

each other. They must interact so that desired outputs can be

produced. If connections between modules increase abruptly,

then the chances of dependency in the modules increase in the

sense that, more information of one module is required to

understand the characteristics of other module. There are three

factors that the programmer should be known of like, number

of interfaces, complexity of interfaces and type of information

flow along interfaces. If the programmer wants to minimize

number of interfaces between modules, he should make an

attempt to minimize the complexity of each interface, and

control the type of information flow. An interface of a module

is used to pass information to and from other modules. In

general, modules are tightly coupled if they use shared

variables or if they exchange control information. Loose

coupling in module means information held within a unit and

interface with other units via parameter lists. Tight coupling

within module suggest shared global data. There are two types

of info flow in modules, data or control. Passing or receiving

back control info means that the action of the module will

depend on this control info, which makes it difficult to

understand the module. Interfaces with only data

communication result in lowest degree of coupling, followed

by interfaces that only transfer control data.

2. MODULE DEPENDENCY
It means when some of the programs modules are directly or

indirectly related or dependent on other modules. While doing

programming tasks the developers uses some slices which are

used to investigate the features of the dependencies in a

program. Dependencies within a program module should be

checked, and more focus should be given so that in near future

it can be used in many software engineering tasks like

debugging and fault localization or defect prediction within

modules of a program and it gives the tester an ease to easily

predict and analyze the results based on the focused modules.

A number of Static program-dependency models existing in

today’s technological computing era , like the program-

dependence graph [16] and the system-dependence graph

[15], that are being used in various software engineering

methodologies and also been used by many researchers and

programmers for incorporating the techniques in supporting

software-engineering tasks such as debugging, testing and

maintenance(e.g., [13, 14]).

2.1 STATIC AND DYNAMIC MODELS
The program-dependence graph (PDG) and system-

dependence graph (SDG) are static program models. They are

used to determine which instructions in a program are related

to the other instructions. Dynamic slices only represent the

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.12, April 2013

41

events that actually occurred during a specific execution, thus

removing the instructions that were not relevant for that

execution. In this case the programmer is more concerned

with only on the specific instruction that are taking part in the

execution process[1].The PDG is an intra procedural model of

a procedure that captures both control and data dependencies

among instructions within the procedure.

2.2 Control and Data Dependency

.

Fig 1: Diagram Depicting Data and Control Dependencies

between Different Modules

Data coupling is the coupling in which one software module

transfers the information to another module for its future

tasks. Control coupling is the coupling in which output of one

module depends on the successful execution of the module on

which it is dependent. In the above figure, the value of P is

used by sol shows data dependency or coupling, where the

output of one component or module can be used as an input to

another.Similarly,successful execution of the

module(x==8)will ensure whether the two modules will be

execute or not, this accounts for control coupling.

