
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.11, April 2013

37

 FIR Filter Designing using Xilinx System Generator

Anurag Aggarwal Astha Satija Tushar Nagpal

 Department of Electronics & Communication Engineering
Jaypee Institute of Information Technology

Sec-62,Noida, India

ABSTRACT

Xilinx System generator is used to design efficient DSP

algorithm on FPGA. In this paper Finite Impulse Response

(FIR) filter is designed using Simulink in Xilinx System

generator. The filters have been designed using Distributed

Arithmetic (DA) Algorithm. This design has been further

synthesized on Xilinx Virtex-4 FPGA kit. Finally comparison is

done between the results obtained from the software simulations

and those from FPGA using hardware co-simulation.

Keywords

Finite Impulse Response (FIR), Distributed Algorithm (DA),

Field Programmable Gate Array (FPGA), Digital Signal

Processing (DSP), Analog-to-Digital Converter (ADC).

1. INTRODUCTION

Digital signal processing techniques are used extensively in a

number of applications such as communication and multimedia.

DSP functions such as FIR filters and transforms have numerous

advantages over their analog counterparts. Digital circuits are

not dependent on precise values of digital signals for their

operation. Digital circuits are less sensitive to changes in

component values. They are also less sensitive to variations in

temperature, ageing and other external parameters. Digital

processing of a signal facilitates the sharing of a single processor

among a number of signals by time-sharing. This reduces the

processing cost. In addition multi-rate processing is possible

only in digital domain. Storage of digital data is very easy.

Digital filters are useful structures for digital signal

processing applications and in signal analysis and estimation [1].

Digital filters are widely used in the world of communication

and computation. An operation of digital filter design is

calculation of filter transfer function coefficients that decide the

response of the filter. Typical filter applications include signal

preconditioning, band selection, and low/high pass filtering.

Digital filters are categorized as finite impulse response (FIR)

and infinite impulse response (IIR) filters. Although FIR filters

are more complex, they have certain advantages over IIR filters

due to which they are more widely used in filtering applications.

IIR filters do not provide stability at higher orders whereas the

FIR counterparts are always stable and are particularly useful for

applications where exact linear phase response is required.

FIR filters [2][3] are filters having a transfer function of a

polynomial in z- and is an all-zero filter in the sense that the

zeroes in the z-plane determine the frequency response

magnitude characteristic. The z transform of a N-point FIR filter

is given by

 H(z) =
 (1)

Digital Filter can be implemented using a number of windows

using the window method. Here the filter is implemented using

the Blackman Window. The Blackman window is a taper formed

by using the first three terms of a summation of cosines. It was

designed to have close to the minimal leakage possible. The

Blackman window has good (though suboptimal) characteristics

for audio work. It is defined by the equation

 , 0≤ n ≤ M-1

(2)

Where M=N/2 for N even and (N+1)/2 for N odd.

Blackman window is used in signal processing literature as one

of the many windowing functions for smoothing values. It is also

known as an apodization (which means “removing the foot”, i.e.

smoothing discontinuities at the beginning and end of the
sampled signal) or tapering function.

2. FIR FILTER DESIGNING

In DSP, the design methods are mainly focused in multiplier-

based architectures to implement the multiply-and- accumulate

(MAC) blocks that constitute the central piece in FIR filters. The
FIR digital filter [2][3] is presented as:

 y[n] =

(3)

Where y[n] is the FIR filter output, x [n-k] is the input data

and c[k] represents the filter coefficients. Equation (3) shows that

multiplier-based filter implementations may become highly

expensive in terms of area and speed. This issue has been

partially resolved with low-cost FPGA’s which use DA
(Distributed Arithmetic) algorithm to implement such filters.

2.1 Distributed-Arithmetic Algorithm
DA algorithm is one of the popular multiplier-less methods which

involves use of memories (RAMs, ROMs) or Look-Up Tables

(LUTs) to store pre-computed values of coefficient operations.

