
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.10, April 2013

1

jMAD- A small Java Mobile Agent Development Platform

Abhishek Yenpure
Dept. of Information

Technology,
Sinhgad Institute of technology

and Science,
Pune, India

M Nitin Umesh
Dept. of Information

Technology,
Sinhgad Institute of technology

and Science,
Pune, India

Dhiraj Patil
Dept. of Information

Technology,
Sinhgad Institute of technology

and Science,
Pune, India

ABSTRACT

Grid Computing has been around for as long as the modern

computers themselves yet have failed in obtaining a clear

standard which would define its implementation across the

computing domain. This project focuses on the Process

Migration aspects of Grid Computing/Clusters for Java

Applications. The available solutions for Java Process

Migration and Mobile Agent Development require high level

of Java Expertise for the user itself let alone the developer.

These solutions also require changes to be made in the JVM

(Java Virtual Machine) which is a hassle for SMEs who

cannot afford to put such high level solutions into work. The

project solves the problem by establishing a method of

Process Migration which will not need any changes in the

JVM and will not require the user to know the internals of the

implemented method. The user will only have to worry about

developing his code remaining totally aloof of what will be

done to it later.

General Terms
Grid computing, Process Migration, Mobile Agents

Keywords

jMAD, Object Serialization, Code Instrumentation, Migration,

Broadcast, JVM (Java Virtual Machine), JADE (java Agent

Development Framework).

1. INTRODUCTION

1.1 Problem
 Process Migration is the prime need of fault tolerant systems

running in Grid Environments and Clusters. The

standardization of such concepts and methods used to achieve

the goals of such concepts are very difficult because of the

vividness of the implementations and different perspectives of

the ideas used to implement the same thing in different

environments in terms of technologies (Languages,

Architectures, etc.). In environment running/developed on

languages like C/C++/Fortran the process Migration is much

easier than the new higher level languages like Java etc.

In Java the main problem is that it does not let developers play

around with the process its properties like address spaces etc.

for security purposes and hence said to be running in a

sandbox [3]. Unlike C/C++/Fortran Java does not allow access

to method stacks and Program counters to track the program.

This leads to a problem of Process Capture which will help in

saving the executing process and resurrect it according to the

need of the user.

Hence because of the above problems we needed to address

the Process migration problem in Java. It’s not that such a

thing was never tried before; the difference is that all the

existing implementations require the implementers to

significantly change the JVM (Java Virtual Machine) its

implementation [1]. This leads to another headache of how the

novice users/developers of the system will deal with a thing

highly technical like specifications of JVM/Java Language

with bare minimum resources as in case of a lot of SMEs.

The Problem is how to migrate the Java Processes without

modifying the JVM in any way and without the user needing

to deal with the technicalities of the implementation so that he

will have to worry only about his own Program its

implementation and not how the system will handle his

program.

This project provides a way to handle the exact need of the

day and implements a platform for development of Mobile

Agents to achieve Process Migration in Java using Method

Level Granularity by the development of Mobile Agents.

1.2 Solution
Java does not allow Users/Developers to access the address

spaces of the current objects in execution discouraging the

system help for capturing the objects in execution. But

however java provides various inbuilt interfaces which allow

us to store the state of the current executing objects in Files

which may be transferred across systems and can be used to

resurrect the objects and form a part of some other process,

this technique is called as ‘object serialization’ and the

interface provided by Java for this is ‘java.io.externalizable’.

Having thus solved the problem of saving executing the state,

tracking of the process can be done using checkpoints. We can

allow the whole process to run between checkpoint to

checkpoint forming executable granular units in the same

method. This will help in resuming the process on other

machine by starting its execution form the checkpoint it had

ended on previously. Checkpoints can be implemented in the

.java file or the .class file of the user the parts of which are

discussed further in section 2 .

The whole approach provides seamless migration of Java

process running on a cluster only introducing the overhead at

the time of the class load event or the compilation of the class

depending on the approach of the introducing code in the user

files for process capture and tracking (introducing

checkpoints).

Various performance tests have been done on the already

similar system [1] which our project is based on and the

results were obtained positive thus supporting our take on the

system which would yield in a high performance

implementation of the Grids and Clusters.

1.3 Scope and Visibility
The project can take a really big scope if taken into

consideration all the parameters of the Grid Process

Implementation and Cluster Application deployment (as done

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.10, April 2013

2

in MOSIX etc.) into account and hence the project is limited

to a few select and important aspects of the implementation

due to lack much insight, the major part of which will be

dealing with the Java processes only.

The project will be as transparent, robust as possible so for it

to become a part of the new ecosystem of middleware and

system software which will be completely purpose built.

As a part of the commercial feasibility of the project will be

subjected to various performance tests and will be compared

to the approach of implementation with “M-JavaMPI” [1] on

which our project is based on and JADE library [7].