3. FAULT LOCALIZATION
Detection of software fault by runtime monitor or by any

testing tool, the fault localization process is very difficult and

costly and requires enormous efforts of the developer and the

analyst [9].Software fault localization is very costly and time

consuming issue in module or component debugging. So,

research is going for some fault localization techniques that

can guide software developers to localize the faults in a

module with minimum time and effort. This research has

focused to the proposal and development of various methods,

each of which seeks to make the fault localization process

more effective in its own unique and creative way. To

improve the quality of a module or a component, one have to

remove as many defects in the program as possible without

introducing new bugs at the same time. During module or

component debugging, fault localization is the phenomenon of

identifying the exact locations module for faults. It is a very

expensive and time consuming process. Its effectiveness

depends on software developers understanding of the module

being debugged, and their ability of logical judgment, past

experience in program or component debugging, and how

suspicious code, in terms of its likelihood containing faults, is

identified and prioritized for an examination of possible fault

locations. When the software faults are detected in some

modules or programs then there should be some fault

localization algorithms that can be incorporated to minimize

the manual inspection and operational cost [4].Fault

localization can be categorized into two parts. The first part is

to use a method to identify suspicious code in a program

module that may contain program bugs. The second part is for

software developers to actually examine and analyze the

identified code to decide whether it indeed contains bugs. All

the fault localization methods referenced in the following

focus on the first part such that suspicious code is prioritized

based on its likelihood of containing bugs. Software module

or a program code containing higher priority should be

analyzed before the software module or program code with a

lower priority, as the former is more suspicious than the latter,

i.e., more likely to contain bugs. If the testing team members

are able to analyze the source module from where the faults

are propagating to the dependent modules then a lot of time

and effort can be saved and detection of faults or defects in

early stages helps the testing team members to analyzed the

affected module only from where the defect is being

propagated irrespective of analyzing or testing the overall

system. As for the second part, assume perfect bug detection.

A bug in a piece of software module or a program code will

be analyzed by a developer if the module (namely, the

statement) is analyzed and examined thoroughly. If the

developer is unable to analyze perfect bug detection, then the

software module or the program code (the number of

statements in this case) needs to be examined in order to find

the bug. Without any loss of information, the program module

may be referred to as statements having the understanding

that, fault localization methods can also be applied in order to

identify the suspicious modules, decisions, definitions

etc.Program slicing is used for debugging the software

modules which comprises of the overall computation of

program statements [11,12].

4. DEFECTS

While testing when a tester executes the test cases, he might

observe that the actual test results do not match from the

expected results. The variation in the expected and actual

results is known as defects. Different organizations have

different names to describe this variation, commonly defects

are also known as bug, problem, incidents or issues. The cost

of searching the defects is a cumbersome task and is included

as one of the most expensive software development tasks. But

the effect of defects can be minimized by incorporating some

defect management process that focuses on reducing the

impact of defects in software engineering tasks. There have

been various research in past that showed that defect

prediction models that are built on some kind of product

metrics, and can be used to improve the quality of software

packages or modules [2].There may be a chance that there are

some incidents that occurs during testing may not be a defect

or bug.TDD (TEST DRIVEN DEVELOPMENT) is a

relatively new software development practice that have been

developed in such a way by the developers, in which they

write the unit tests before coding of program starts. Analysing

and detecting the software bugs before implementation of the

actual code is assumed to be much cheaper and time saving,

than after implementation of the same [6].

Test-Driven Development (TDD) is an approach in software

engineering that consists of preparation of very short

iterations where the test case(s) covering a new feature or

P= minvalue

//defect

 If

x==8

sol=0 sol=p

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.12, April 2013

42

functionality are written first. Defects are fixed and all the

suitable components are restructured to finalize the changes.

5. TESTING
Software Testing is the process of executing modules or

system with the intent of finding errors. Testing different

modules or a component is one of the most common methods

for assuring quality of complex computer software systems.

To be confident of the results of testing, testers need for-

manually defined procedures that provide mechanisms for

creating test data and for deciding when testing can stop. Test

requirements are specific things that must be satisfied or

covered during testing. Many Researchers have opted some

important issues regarding the test cases. How can each

additional failed test cases can help in locating the modules

for bugs and defects and simultaneously how an additional

successful test case helps the programmers in locating bugs in

software modules[7]. A testing criterion is a rule or collection

of rules that impose requirements on a set of test. The paper

focuses on finding the probability of a defect prone module;

so that it will save the time and cost factors that are important

issues in terms of software industry. The first phase of testing

is done by the designers and engineers who created the

system, usually before the system is delivered to the customer.

The test data that is used in this first phase is similar to data

that would be used by the actual customer. The second phase

of testing is done after the system has been delivered and

installed with the customer. The data used in the second phase

is usually 'live' data - data that is actually part of the

customer's organization. Because of programmers competence

limit, there exist enormous amount of defects that are

generated during the software development life cycle in every

software engineering tasks [8].

