
 International Journal of Computer Applications (0975 – 8887)

Volume 68– No.11, April 2013

Performance Comparison between TCP Sack and TCP
Vegas using NS-2 Simulator

Heena Dave

Department of E&C Engineering
Technocrats Institute Of Technology

Bhopal,MP.

Vikas Gupta
Department of E&C Engineering

Technocrats Institute Of Technology
Bhopal,MP.

 Parul Dihulia
Department of E&C Engineering

Technocrats Institute Of Technology
Bhopal,MP.

ABSTRACT
In this paper, two TCP variants are compared in different

scenario. Transmission Control Protocol (TCP) is a reliable,

end-to-end transport protocol which is most widely used for

data services and is very efficient for wired networks. It also

performs well in wireless networks. It is the backbone

protocol of most of the internet based applications. Our

analysis is on performance of TCP variants. In this paper we

carry out performance study of TCP Sack and TCP Vegas to

be able to classify which variant of TCP performs better in

various possible scenarios. This paper describes an NS-2

based simulation analysis. By varying different parameters

and congestion control mechanism we will check its effect

on Throughput.

Keywords: TCP variants, Error rate, Delay, Gateways,

NS-2, Throughput.

1. INTRODUCTION

Now-a-days the world is becoming smaller and various

ways of communication are being used to avail the facilities

for people. Internet is one of the widely used techniques to

serve different purposes like data transfer, for entertainment,

for education purpose, for paying bills online, for shopping,

to be aware of the new researches and innovations, etc. The

Internet is expanding rapidly, major contribution in this

expansion is of the global acceptance of the TCP/IP protocol

[1] stack and use of wireless links, particularly in case of

remote areas. TCP has three control mechanisms: Flow

control, Error control, Congestion control. Flow control

defines the amount of data source can send before receiving

an acknowledgment from the destination. Flow control

mechanisms accomplish by sliding window protocol. For

error control TCP uses three simple tools: checksum,

acknowledgment, and time-out.

Transmission capacity is governed by congestion window;

CWND is reduced to 1 from its current value, which also

reduces the flow of packets. Thus it controls congestion in

network. Here we will discuss about congestion control [3]

mechanisms. There are four algorithms used in TCP: Slow

start, Congestion Avoidance, Fast retransmit and Fast

Recovery. Slow Start, a requirement for TCP software

implementations is a mechanism used by the sender to

control

the transmission rate. Thus the rate of acknowledgments

(ACKs) returned by the receiver determine the rate at which

the sender can transmit data. During the initial data transfer

phase of a TCP connection the Slow Start algorithm is used.

However, there may be a point during Slow Start that the

network is forced to drop one or more packets due to

overload or congestion. If this happens, Congestion

avoidance [10] is used to slow the transmission rate. When

three or more duplicate ACKs are received, the sender does

not even wait for a Retransmission timer to expire before

retransmitting the segment (as indicated by the position of

the duplicate ACK in the byte stream). This process is called

the Fast Retransmit algorithm. After retransmitting the

segment, Sender knows that still data is flowing to the

receiver. The reason is because duplicate ACKs can only be

generated when a segment is received. So instead of

reducing the flow of data abruptly by going all the way into

Slow Start, the sender only enters Congestion Avoidance

mode. The fast recovery algorithm then governs the

transmission of new data until non-duplicate ACKs arrive.

2. TCP Variants

2.1 TCP Sack

TCP with ‘Selective Acknowledgments’[2] is an extension

of TCP Reno and it works around the problems face by TCP

RENO and TCP New-Reno, namely detection of multiple

lost packets, and re-transmission of more than one lost

packet per RTT.

SACK retains the slow-start and fast retransmits parts of

RENO. It also has the coarse grained timeout of Tahoe to

fall back on, in case a packet loss is not detected by the

modified algorithm. SACK TCP [5] requires that segments

not be acknowledged cumulatively but should be

acknowledged selectively. Thus each ACK has a block

which describes which segments are being acknowledged.

