
International Journal of Computer Applications (0975 – 8887)  

Volume 68– No.11, April 2013 

8 

Neural Control Strategies for Variable Speed 

Wind Turbine 

 

Cherifa Brahmi 
Electrical Engineering 

Department 
National School of Engineers, 

Sfax, Tunisia 

 

Mohamed Chtourou 
Electrical Engineering 

Department 
National School of Engineers, 

Sfax, Tunisia 

 

Mohamed Djemel 
Electrical Engineering 

Department 
National School of Engineers, 

Sfax, Tunisia 

ABSTRACT 
The control of variable speed wind turbines is a complex 

problem since they are considered as nonlinear and time 

varying systems. In general, classical control techniques do 

not take into consideration the stochastic and dynamical 

aspect of the wind and they are not very robust. In order to 

address these weaknesses, neural approaches are proposed: a 

direct neural model DNM of the wind turbine is elaborated 

and then an inverse neural controller INC is developed. The 

other objective of this study is to optimize the power 

generated by the wind turbine. To achieve this aim, we have 

elaborated a neural controller which takes into account the 

optimal speed of the turbine. Finally, some modifications of 

the neural control strategy are used to improve the results. The 

neural controllers were tested with a wind turbine simple 

mathematical model. The obtained results have shown better 

performance in comparison with classical control techniques. 

Keywords 

Wind turbine, non linear system, neural modelling, neural 

control and hybrid control. 

1. INTRODUCTION 
In recent years, the electrical power generation from 

renewable energy sources, such as wind, is increasingly 

attraction interest because of environmental problem and 

shortage of traditional energy source in the near future. 

Many studies focused on variable speed wind turbines as a 

source of wind energy. Structural loads can be reduced and 

energy capture can be increased with variable speed operation. 

In addition, the significant power excursions common to 

constant speed turbines are avoided. However, sophisticated 

control algorithms are necessary for variable speed wind 

turbines to be profitable and reliable: intelligent approaches 

are introduced in control of these machines [1-4]. The 

objective is to optimize for these machines power efficiency 

and to enhance quality during operating conditions.  

Several wind turbine controllers have been proposed for the 

variable-speed operating regime. Reference [5] defines the 

control objective as achieving optimal rotational speed 

tracking while rejecting fast wind speed variations and 

avoiding significant control efforts that induce undesirable 

torques and forces on the wind turbine structure. Many control 

strategies have been proposed in the literature primarily based 

on linear time-invariant (LTI) models. Classical techniques 

based on PI or PID controllers [6, 7] have also been used 

extensively. But they had not given acceptable results 

especially with the presence of uncertainties. Optimal control 

has been applied in the linear quadratic (LQ) [8, 9], H-infinity 

and linear quadratic Gaussian (LQG) [9, 10] forms. Robust 

control was introduced in [11, 13]. More recently, some 

nonlinear control laws, such as fuzzy logic controllers and 

neural network methods, have been proposed [7], and adaptive 

control has also been studied [14]. 

Aerodynamic forces acting on wind turbines are turbulent in 

nature. Wind speed is known to vary stochastically [15, 16]. 

As a result, it is impossible to predict the captured 

aerodynamic torque from single point wind speed 

measurements. Therefore, one is lead to elaborate more 

adequate control procedures for wind turbines which enable to 

deal with the presence of uncertainties such as neural 

controllers [17].  

This paper suggests control strategies of a variable speed wind 

turbine using neural controller. It is structured as follows: We 

start this study with presenting the mathematical model of the 

wind turbine. Next, a model based on the neural network is 

derived in section 3. Section 4 aims to elaborate a neural 

controller for variable speed wind turbine and to give some 

improvements of the developed controller. Section 5 is 

devoted to simulation results and discussions. 

2. WIND TURBINE MODELING 
A wind turbine transforms part of the kinetic energy in the 

wind into electrical power. Wind turbine simulation 

complexity varies greatly depending upon its objectives. Aero 

elastic simulators are used to verify dynamic loads and 

interaction of the components of these large flexible 

structures. The combination of aerodynamic loading and 

dynamic response of multiple components requires complex 

simulators (fig1.). 

 

Fig 1. Wind turbine dynamics [2]. 

The Wind speed V, considered as a system input, performs on 

a blade of a wind kinetic pressure Pc which varies with the air 

density ρ, namely [11]: 
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From this pressure, it is possible to determine the force 

applied on a given section S as follows: 

2

2

1
SVFe                          (2)                                                                         

Where 
2RS   (The trajectory of the blade of the turbine 

is approximated to a circle of radius R. For the studied wind 

turbine R = 21.38 m). 