6. RELATED WORK
Research has been done in past years to understand the

dependencies among the program elements, among multiple

modules. The concept of weighted system dependence graph

has been proposed to account for the propagating faults

among the dependent modules. The weight for a particular

dependency edge, based on co-execution, is defined by the

degree to which the same executions executed each of its

incident nodes. Past research has been done to calculate the

degree to which the same amount executions were performed

in each of the dependent program modules by using some

mathematical function. Calculating the degree of executions

by incorporating the Jaccard similarity coefficient can be used

in this perspective [10].The co-execution edge weight is

calculated using the following formula

 (1)

Where i1 and i2 are two instructions with a dependency

between them, and Ei1 and Ei2 are the sets of executions that

executed i1 and i2, respectively. Past work has to done to

calculate the direct and indirect coupling within the modules

that are dependent to each other, but there still there may be

hidden dependencies. The longer the two modules are

connected to each other the more hidden dependence. Indirect

coupling can also be analyzed and detected by the transitive

closure of the modules, but there may be some circumstances

that instead of transitive closure the indirect coupling may

still exist and leads hidden modules undetected in software
engineering process[3].

The Coupling Metrics can be measured by the equations:

 (2)

 Where ICi is the number of classes to which a class

Ci is indirectly coupled, and the summation is over all the
classes.

 (3)

Where DCi is the number of classes to which a class Ci

is directly coupled, and the summation is over all the classes.

 (4)

Where, failed (k) is the number of failed test cases or defect

producing variables between dependent modules.

Passed (k) is the number of passed test cases or the variables

which are not producing defects between dependent modules

Totalfailed are the total number of defect producing variables

between dependent modules [19].

Existing Algorithm calculates the failure- correlation as a

measure of detecting the fault prone modules. Higher the

failure-correlation percentage means that the dependent

modules are prone to fault and testing team have to focus

more on those modules. The proposed algorithm calculates

the Defect Propagation factor to find the probability of the

dependent modules to be fault prone.

7. Proposed Approach

Some abbreviations that are used throughout in the paper for

calculations:

Calculated Factor CFij is given by

And Percentage Defect propagation factor DFij is given by

If the defect for which the programmer is applying the effort

is a real defect or bug, then the programmer should focus only

on the specific executions instead of detecting all possible

executions in a module. Hence there is an increased

probability of the bug being detected in the program [5].In the

proposed approach there is intent of finding the probability of

a module to be more fault prone.

 (as,bs,c,x,y)

 as,x,z)

 (as,bs,c, m)

Fig 2: Dependency between modules

Module i

Module j

Module k

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.12, April 2013

43

Suppose from the above figure, there is a set of interlinked

modules such that one of the modules is interdependent on

another. Let CDij consists of common variables between

modules i and j.CDik consist of common variables between

modules i and k.CDjk consist of common variables between

modules j and k.Let DVij be the set of defect producing

variables participating between dependent modules(i and

j).DVjk be the set of defect producing variables participating

between dependent modules (j and k). The intent is to find the

probability of the module to be fault prone.

If the Calculated Factor CFij, exceeds the percentage defect

propagation factor DFij, then it can be said that the module

having high percentage defect propagation factor with respect

to Calculated Factor CFij is statistically more fault prone, and

the dependency (interdependency) is higher. This accounts for

high coupling. So it will help the testing team to focus more

on that defected module for further debugging and their

efficiency increases.

In the above figure, module i is having variables set

(as,bs,c,x,y) where as,bs are the variables producing defects.

As it is clear from the figure that module k contains both of

the defect producing variables as,bs as compared to module j

which consists of only one defect producing variable

as.So,there is a probability that module k which is dependent

on module i will be more fault prone then module j which is

also dependent on module i.

7.1. Proposed Algorithm

Input –

 All variables in each module.

 All defect producing variables in each module.

Output: Set of the dependent defect prone modules

Method:

For each module Mi, get the set of dependent modules //

where i=1 to n

For each module Mi, Where i=1 to n

/* This for loop constitutes set of variables present in module

and compares them with the variables present in dependent set

of modules */

{

For each module Mj // where j=1 to n and i≠j

{

Find CDij, where CDij is the set of common variables

between the dependent modules

/* CDij is calculated by taking the intersection of the variables

from the dependent set of modules */

 Find Calculated factor (CFij) =

}

}

For each module Mi // where i=1 to n

{

/* This for loop accounts for set of variables along with the

variables that are responsible in producing defects and

compares them with the variables present in dependent set of

modules */

For every dependent module Mj //where i≠j

{

Find DVij, where DVij is the set of defect producing variables

participating in the dependent modules and are responsible for

producing defects.