Thus the sender has a picture of which segments have been

acknowledged and which are still outstanding. Whenever the

sender enters fast recovery, it initializes a variable pipe

which is an estimate of how much data is outstanding in the

network, and it also set CWND to half the current size.

Every time it receives an ACK it reduces the pipe by 1 and

every time it retransmits a segment it increments it by 1.

Whenever the pipe goes smaller than the CWND it checks

which segments are un received and send them. If there are

no such segments outstanding then it sends a new packet.

Thus more than one lost segment can be sent in one RTT.

Disadvantage of TCP Sack

The biggest problem [4] with SACK is that currently

selective acknowledgments are not provided by the receiver

to implement SACK we will need to implement selective

acknowledgment which is not a very easy task.

2.2 TCP Vegas

TCP Vegas [12] is a TCP implementation which is a

modification of RENO. It builds on the fact that proactive

measure to encounter congestion is much more efficient than

reactive ones. It tried to get around the problem of coarse

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.11, April 2013

50

grain timeouts by suggesting algorithm which checks for

timeouts at a very efficient schedule. Also it overcomes the

problem of requiring enough duplicate acknowledgments to

detect a packet loss, and it also suggests a modified slow

start algorithm which prevents it from congesting the

network. The three major changes induced by Vegas are:

New Re-Transmission Mechanism: Vegas extend

on the re- transmission mechanism of RENO. It keeps track

of when each segment was sent and it also calculates an

estimate of the RTT by keeping track of how long it takes

for the acknowledgment to get back.

Congestion avoidance: TCP Vegas is different from all

the other implementation in its behavior during congestion

avoidance. It does not use the loss of segment to signal that

there is congestion. It determines congestion by a decrease

in sending rate as compared to the expected rate, as result of

large queues building up in the routers. It uses a variation of

Wang and crow croft‘s Tri-S scheme.

Modified Slow-start: TCP Vegas differs from the other

network asymmetry, also the behavior of the underlying

routing algorithms during its slow-start phase. The reason

for this modification is that when a connection first starts it

has no idea of the available bandwidth and it is possible that

during exponential increase it over shoots the bandwidth by

a big amount and thus induces congestion. To this end Vegas

increases exponentially only every other RTT, between that

it calculates the actual sending through put to the expected

and when the difference goes above a certain threshold it

exits slow start and enters the congestion avoidance phase.

3. PERFORMANCE ANALYSIS

Here the performance evaluation of TCP Sack and TCP

Vegas using NS-2 simulator [3] is shown. One can simulated

the performance of these variants for different parameter.

Here by one can consider the Error Rate, Delay, Packet

Size, Window Size and different Gateways. The Topology is

created by NS-2 simulator as shown in figure 1. There are

three nodes Sender (node-0), Router (node-1) and Receiver

(node-2) which represents the flow of data transmission.

Fig 1: Simulation topology

 Table 1: Simulation Parameters

3.1 Analysis of Graph of Throughput Vs.

 Error rate

In this case analysis is done on both TCP variants by

changing Error Rate.

 Figure 2: Throughput Vs. Error rate

It is evident from Figure 2 that the performance of TCP

Vegas is better than TCP Sack at higher loss rate. Also one

can see that the performance of TCP Vegas is similar to TCP

Sack at 0.001 error rate. From figure 2 it can be observed

that for low error rates (0.0001), TCP Vegas is slightly less

efficient than others, but as the error rate increases (0.1) TCP

Vegas emerges as the better option [9].

3.2 Analysis of Graph of Throughput Vs.

 Delay

Here Delay is transmitting time between two packets. In this

simulation the range of Delay is taken from 1ms to 25ms,

after 25ms. Throughput is not changing due to small scale

projection in our experiment. From figure 3, one can see that

when Delay increases, throughput is decreases. Due to large

delay speed will be affected.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.11, April 2013

51

Figure 3: Throughput Vs. Delay

It will reduce the speed of transmission so ultimately

throughput will also reduce. At 15ms throughput of TCP

Vegas is somewhat less than TCP Sack but by taking graph

from NAM editor from NS-2 simulator one can find that

response (smooth graph) of Vegas is very good compared to

Sack. So TCP Vegas emerges as the better option.