Wind power is defined as follows:  

3

2

1
SVPv                               (3)                                                                             

The aerodynamic power appearing at the turbine rotor is given 

by the following expression [11]: 

),(
2

1 3  pvpaer CSVPCP         (4)                                                          

Cp is called the power coefficient. This is a dimensionless 

parameter that expresses the efficiency of aero turbine in 

transforming the kinetic energy of wind into mechanical 

energy. 

For a given aero turbine the coefficient Cp depends on the 

specific speed λ and the angle of orientation of the blades β 

(also called setting angle) [12]: 

V

RWa                                   (5)                                                                        

With aW is the rotational speed of the turbine. 

Several expressions have been used in literature to calculate 

the coefficient Cp  ; [13]-[14]. In this paper, we will adopt the 

following expression for the power coefficient: 
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where : λ0 = λ + 0.02 ; c1 = 101.23 ; c2 = 9.02002 ; c3 = 18.4 et 

c4 = 0.0552 [4].   

The aerodynamic torque Ta is obtained from the captured 

aerodynamic power and the rotational speed of the turbine. 
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The multiplier acts to play the role of adaptor of speed 

between the output shaft connected to the blades and causing 

the generator speed shaft. This multiplier is characterized by 

its gain G, the mechanical speed of the generator Ωmec and the 

generator torque Tg, we have:  

amec GW                         (8)                                                                            

G

T
T a

g                              (9)                                                                                 

The torque Tg will be a control input for the wind turbine and 

a reference magnitude for the control system of the 

asynchronous generator. 

The fundamental equation of dynamics applied to the shaft of 

the generator determines the evolution of the mechanical 

speed mec from the mechanical torque mecT  :  

mec
mec T

dt

d
J 


                     (10)                                                                         

Where J is the total inertia that appears on the generator rotor, 

consisting of the inertia of the generator Jg and the inertia of 

the turbine transferred to the generator rotor
2G

J t
. 

g
t J

G

J
J 

2
                             (11)                                                                          

The total mechanical torque mecT takes into account the 

torque from the gearbox, the electromagnetic torque produced 

by the generator and the torque of the viscous friction which is 

modeled by the viscous friction coefficient f ( mecf fT  ). 

So we have: 

mecga
mec fTT

dt

d
J 


            (12)                                                          

By replacing mec and Ta by their expressions yields: 
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Thus the equation describing the dynamics of the generator 

shaft is: 
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The dynamic behaviour is described by a nonlinear equation 

having incertain parameters depending on the wind speed. So 

a nonlinear first order neural network is used in order to 

describe the model of wind turbine and get more performant 

results. 

 

3. NEURAL MODELLING 
Neural networks have been applied in many engineering fields 

to deal with problems such as recognition, estimation and 

control [17, 18, 19, 20, 21, 22, 6, and 2]. There are several 

types and architectures of neural networks depending 

fundamentally in the way they learn [23, 24, and 25]. The 

structure of the used neural network is the multi-layer 

perceptron. 

The modeling task is performed over a period spanning 10s. 

For this horizon and to put the model under severe conditions, 

we assumed that the wind speed can vary according to the 

shape shown by the figure 2. The mean value of the wind 

speed is 7 m/s. 



International Journal of Computer Applications (0975 – 8887)  

Volume 68– No.11, April 2013 

10 

 

Fig 2. Wind speed profile. 

The adjustment of the weights involved in this model is given 

by the following equation: 

)(
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Where:  

 t and ε denote the number and the iteration step. 

  J means the criterion to be minimized, such as: 

2)]1()1([
2

1
)1(  kWkWkJ aam

(16)                                                    

With Wam (k +1) denotes the output of the neural model at the 

discrete time k +1and Wa (k +1) represents the system output 

at the same time. 

The physical model of aero turbine is characterized by 

nonlinearities, uncertainties and parameter variations which 

are mainly due to the fact that the aerodynamic torque is 

highly dependent on wind speed taken as a variable and 

stochastic variable. So to handle these uncertainties, a learning 

set has been collected considering a variable wind speed 

which has been introduced as an input to the dynamic neural 

model.  

The representation of such process by linear models does not 

lead to acceptable performance. So to control this nonlinear 

system, a nonlinear modelis developed: the direct neural 

model [26]. 

The neural modeling can be summarized by the following 

steps:  

Step 1: Initialization of the weights. 

Step 2: For each input vector, adjust the neural model weights 

according to equation (15). 

Step 3: When the training convergence is reached stop if not 

go to step 2. 

When the neural model gives acceptable performances, it will 

be used to design neural control strategies. 

 

4. NEURAL CONTROL 
In this section, the design of the neural controller will be 

presented (fig 3). 