This is a powerful technique for reducing the size of a parallel

hardware multiply and accumulate block that is well suited for

FPGA designs. Croisier [4] had proposed the multiplier-less

architecture of DA algorithm and it is based on an efficient

partition of the function in partial terms using 2’s complement

binary representation of data. The partial terms can be pre-

computed and stored in LUTs. Yoo [5] observed that the

requirement of memory/LUT capacity increases exponentially

with the order of the filter, given that DA implementations need

2K words, K being the number of taps of the filter.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.11, April 2013

38

Assuming coefficients c[k] are known constants, equation (3)

can be rewritten as follows [2][3][6] :

 y[n] =

(4)

Variable x[n] can be represented in binary decimal form as

follows:

 x[n] =

 2b xb є {0,1}

(5)

where xb [n] is the bth bit of x[n] and B is the input width.

Finally, the inner product can be rewritten as follows:

(6)

The coefficients in most of DSP applications for the multiply

accumulate operation are constants. The partial products are

obtained by multiplying the coefficients c[i] by multiplying one

bit of data x[i] at a time in AND operation. These partial

products are added and the result depends only on the outputs of

the input shift registers. The AND functions and adders can be

replaced by Look Up Tables (LUTs) [6] that gives the partial

product. Input sequence is fed into the shift register at the input

sample rate. The serial output is presented to the RAM based

shift registers at the bit clock rate which is n+1 times (n is

number of bits in a data input sample) the sample rate. The

RAM based shift register stores the data in a particular address.

The outputs of registered LUTs are added and loaded to the

scaling accumulator from LSB to MSB and the result which is

the filter output will be accumulated over the time. For an n bit

input, n+1 clock cycles are needed for a symmetrical filter to

generate the output. The working of DA algorithm is shown in

the following figure.

Figure 1. Block Diagram of DA Algorithm [6]

The conventional tapped delay line realization of equation (2) is

shown in Figure (2). This implementation translates to L

multiplications and L-1 additions per sample to compute the

result. This can be implemented using a single Multiply

Accumulate (MAC) [7] engine (see figure 2), but it would

require L MAC cycles, before the next input sample can be

processed. Thus, in a conventional MAC method with a limited

number of MAC engines, as the filter length is increased, the

system sample rate is decreased.

Figure 2. Block Diagram of MAC Implementation [7]

This is not the case with serial DA architectures since the filter

sample rate is decoupled from the filter length. As the filter

length is increased, the throughput is maintained but more logic

resources are consumed.

2.2 Designing on Simulink
Simulink [8] is a block diagram environment for multi-domain

simulation and Model-Based Design. It supports system-level

design, simulation, automatic code generation, and continuous

test and verification of embedded systems. It provides a

graphical editor, customizable block libraries, and solvers for

modeling and simulating dynamic systems. It is integrated with

MATLAB and enables us to incorporate MATLAB algorithms

into models and export simulation results to MATLAB for

further analysis. The entire design as realized in Simulink is

shown in Figure (3). The constituent blocks are discussed in the

proceeding text.

The ‘Xilinx system generator’ [9] is a high-level tool for

designing high-performance DSP systems using FPGAs. The

system generator tool enables us to integrate Xilinx with

Simulink, it creates a .ise file which is used in Xilinx using the

model file of Simulink.

The Xilinx block sets function within gateways only i.e.

‘gateway-in’ and ‘gateway-out’ [8] blocks which are available in

Xilinx Block set library. Any sample based input is to be passed

through gateway-in block before being fed to any Xilinx block

set, and then final output can be seen on ‘scope’ by observing

the output from gateway-out. If a frame based (music) signal is

to be used as input to gateway-in, an ‘unbuffer’ [8] block has to

be inserted between input and gateway-in. The unbuffer block is

used to convert a frame-based input to a sample-based one.

‘FDA tool’ [8] is the basic tool of MATLAB used to design a

filter of required specifications. There are different response

types (Highpass, Lowpass, Bandstop, Differentiator, Integrator

etc.) and Design Methods (IIR, FIR) to implement the filter.