The project is to make use new technologies used in industries

for application development like bytecode instrumentation,

reflection and introspection, object serialization apart from all

the trivial technical aspects of the project and will give an

insight of industrial application development and

understanding computing in a whole new way to the users.

2. IMPLEMENTATION
The Project will incorporate java code instrumentation before

compilation(not to be confused with Compile time Bytecode

instrumentation) to insert checkpoints to track the progress of

the program and object serialization [2,4,6] for the storage of

objects and other important runtime information, by

appointing Java only features. The developers can gain a great

deal in debugging the system as well as the system will

provide the user with the instrumented code too, unlike the

JVMDI approach used in M-JavaMPI [1].

2.1 Pre Processor
The pre-processor will use the support of Java Reflection

[2,5,6] to get all the Fields and Methods declared inside the

Program, thus it will help cache all the variables, objects

inside a class, while the user has no need to write his class to

be externalizable, the pre-processor will be responsible to do

that by instrumenting the java code, the java code will now

necessarily need to implement the methods declared in the

interface, hence the preprocessor will need to write the two

methods readExternal() and writeExternal() [4,6] explicitly.

These methods will help in the storage of all the objects in the

current java Process.

To write all these objects to the storage, here the preprocessor

will need to know all those objects by the method

Class.getDeclaredFields(); [2,5,6] which returns all the Fields

declared within the class, hence after it knows the names and

types of all the objects in the class, it would write them to the

storage by virtue of writeExternal().

These files after storing to the file system will then be sent to

the node which is willing to accept the process form the

current Node and then the accepting node will resurrect all the

objects by using the method readExternal().The Pre Processor

may make the code look really verbose, but it might not at all

put a lot of effort on the system then it did earlier.

Apart from just declaring these two methods, the Pre-

processor will also be responsible for the insertion of

checkpoints in the program.

The schematic of the preprocessing layer is as shown below in

figure 1.

Fig 1: Schematic of the Pre Processor

2.2 Object Serialization
Object Serialization [2,4,6] is the Method provided by java for

the storage of objects or synchronization of objects in the

current execution context of the Java Virtual Machine

the technique uses two of java’s interfaces

 java.io.serializable

 java.io.externalizable

In the above two interfaces externalizable implements

serializable interface too so that whenever the externalization

of object is to be performed, the objects are serialized and

would not require any other mechanism for locking the

objects under externalization. The externalizable interface

provides two methods for the storing and resurrection of the

objects of the classes that implement the interface. This is

necessary that whatever objects are to be saved need their

classes to implement the externalizable interface of java. This

technique will help us to store the state of the objects currently

in the execution.

2.3 Checkpointing
The approach for keeping the track of the process of the

during the execution appointed by M-java MPI [1] are the

services provided by the JVMDI (now JVMTI) which gives

access to all the regular program execution parameters (Stack,

Program Counter), but this project implements this by using

static variables as checkpoint storage and then using named

blocks/conditional loops for one logical block of execution

which could be encapsulated in cases of the switch

block of Java. This will enable the original author of the

program to gain transparency into the codes

instrumentation and hence will put him in control again.

3. ARCHITECTURE

3.1 Architecture of the System
Based on the system’s requirement and referring to the paper

“M-JavaMPI” [1] the architecture we see of our system is

somewhat like the figure 2 The Systems has the Following

basic and predominantly important blocks

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.10, April 2013

3

 Pre-Processing Layer

 Migration Layer

 Communicating Layer

Fig 2: Architecture of the System

The functions of which will be briefed eventually in the

further briefing of the architecture and mechanisms to be

adapted in the system implementation.

3.2 Communication between Nodes
Fig 3 shows the communication will take place in the system

and what messages will be sent by the nodes. Initially, each

machine communicates all its processor and memory

information/status to all other machines using a UDP

message. Consider machine A from figure 3, it broadcasts a

UDP message containing the information about its processor

and memory information/status. In response, the other

machines send a UDP message to machine A and all other

Nodes containing the status of their processor and memory

usage. Machine A stores the statuses of these machines in an

Index file. From this Index file (in the actual implementation,

we will be using IP-Value pair mapped in a HashMap in Java

Collection interface), it selects the machine for process

migration having the least processor and memory usage.

The information about the Processor and memory utilization is

updated periodically (after every 10 sec say) so that the

system can be updated regularly without over populating the

channel and letting resources for communication by waiting

too short but also not letting the systems change their resource

utilization by waiting too long.

This trade-off between communication times is very essential

because the system cannot be risked for just communicating

and then letting the process to a higher powerful machine

sacrificing its own resources in communication itself.