/* DVij is calculated by taking the intersection of the variables

that are participating in the dependent modules and are

responsible for producing defects */

Calculate percentage Defect propagation factor (DFij)=

}

}

For each module Mi // where i= 1 to n

{

For every dependent module Mj // where j=1 to n i≠j

{

If (DFij) >= (CFij)

/*Where (DFij) is calculated above as

And CFij is calculated above as

 */

 Then module is fault prone

Else

Module is not fault prone

}

}

From the proposed algorithm if the Calculated Factor is less

than the percentage defect propagation factor then there is no

defect between the modules and the coupling between the

modules is less. But if the Calculated Factor is greater than the

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.12, April 2013

44

percentage defect propagation factor then the probability of

the module to be fault prone increases and testing team have

to focus more on checking that particular fault prone

modules, so that the defect should not propagate in the whole

system. This approach is more efficient in cost and time for

the testing team and for the software industry.

7.2. Example

 Mi

Mj Mk

Fig 3 : Set of Dependent Modules

.

Some abbreviations that are use in the paper for calculating

tasks:

 Calculated Factor (CF) between the set of dependent modules =

Defect Propagation factor (DF) between the set of dependent

modules =

For example, Consider three modules as per the given figure

and try to find out the probability of fault prone module.

Let i={a,b,c,d,e,f }and j= {d,p,f,a,b} are set of variables in

Module i and Module j

CDij= {a,d, f, b} are set of common variables between the

dependent set of modules i and j

DVij= {a,b},where DVij is the set of defect producing variables

participating in the dependent modules.

Defect propagation factor (DFij) =2/4 or 50%(or in other words

it can be said that if module i is producing defect than

statistically it could be said that there is approximate 50%

probability , module j would also produce defect)

CFij=4/7 =0.57 or 57% is the calculated factor in module i

Let j={d,p,f,a,b} k={d ,a,x,y}be the set of variables in modules j

and k.

CDjk= {d, a} be the set of common variables between the

dependent set of modules i and j

DVjk= {d, a} is the set of defect producing variables

participating in the dependent modules.

Defect propagation factor (DFjk) =2/2 or 100 %(or in other

words it can be said that if module j is producing defect than

statistically there is approximate 100% probability, module k

would also produce defect)

CFjk=2/7 =.28 or 28% is the calculated factor in module j

Let i={ a,b,c,d,e,f } k={ d ,a,x,y}are set of variables in modules

i and k

CDik= {a, d} be the set of common variables between the

dependent set of modules i and k

DVik={a} is the set of defect producing variables participating

in the dependent modules

 Defect propagating factor (DFik) =1/2 or 50%(or in other

words it can be said that if module i is producing defect than

statistically there is approximate 50% probability , module k

would also produce defect)

 CFik=2/8 =.25 or 25% is calculated factor in module k.

 It is clear from the above example that CFjk=28%but

DFjk=100%, it means the probability that module j is fault

prone increases, as module j contains all the variables that are

producing defects which are defined in module i.So the testing

team will now focus more on module j, and this lead to an

increased efficiency of the testing team which is a prime

concern of a software industry. Greater the Percentage defect

propagation Greater will be the probability of the module to be

fault prone and this is directly proportional to increased

coupling. As for a module or a system the coupling should be as

low as possible which a prime concern in software engineering

field. On detecting the fault prone module the testing team will

focus more on that particular module so that in near future the

defect propagation from that module should be minimized.

Fig 4: Plot showing variation of defect propagating factor

w.r.t calculated factor between dependent modules

7. RESULTS & COMPARISION

 The results presented below demonstrate the comparison of

Calculated Factor with respect to the defect propagating factor

between the dependent modules. Higher the Defect propagation

factor of the dependent module with respect to the Calculated

Factor shows that the probability of the module to be fault prone

is high. This high fault prone probability is directly proportional

to the coupling.