These windows can be customized by providing order of the

filter, cut-off ,sampling , pass-band and stop-band frequencies

and magnitude specifications. Through the specifications

provided, the tool creates coefficients that are saved as matrix in

MATLAB workspace.

The major block set used in the design is ‘FIR Compiler 5.0.1’

[8]. It implements a MAC and DA FIR filter as shown in Figure

4. It accepts a stream of input data and computes filtered output

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.11, April 2013

39

with a fixed delay, based on filter configuration. The filter

specification tab enables us to provide the coefficient vector as a

single MATLAB row vector directly through FDA tool from the

workspace.

The ‘Spectrum Scope/ B-FFT’ [8] block computes and displays

the mean-square spectrum or power spectral density of each

signal. The signal can be a vector or a matrix. The Spectrum

type parameter of the block is specified to be two-sided ((-

Fs/2...Fs/2), here Fs is the sampling frequency of the original

time-domain signal.

Figure 3. FIR Filter using system generator

‘Hardware Co-Simulation’ [8][9] block in System generator

provides us with the actual routing in FPGA of the model

created in Simulink. It gives the flexibility to run the design in

hardware while simultaneously simulating the same in software.

The generation of the Co-Simulation block guarantees that the

design is synthesizable on the actual hardware used. The output

from the co-simulation block can be verified with the output of

the result obtained from software simulation. The table below

shows the block specifications [10] for music input signal.

Table 1. FDA tool specification

High pass

filter

Cut-off frequency 5Khz

Type of Design Method FIR-Blackman

Window

Sampling Frequency 44Khz

Low pass

filter

Cut-off frequency 100Hz

Type of Design Method FIR-Blackman

Window

Sampling Frequency 44Khz

Figure 4. FIR Compiler 5.0.1 tool specification

3. FPGA

FPGAs [7][9][10] are being increasingly used for a variety of

computationally intensive applications, mainly in the realm of

Digital Signal Processing (DSP) and communications. Due to

rapid increases in the technology, current generation of FPGAs

contain a very high number of Configurable Logic Blocks

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.11, April 2013

40

(CLBs), and are becoming more feasible for implementing a wide

range of applications. The high nonrecurring engineering costs

and long development time for ASICs are making FPGAs more

attractive for application specific DSP solutions. The advantages

of the FPGA approach to digital filter implementation include

higher sampling rates than are available from traditional DSP

chips, lower costs than an ASIC for moderate volume

applications, and more flexibility than the alternate approaches.

The FPGA is an integrated circuit that contains many (64 to over

10,000) identical logic cells that can be viewed as standard

components. Each logic cell can independently take on any one

of a limited set of personalities. The individual cells are

interconnected by a matrix of wires and programmable switches.

A user's design is implemented by specifying the simple logic

function for each cell and selectively closing the switches in the

interconnect matrix. The array of logic cells and interconnects

form a fabric of basic building blocks for logic circuits. Complex

designs are created by combining these basic blocks to create the

desired circuit. Unlike microprocessors, FPGAs are truly parallel

in nature, so different processing operations do not have to

compete for the same resource. Each independent processing task

is assigned to a dedicated section of the chip, and can function

autonomously without any influence from other logic blocks. As

a result, the performance of one part of the application is not
affected when more processing blocks are added.

In the process of implementing the FIR filter on FPGA, which

was designed in Simulink, digital computing tasks are developed

in software (Xilinx ISE 13.4) and then compiled in form of a

configuration file or bit-stream that contains information on how

the components should be wired together. Subsequently, a project

file was imported from Simulink which was made using system

generator block. This file opens as a project file in ISE software

containing VHDL code for various blocks which are required to
provide the necessary functionality.

Xilinx ISE project navigator provides a tool ‘ChipScope Pro’ [9]

which helps in observing the output of the model on the software

without actually reading the output from the hardware. Signals

are captured in the system at the speed of operation and brought

out through the programming interface. Captured signals are then
displayed and analyzed using the ChipScope Pro Analyzer tool.