Fig 3: Communication between Peers/Nodes

3.3 Migration Initiation
Figure 4 describes the initiation of process migration. Now

depending on the entries made in the Index file of machine A,

the machine having the lowest value in terms of its status

(processor and memory usage) is chosen. After getting the

machine to migrate, the object saving process begins with

object serialization. As described earlier the object

Serialization is responsible for the saving of the objects of all

the classes on the current running process. It’s necessary to

track all the possible classes the process is going to refer to

before actually running the process so that proper provisions

could be made so that the objects of those classes are saved

and sent with the process to the other end and will not throw

any run time exceptions on the other machine.

Fig 4: Initiating Process Migration

This is achieved by the concepts of Reflection and

Introspection in java. The addition of the pre-processor layer

will ease the things by changing the program of the user

sufficiently so that the problems of referencing are solved by

completely. The figure 5 shows the schematic of what was

said previously about the referencing problem of the objects

of other classes in the

process. This approach is convenient in one way by

establishing the channel between the main() methods of the

two machines for the resurrection process as the objects in the

main can be stored and forwarded and by using special

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.10, April 2013

4

communication protocols the main() methods can

communicate with each other and then form the objects

explicitly without resurrecting them but by querying the

objects of the other main() method however this will create a

burden on the system and then deviate from our statement of

not incurring extra cost on the system. (but not dealing with

statement level granularity)

Fig 5: Classes referenced in the Class with main() thread

This is also needed to be known that the project is dealing

with granularity as a certain block of statements and not at a

statement level unlike M-JavaMPI [1] because without the

support of JVMDI (now JVMTI) it is not possible to achieve

that, and to a certain extent, it keeps the development of our

proposed system a bit low in terms of complexity.

This also helps in omitting the need of capturing the

intermediate results of the statement execution and storing

them too while we try to migrate, hence instead letting the

group of statements form that set run on the system and do all

the changes to all the objects that occur in that block and then

store them and migrate which reduces the system overhead for

doing unnecessary thing than executing what is important in

our perspective.

This ultimately benefits the node over which the execution is

being shifted by reducing the no of statements that it requires

to execute. Also bytecode instrumentation if not done properly

give rise to a whole new class of exotic errors and exceptions,

making our approach a bit more secure too.

3.4 Migration Exchange
Figure 6 represents objects that are to be saved by serialization

are saved in the files by using the writeExternal() [2,4,6]

method specified in the java.io.externalizable interface. The

argument to the method is the ObjectOutput which is an

interface implemented by the ObjectOutputSteram class so

that the Objects can be stored in the files. After all those

prerequisites of saving the object files, the files are sent to the

other machine for resurrection, which is done by the method

of readExternal() [2,4,6] method specified in the

java.io.externalizable interface. After the resurrection of all

the objects, the process could finally start the execution once

again. Figure 6 can be described as; machine A sends the

object state file to the (chosen) machine B. Machine B

resurrects the objects and then begins the execution of the

process from the last saved checkpoint. After completion of

the process, the updated object state file is sent back to the

parent machine A. To deal with the need of knowing whether

the process being invoked is new or migrated, the system

incorporated a custom environment cache which stores the

information of all the processes and its parent in an IP-Process

pair in a java HashMap similar to that of status storage.

Fig 6: Steps in Migration of the Process

The overall System Work is not yet seen clearly even after

understanding the entire Architecture of the System, more

elaboration is needed in the light of how the migration might

take place.

The Steps that every process must follow while migrating are:

A. Check is the system is overloaded, if so throw a

SystemOverloadedException and continue to saving

all the objects.

B. Get the IP of the host which has the minimum

utilized resources, and ask it to register the process

the migrated process in its cache by calling the

Remote procedure register() (Using RMI).

C. Transfer all the Files (with objects and variables

stored) to the remote Machine.

D. Resurrect the Process with all the objects by

referring the local cache to determine that the

process being resurrected is the new or a migrated

process, accordingly restart the process by using the

checkpoint transferred using the call(int checkpoint)

method in the Process.

E. Establish a channel to transfer intermediate results

of the process.(Channel is be established using

sockets, and the results are captured by

Process.getRuntime() defined in java.lang package)

4. PERFORMANCE
The Project is still in development in the significant parts, and

therefore evaluating the practical performance of the system is

difficult, however the theoretical evaluation is as follows.

A more detailed and practical case study of performance

evaluations will be provided subsequently after the system has

been completed in its entirety. Table 1. provides an insight

into the performance aspects of the system.