0

50

100

150

ij jk ik

P
e

rc
e

n
ta

ge

Dependent Modules

CALCULATED
FACTOR(in %)

DEFECT
PROPAGATION
FACTOR(%)

{a,b,c,d,e,f}

{d,p,f,a,b} { d,a,x,y}

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.12, April 2013

45

Calculating the failure-correlation based on the existing

algorithm in the given example and comparing the defect

propagation factor of the proposed algorithm with the failure-

correlation of the existing algorithm, it can be seen that the

Defect propagation factor calculated by proposed algorithm is

greater than the failure-correlation as calculated based on the

existing algorithm. So the proposed algorithm gives higher

probability to detect the module to be fault prone as compared

to existing algorithm.

Table 1: Results showing comparison between existing

approach and proposed approach in terms of Defect

Propagating Factor and Failure-Correlation

Dependent

modules

Defect

Propagat

ion

Factor(

%)

Calculated

factor(%)

Failure-

Correlatio

n

(i,j) 50 57 53.45

(i,k) 50 25 26.73

(j,k) 100 28 53.45

As seen from the above table, the Defect Propagation factor of

dependent modules (i,k) and(j,k) is statistically much higher

than the failure correlation factor of existing algorithm.So,the

probability that modules (i,k) and (j,k) are more fault prone is

high and also the coupling between these dependent modules is

also high.

Fig 5: Comparison of Various Factors of Existing and

Proposed Algorithm

Fig 6: Comparison of Both Approaches in Predicting Fault

Prone Module

The table shown below gives the relationship that how the fault

prone dependent modules are directly related to coupling. It is

shown in the result that the probability of the dependent

modules (j,k) and (i,k) to fault prone is high and due to which

the coupling between them is also high.

Table 2: Results of Proposed approach showing relation

between fault prone modules and coupling

Dependent

modules

Defect

Propagat

ion

Factor(

%)

Calculated

factor(%)

Probability

of fault

prone

Coupling

(i,j) 50 57 no low

(i,k) 50 25 yes high

(j,k) 100 28 yes high

8. CONCLUSION

The focus is on how knowledge discovery can be applied on

the software modules by analyzing and predicting the defects

present in them. For that an algorithmic approach have been

proposed for directly coupled interlinked software modules,

which gives a probability to developers as well as testing team

members, to concentrate more on the defect prone modules,

so as to minimize the defects in software modules. This will

led to improve the efficiency as well as saves a lot of time of

the testing team in the software industry. Later on, this work

can also be extended for indirect coupled modules.

0

20

40

60

80

100

120

(i,j) (i,k) (j,k)

P
e

rc
e

n
ta

ge

Dependent Modules

Calculated
Factor

Defect
propogation
Factor

Failure-
correlation
Factor

0

20

40

60

80

100

120

(i,j) (i,k) (j,k)

P
e

rc
e

n
ta

ge

Dependent Modules

 Detection of
fault prone
Module by
Existing
Algorithm(%)

 Detection of
fault prone
Module by
Proposed
Algorithm(%)

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.12, April 2013

46

9. REFERENCES

[1] Fang Deng, James A. Jones,” Weighted System

Dependence Graph”, 2012 IEEE Fifth International

Conference on Software Testing, Verification and

Validation”

[2]. Tan, Xi Sch. of Comput. Sci., Fudan Univ., Shanghai,

China Peng, Xin, Pan, Sen, Zhao, Wenyon,” Assessing

Software Quality by Program Clustering and Defect

Prediction”, Reverse Engineering (WCRE), 2011 18th

Working Conference, pp. 244 – 248, Oct. 2011, ISSN :