 
Fig 3. Control structure. 

 

4.1 The INM controller 
To develop the INM controller, we have used the structure 

described by the figure 4. 

 
Fig 4. The scheme of development of the INM controller. 

 

The INM controller is a feed forward neural network having 

two inputs: the actual rotor speed wa(k) provided by the DNM 

and the desired speed wa
d(k+1) which has been changed 

randomly during the phase of synthesis. The generator torque 

Tg (k) is the output of this controller.  

The adjustment of the weights involved in this controller is 

given by the following equation: 

)(
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Where J1 is the criterion to be minimized during thesynthesis 

given by:  

2

1 )]1()1([
2

1
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With Wa (k +1) designates the output of the MND at the 

discrete time k +1 and )1( kW d

a  represents the desired 

output at the same time. 

The synthesis of the INM controller is carried out according to 

the following steps:  

Step 1: Initialization of the weights. 

Step 2: For each input vector, adjust the weights of the INM 

controller according to equation (17). 

Step 3: If the training of convergence is achieved stop else go 

to step 2.  

4.2 Optimal neural control 
In this section, the controller will be developed in order to 

provide the control action giving the optimal value of the rotor 

speed. 
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The principle of this control strategy is similar to the inverse 

neural control. The criterion to be minimized during the 

synthesis is given by:  

2

2 )]1()1([
2

1
)1(  kWkWkJ aaopt

(19)                                                    

Where  
)1(

)1(



kV

R
kW optaopt    is the optimal 

rotor speed and λopt= 7is the optimum specific rotational 

speed. 

The input vector of this controller is made up of the rotor 

speed Wa (k), the optimal rotor speed Waopt (k +1) as well as 

the wind speed V(k). The output is the generator torque Tg (k). 

The model training is performed following the steps of the 

back propagation algorithm. 

To improve the accuracy of the developed controller some 

improvements are introduced. 

4.3 Improvements of the neural control 
Two strategies have been adopted to improve the performance 

of the developed neural controller: iterative aspect and hybrid 

control. 

4.3.1 Iterative aspect 
At each sampling time, this approach calculates iteratively the 

control signal by minimizing the following criterion: 
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   (21)                                                      

4.3.2 Hybrid Control 
This approach consists on operating simultaneously a 

conventional controller and a connectionist model to improve 

the control performance (fig 5).  

Fig 

5. Hybrid control structure. 
 

The control action is the sum of two control terms. 

)()()( kTkTkT gIgMNIg 
 

With TgI(k)  is given by an integrator. 

 

5. SIMULATION RESULTS AND 

DISCUSSIONS 

5.1 Modelling results   
For different values of the generator torque and for the wind 

profile given by figure 2, the mathematical model of the wind 

turbine has been simulated to generate training data base for 

the direct neural model (DNM).  

In order to design the neural control, a DNM has to be 

synthesised to emulate the behaviour of the wind turbine. 

Since the process is nonlinear first order system, the proposed 

neural model DNM has three inputs: the rotor speed )(kwa , 

the generator torque )(kTg  and the wind speed )(kV .

)1( kwa  is the output of this model (fig 6).  

 

Fig 6. Structure of the DNM. 

The learning base consists of 700 pairs of input-output 

measures. The training data are generated using a control 

input which is the generator torque Tg distributed over the 

interval [1.8011 103, 7.9249 103] (fig 7). 

 
Fig 7. Generator torque. 

 

The rotational speed of the wind turbine is given by the figure 

8. 
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Fig 8. Evolution of the output Wa 

The convergence of back propagation algorithm depends on 

several factors. To do this, and to ensure a compromise 

between quality of modeling and the convergence time, 

valued by the number of passes of the training set, the neural 

model parameters are chosen such that  ε=0.4 ; N=1000 and 

Nc=6. Where Nc and N designated respectively the number of 

neurons in the hidden layer and the number of pairs of input-

output database. We Note that the neural model parameters 

(number of neurons in the hidden layer Nc) have been 

determined based on several experiences and the retained 

structure gives a compromise between the model accuracy and 

the learning time. 

The behaviour of the DNM on a test data set is illustrated by 

the figure 9. A small error between the real and the estimated 

rotor speed can be observed. 

 

Fig 9. Rotor speed and modelling error during the test 

phase. 

Neural modeling of the aero turbine showed its performance 

even with large variations in the parameters in the model 

system. The resulting model of the task of modeling would be 

used for the synthesis of a nonlinear control law. 

5.2 Control results 

5.2.1 The INM controller 
The synthesis of the INM controller was performed with an 

iteration step equal to 0.4 and 1000 examples of learning. The 

number of hidden neurons is taken as equal to 7 neurons. 