The project is primarily compared to the existing technologies

of JADE (Java Agent development Framework) and M-

JavaMPI (Migration-Java Message Passing Interface) in the

aspects of Development, Compilation, Runtime of process.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.10, April 2013

5

Table 1. Predicted comparison of performance

Aspect jMAD Existing

Platforms

Development No expertise in the

fields of Mobile

agent development is

needed, user need not

be aware of the

system

Expertise of

Mobile agent

development is

needed

(JADE) [7]

Compile Time Longer than normal

due to additional task

of instrumentation

and using Reflection

on already compiled

Time(2 Compilations

are needed)

Short, the Agent

code is totally

developed prior to

Compilation

Runtime Transparent, as all

the processes are

cached in the Custom

registry for their

migration and

execution

No such task is

achieved, the user

has no control and

surveillance over

the process

activities like

JADE

No Runtime Code

Rearrangement is

needed, i.e. Byte

code Instrumentation

as done in M-

javaMPI

M-JavaMPI needs

byte code

instrumentation

which increases

run time efforts

on the system [1]

As discussed above jMAD requires two compilations, one for

the original non migratable application on which we carry out

reflection and introspection and the second time the

instrumented program which is now a mobile agent. The time

that sits between the two compilations is the time required to

instrument the program. For convenience let us consider a

base line as a non migratable application which needs to be

developed into a Mobile Agent, and let this application have

(LoC) 0 lines of Code. The compile time can be given by,

(C.T.) =λ {(LoC) 0

Where, λ=Mean time required to compile each line

In terms of jMAD the Compile time can be calculated as

(C.T.) jMAD=λ(LoC) 0 + λ{(LoC)0 + (LoC)m}+ X

Where,

 C.T =compile Time.

(LoC) 0 = Lines of Code in non migratable application

(LoC) m=Lines of Code instrumented to make the code

migratable

λ=Mean time for compiling each line

X=Time required to instrument the code

Here X is considered separately as the code is instrumented

explicitly and not by the user. But in the case of JADE such

instrumentation is done during the development of the code

itself which requires the user to carry out the task of telling the

program how the migration has to take place. Also only one

compilation is required to get the migratable program unlike

jMAD.

In terms of JADE the Compile time can be calculated as

(C.T.) JADE=λ {(LoC)0 + (LoC)m }

Where,

 C.T =compile Time.

(LoC 0 = Lines of Code in non migratable application

(LoC)m=Lines of Code instrumented to make the code

migratable

λ=Mean time to for compiling each line.

Hence there is significant change in compile times of the

applications developed by jMAD and JADE given by

(C.T.) jMAD = (C.T.) JADE + λ (LoC) 0 + X

This proves,

(C.T.) jMAD > (C.T.) JADE

Graphically the performance is shown as in figure 7. jMAD

requires more time to be compiled but this can be preferred

over JADE for convenience of transparency and ease in the

development of Mobile Agents.

Figure 7: Performance graph compared to JADE

5. CONCLUSION
The Development of this technology will be a great

availability to the small and medium enterprises without

significant resources for planning a total full scale grid

solution, and have a limited expertise in the development of

the applications on the same. It might be developed into a full

API for Mobile Agent Development once totally

implemented.

A Hypervisor to analyze performance of all the Nodes in the

system can be developed and integrated with the proposed

library to give a complete solution for development and

deployment of Mobile Agents.

6. FUITURE SCOPE
A full-fledged library/API could be developed for the

development of the Mobile Agents in a small Grid

Environment which would be of the likes of JADE.A

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.10, April 2013

6

Distributed Hypervisor could be developed so that all the

processes running in the environment could be made aware of

the Nodes available for migration and the system will be

aware of all the processes running on all the other nodes as a

new processes or migrated processes.

7. ACKNOWLEDGEMENTS
We would like to thank Prof Sushant Gote of Sinhgad

Institute of Technology and Science, Pune-41, India for

guiding this research and enabling us get a vision to achieve

the goals mentioned in the above project.

8. REFERENCES
[1] Ricky K. K. Ma, Cho-Li Wang, and Francis C.M. Lau.

“M-JavaMPI: A Java-MPI Binding with Process

Migration Support” presented at Cluster Computing and

the Grid, 2002. 2nd IEEE/ACM International

Symposium

[2] Herbert Schildt “Java 2:The Complete Reference” , Tata

McGraw Hill,2002

[3] Oracle Technology Network,” Java Language and

Virtual Machine Specifications”,

Internet: “http://docs.oracle.com/javase/specs/”.

[4] http://www.jusfortechies.com, Object Serialization,

Internet:http://www.jusfortechies.com/java/core-

java/externalization.php, [Sep 18,2012]

[5] Reflection in Java,

Internet:“radio.javaranch.com/val/2004/05/18/108489179

3000.html”

[6] JAVA 2 SE 7 Documentation(Oracle Java

Documentation),

Internet : “http://docs.oracle.com/javase/7/docs/api//”

[7] JADE Programmer’s Guide,

Internet:“http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.80.9915&rep=rep1&type=pdf”

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10335
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10335
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10335
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.9915&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.9915&rep=rep1&type=pdf