 1095-1350

[3] Vinay Singh and Vandana Bhattacherjee,” Detection of

Indirect Coupling Using Chaining Method and Its Impact

on Software Quality”, International Journal of Research

and Reviews in Information Sciences (IJRRVol. 1, No. 4,

December 2011, ISSN: 2046-6439

[4]. Gonzalez-Sanchez, Alberto Software Technol. Dept.,

Delft Univ. of Technol., Delft, Netherlands

Abreu, Rui, Gross, Hans-Gerhard, Van Gemund, Arjan J

C,” Prioritizing tests for fault localization through

ambiguity group reduction”, Automated Software

Engineering (ASE), 2011 26th IEEE/ACM International

Conference, pp. 83 – 92, 6-10 Nov. 2011, ISSN : 1938-

4300

[5]. Jalbert, Kevin Software Quality Res. Group, Univ. of

Ontario Inst. of Technol., Oshawa, ON, Canada

Bradbury, Jeremy S.,” Using clone detection to identify

bugs in concurrent software”, Software Maintenance

(ICSM), 2010 IEEE International Conference, pp. 1 – 5,

12-18 Sept. 2010, ISSN : 1063-6773

[6]. Nugroho, Ariadi LIACS, Leiden Univ., Leiden,

Netherlands Chaudron, Michel R V,Arisholm, Erik,”
Assessing UML design metrics for predicting fault-prone

classes in a Java system:, Mining Software Repositories

(MSR), 2010 7th IEEE Working Conference, pp. 21 –

30, 2-3 May 2010, Print ISBN: 978-1-4244-6802-7

[7] W. E. Wong, V. Debroy and B. Choi, “A Family of Code

Coverage-based Heuristics for Effective Fault

Localization,” Journal of Systems and Software,

83(2):188-208, February, 2010

[8]. Chen, Yuan Changchun Inst. of Opt., Fine Mech. &

Phys., Chinese Acad. of Sci., Changchun, China

Shen, Xiang-heng, Du, Peng,Ge, Bing,”Research on

software defect prediction based on data mining”, Vol.

1,Computer and Automation Engineering (ICCAE), 2010

The 2nd International Conference,563 – 567, pp. 26-28

Feb. 2010, E-ISBN : 978-1-4244-5586-7

[9]. Liu Yanbin Ordnance Eng. Coll., Shijiazhuang,

China,Zhu Xiaodong,Sun Zhiming,Wang Yigang,Ye

Fei,” Dual-Slices Algorithm for Software Fault

Localization”, Computational Intelligence and Software

Engineering, 2009. CiSE 2009. International Conference,

pp. 1 – 4, 11-13 Dec. 2009, Print ISBN: 978-1-4244-

4507-3

[10] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to

Data Mining. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc., 2005

[11] F. Tip, “A survey of program slicing techniques, “Journal

of Programming Languages,3(3):121–189, 1995

[12] M. Weiser, “Program slicing,” IEEE Transactions on

Software Engineering, SE-10(4):352-357, July 1984

[13] J.-D. Choi, B. P. Miller, and R. H. B. Netzer,

“Techniques for debugging parallel programs with

flowback analysis,” ACM Trans. Program. Lang.Syst.,

vol. 13, pp. 491–530, October 1991.

[14] S. Bates and S. Horwitz, “Incremental program testing

using program dependence graphs,” in Symposium on

Principles of Programming Languages. New York, NY,

USA: ACM, 1993, pp. 384–396.

[15] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural

slicing using dependence graphs,” ACM Trans. Program.

Lang. Syst., vol. 12, pp.26–60, January 1990

[16] K. J. Ottenstein and L. M. Ottenstein, “The program

dependence graph in a software development

environment,” SIGPLAN Not., vol. 19, no. 5,pp. 177–

184, 1984.

[17] Briand,L.C., Daly,J.W., & Wust,J.K.,”A Unified

framework for coupling measurement in object oriented

system”. IEEE Transact Software Engineering, (25(1):

pp. 91-121, January/February 1999

[18] Yourdon. & Constantine, L.L,” Structured Design:

Fundamental of a discipline of computer program and

system design prentice hall”, 1979

[19] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On

the accuracy ofspectrum-based fault localization,” in

Testing: Academic and Industrial Conference Practice

and Research Techniques, 2007, pp. 89–98.