Wind speed is given in figure 2. 

The figure 10 describes the rotor speeds and the error after the 

phase of synthesis.  

 

Fig 10. Rotor speed and the error during the phase of 

synthesis. 

It seems that the output of the model follows adequately the 

desired output. This shows that the INM controller has been 

trained correctly. The sum of the errors is 0.0315. 

To test the performance of the neural controller, different 

desired trajectories have been considered. We had applied an 

affine set while considering a noise characterized by a null 

average and a variance equal to 0.01. The obtained results are 

illustrated by the figure 11. 

 

Fig 11. Rotor speed and the error during the test phase 

According to this figure, we remark that wa accomplishes 

good tracking performance. The sum of errors is 0.0625. 

In order to test the robustness of the elaborated neural 

controller, the control scheme has been tested for another 

profile of the wind (fig 12). 

 

Fig 12. Wind speed profile 

The obtained results are illustrated by the figure13. 
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A small error between the actual and the desired rotor speed 

can be observed. 

 

Fig 13. Actual and desired rotor speed during the test 

phase 

According to these results, we can say that the INM controller 

is preferment and robust since it provides the control action 

allowing the best tracking of the desired output even we 

modified the desired trajectories and the wind profile.  

5.2.2 The Optimal neural control 
The synthesis was carried out considering the same wind 

speed, an iteration step equal to 0.4 and 1000 examples of 

learning. The developed neural controller is a feed forward 

neural network with a single hidden layer having 8 neurons. 

The following figure illustrates the variation of the optimal 

rotor speed and the model’s output. It should be noted that the 

synthesis was performed using the 1000 examples of the 

training set but to ensure clarity of the curves, we have chosen 

just to make tracing for the first 100 examples (fig 14). 

 

Fig 14. Rotor speed and the error during the phase of 

synthesis 

For different values of the optimal desired rotor speed, the 

neural controller provides the control action allowing the best 

tracking of the desired output. According to this figure, a 

small error can be observed (about 0.0612). 

The behavior of the control action Tg is described by the figure 

15. 

 

Fig 15. The evolution of the generator torque 

To illustrate the controller performance, the following desired 

optimal rotor speed has been considered. The obtained speed 

is given by figure 16. 

 
Fig 16. Evolution of the rotor speed 

According to this figure, we note that the output of the model 

follows the desired output properly which means that the 

controller has undergone a satisfactory learning. So we can 

conclude on the performance of the developed controller. 

To improve the accuracy of the developed controller, we have 

chosen to introduce some improvements. 

5.2.3 Improvements of the neural control using 

the iterative aspect  
The figure 17 shows the variation of the desired rotor speed 

(the optimal rotor speed) and the model’s output.  

According to this figure we remark that the error is small: the 

sum of errors is about 0.0415. 

 
Fig 17. Rotor speed and the error during the phase of 

synthesis 
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5.2.4 Improvements of the neural control using  

hybrid control  
The figure 18 illustrates the variation of the desired rotor 

speed and the output of the model. 

 

Fig 18. Rotor speed and the error during the phase of 

synthesis 

According to this figure, we note that this approach has 

reduced the error. It becomes equal to 0.0527. 

Comparing the results, it seems that the first approach is 

slightly better. 

 

Table 1. Comparison of results 

Approach used Sum of errors 

Optimal neural control 0.0612 

Hybrid control 0.0527 

Iterative aspect 0.0415 

 

The behavior of the control action Tg is described by the figure 

19. 

 
Fig 19. The evolution of the generator torque 

 

The present paper is devoted to the study of the wind turbine. 

A control structure by neural networks based upon the inverse 

neural model is adopted . The learning of this model has been 

made after several attempts to achieve an optimal architecture 

and minimize the number of parameters. The architecture was 

adopted with one hidden layer of 7 neurons. Using the back 

propagation algorithm, the error obtained is very small. The 

model adopted was then used in a direct control structure 

which assumes that the inverse model is almost perfect, which 

is far from the reality. To try to remedy this, two 

improvements are inserted: the inverse model was used in a 

hybrid structure with a conventional integrator and the 

iterative aspect. 

6. CONCLUSIONS 
The conventional control of the turbine as a nonlinear and 

uncertain system poses many problems and does not generally 

achieve the desired performance. Face to this problem, we 

have chosen to develop more robust control laws using neural 

networks known by their ability to learn complex behaviors. 

We have elaborated a neural controller of the wind turbine and 

then insert some improvements. The above analysis and 

simulation have shown acceptable results and performance.  

As future works, the presented methods will be applied to an 

experimental site and other neural networks structures will be 

studied in order to improve control performance 
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