As the Xilinx Virtex-4 FPGA works only on digital signals and

does not contain an in-built Analog to Digital converter (ADC),

an ADC is needed to be appended to the FPGA. To synchronize

the clock and make FPGA and ADC work on same rising clock

edge, the inbuilt 100 Mhz clock of FPGA is mitigated to 5 Mhz

and fed to the ADC. A VHDL module for division of clock is

added to the code. Subsequently, the code is compiled in ISE

software and generate the .bit file .This bit file is then dumped

into the FPGA using a platform cable which connects the
software to the FPGA.

Synthesis report is used to acknowledge the count of various

configuration blocks used. This is helpful in generating more

efficient filters in terms of minimizing the configurable blocks,
look-up tables.

4. RESULTS

The digital FIR filter was designed as described above. A music

signal was given as input and the output spectrum of the high-

pass and low-pass filters were observed. The results were verified
using the Co-Simulation block.

Figure 5. Input signal spectrum

The figure below show the spectrum of the input signal as well as

of the outputs from highpass and lowpass filters. The Co-

Simulation results have also been shown beside the results
obtained from Simulink.

Figure 6. Output spectrum of output from Low-pass Filter

Figure 7. Output spectrum of output from High-pass Filter

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.11, April 2013

41

The simulation result shows the close relationship of output

spectrum drawn from Simulink and Hardware co-simulation.

Minor differences occur due to software and practical hardware

implementation.

The Xilinx ISE 13.4 also generates a synthesis report which

allows us to view the results of the synthesis process. Moreover,

the hardware resources which were used to implement the design

on the actual FPGA kit can be observed. A portion of the report

in the figure below shows the number of flip-flops, IO resources,

clocks and other resources used to realize our filter design on the

FPGA.

Figure 8. Synthesis report of Filter design

5. CONCLUSION

This paper describes an approach towards the implementation of

FIR filters using Simulink and subsequent synthesis on field

programmable gate arrays (FPGA). The parallel processing

capability of the FPGA greatly increases the speed of operation

in the implementation of the Digital Filter. The design when

simulated for music input shows best results with Blackman

Window. The design provides flexibility to implement a real

time digital filter which can be customized for various

applications like image processing, music filtering,

communications etc.
6. ACKNOWLEDGEMENTS
This research paper is made possible through the help and

support of the faculty of Electronics and Communication

Department at Jaypee Institute of Information Technology,

Noida. We would like to extend our gratitude towards our

mentor Mr. Shamim Akhter.

7. REFERENCES

[1] Jitendra Kumar Das, “Low power digital filter

implementation in FPGA for hearing aid application”, A

thesis submitted to National Institute of Technology

Rourkela

 [2] Sanjit K. Mitra, “ Digital Signal Processing : A Computer

based approach” , McGraw Hill, 2006.

 [3] A. Oppenheim and R. Schafer, “Digital Signal Processing,

“Prentice-Hall, Inc., 2009.

[4] A. Croisier, D. J. Esteban, M. E. Levilion, and V. Rizo,

“Digital Filter for PCM Encoded Signals”, U.S. Patent No.

3,777,130, issued April, 1973.

[5] H. Yoo, and D. Anderson, “Hardware-Efficient Distributed

Arithmetic Architecture for High-Order Digital Filters”, in

Proceedings of IEEE International Conference on

Acoustics, Speech, and Signal Processing, 2005.

[6] Shahnam Mirzaei, Anup Hosangadi, Ryan Kastner, FPGA

Implementation of High Speed FIR Filters Using Add and

Shift Method, IEEE 2006.

 [7] Chi-Jui Chou, Satish Mohanakrishnan, Joseph B. Evans,

FPGA implementation of digital filters, Proc. of ICSPAT,

1993.

[8] MathWorks,Simulink,

http://www.mathworks.com/products/simulink/

[9] Xilinx system generator, basic tutorial, www.xilinx.com

[10] Harish V. Dixit , Dr. Vikas Gupta, International Journal of

Engineering Research and Applications (IJERA) ISSN:

2248-9622,Vol. 2, Issue 5, September- October 2012,

pp.303-307.

http://www.mathworks.com/products/simulink/