3.4 Analysis of Graph of Throughput Vs.

Packet Size

The effect of Packet size on Throughput is as shown in

Figure 4. Here packet size is kept from 50 to 1500. By

increasing size the Throughput is also increase. At lower

 Figure 4: Throughput Vs. Packet size

Packet size TCP Vegas is not efficient but if we increase the

size of packet one can find the difference in throughput.

However higher packet size is acceptable because it

indicates that efficiency becomes good. At large packet size

throughput of TCP Sack and TCP Vegas is almost same. So

it is better to use TCP Vegas instead of TCP Sack.

3.5 Analysis of Graph of Throughput Vs.

Window Size

In this case, simulation results are taken by varying window

size. From figure 5 it can be seen that at very small window

size throughput of both TCP variants is very poor. By

increasing the size of window throughput is increases up to

fixed value than it becomes constant. Generally the size of

window is kept 20 as standard.

 Figure 5: Throughput Vs. Window size

One can see from above figure that throughput of TCP Sack

and TCP Vegas are same after window size 15. So it proves

that TCP Vegas is similar efficiency giving variant.

3.6 Comparison using different Queue

Gateways

There are many Queue Gateways in TCP. Each has different

policy to manage the congestion in network. Here five

gateways named Drop Tail, RED, DRR, SFQ and FQ are

taken for simulation.

Figure 6: Throughput Vs. Types of Gateways

By changing gateway Drop Tail to RED and SFQ,

throughput of TCP Sack decreases but throughput of TCP

Vegas remains stable. From figure 6 one can say that TCP

Vegas is good compared to TCP Sack in different gateways.

4. CONCLUSION

In this paper, analysis is done on two TCP variants named

TCP Sack and TCP Vegas. After analyzing the performance

from simulated data and graphs obtained, results are found

that TCP Vegas is almost similar to TCP Sack. But in some

cases one found that TCP Vegas emerges as the better

option. The behavior of TCP with SACK is unlikely to cause

undesirable network effects. We know that TCP Sack is

required same implementation at receiver side and which is

not a very easy task. So it is better to use TCP Vegas.

5. ACKNOWLEDGMENT

This research has been conducted under the guidance of Mr.

Rahul Mehta. Authors are thankful to him.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.11, April 2013

52

6. REFERENCES
[1] RFC 793- Transmission Control Protocol

[2] RFC 2018 TCP Selective Acknowledgment

[3] RFC 5681 TCP Congestion Control

[4] Sally Floyd “Issues of TCP with SACK” March 9, 1996

[5] Yuvaraju B N, Dr. Niranjan N Chiplunkar “Scenario

Based Performance Analysis of Variants of TCP Using

NS2- Simulator ”,IJCA August 2010.

[6] Network Simulator - 2 (NS-2)

http://mohit.ueuo.com/NS- 2.html , The ns Manual

[7] Kevin Fall and Sally Floyd, “Simulation-based

Comparisons of Tahoe, Reno, and SACK TCP”

[8] Shagufta Henna “A Throughput Analysis of TCP

Variants in Mobile Wireless

Networks”DOI10.1109/NGMAST.2009.71

[9] Suhas Waghmare, Aditya Parab, Pankaj Nikose, Prof.

S. J. Bhosale.”Comparative Analysis of different TCP

variants in a wireless environment ”978-1-4244 -8679-

3/11/$26.00 ©2011 IEEE

[10] JACOBSON, V. Congestion avoidance and control. In

Proceedings of SIGCOMM ’88 (Stanford, CA, Aug.

1988), ACM.

[11] A Comparative Analysis of TCP Tahoe, Reno, New-

Reno, SACK and Vegas -From Google.

[12] Lawrence S. Brakmo, Sean W. O’Malley, Larry L.

Peterson.”TCP Vegas: New Techniques for Congestion

Detection and Avoidance”

