
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.1, April 2013

5

Towards Simple Semantic Annotation

Alaa Qasim Mohammed Salih
Aston University/School of Engineering & Applied Science

Oakville, 2238 Whitworth Dr., L6M0B4, Canada

ABSTRACT
One of the initial requirements for the automatic annotation

system is the simplicity and easy to be used by client so that

untrained users can interact with the system effectively to create

annotations for their documents. To fulfill this requirement, a

graphical user interface must be designed. The interface of any

system acts as a communication channel between the user and

the system. A badly designed interface could result in costly

mistakes, inefficient working and create an unpleasant

atmosphere for the user. Therefore, to design a successful

interface the abilities and limitations of both the computer and

the human must be taken into account.

This paper provides an insight into the ideas and thoughts to

create a system that meets all of the requirements needed. The

process of loading information and data integration is described

in order to provide the reader with an idea of the how the system

was created. Program code examples will be given to illustrate

the key features and mechanisms used.

Keywords
 Annotation, metadata, Ontology, Semantic Web, server, XML,

RDF and OWL

1. INTRODUCTION

Semantic Web (SW) is the vital proposal that is promoted by the

World Wide Web Consortium (W3C).It deals with facilitating

the data source to provide the next generation Internet

infrastructure such that giving significant meaning, make the

client and computer to work in cooperation with each other can

be provided by the information [1].

A set of semantically annotated Web resources may give a

vision to the semantic web. The web resource may be any type

of picture, text or representation of a person. The description of

semantics of the resources can be provided by semantic

annotation. This show more interest by the software companies

in order to extend the predefined target. It is too important to

mention that not most users are expert in dealing ontology[2].

They do not have the ability to read, understand how the use

ontology and sort through.

There are a set of guidelines and recommendation proposed in

[2] to provide good practice to achieve text annotations. The

important guidelines are:

1. Easy recovering the original text annotation through taking

away the annotations to it added.

2.Facilely extraction of annotation from annotated text.

3.Thorough documentation to be supplemented with

eachannotated text.

The integration of data with systems uses other ontologies may

lead to apply multiple ontologies. This will lead to use some

operations on the ontologies. This is considered as very difficult

tasks and cannot be achieved automatically.Fig.1 shows how the

way of collecting data from the source, build the semantic

metadata and the ontology.

Fig.1: From Syntax to Semantics

In this paper, we will give an overview of how the design was

realized. Some of the key features of the implementation will be

described This chapter will also give an insight into the ideas

and thought processes the author has been through to create a

system that meets all of the requirements previously defined.

The process of loading information and data integration is

described in order to provide the reader with an idea of the how

the system was created. Program code examples will be given to

illustrate the key features and mechanisms used.

2. USER INTERFACE DESIGN

One of the initial requirements for the automatic annotation

system was that it must be simple and easy to use so that

untrained users can interact with the system effectively to create

annotations for their documents [1]. To fulfill this requirement, a

graphical user interface must be designed.

Shallow
semantics

Deep
semantics

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.1, April 2013

6

The interface of any system performances as a communication

channel between the client and the system play a key role in the

design. A badly designed interface could result in costly

mistakes, inefficient working and create an unpleasant

atmosphere for the user. Therefore, to design a successful

interface the abilities and limitations of both the computer and

the human must be taken into account.

2.1 Human-Computer Interaction Principles
To assist with the design of the user interface, various principles

from the field of Human-Computer Interaction

(HCI) have been applied. The HCI can be defined as a field

related with many areas i.e. evaluation, design and

implementation of interactivecomputing systems for

human usage. It also provides studying of main phenomena

adjoining them [3].

By far the most evolved and important sense to humans is

vision. Therefore, the interface must be visually pleasing and

organized in a way that seems naturally appropriate for the task

to be completed [3]. This will strongly increase the usability of

the automatic annotation system. The information presented to

the user should be structured and not cluttered. A cluttered

screen is difficult for the user to interpret and requires a lot of

extra processing by the brain to make sense of the information.

Too much cluttering of information could easily irritate the user,

which may then affect their performance.

Consistency is another important factor of interface design. All

messages output to the user should use similar language style

and the overall structure of the interface itself should not change

over time. Humans like to know when they have completed a

task as this means they can let go of some pieces of information

held in memory that are not relevant anymore [3]. Therefore,

suitable messages should be generated when individual tasks

have been completed to help provide the user with closure.

The controls of any system are extremely vital, as they are the

fundamental method for the user to communicate with the

system. The controls should be natural in respect to direction

and they should be located in close proximity [3]. The

functionality of controls should appear obvious to the user so

that they can quickly get to grips with the system.

If an interface is to act as a communication channel between the

user and the system, it is clear that it will need to display the

information required by the user to operate the system. For the

automatic annotation system, the possible annotations generated

must be presented to the user so that they can then be accepted

or rejected. This means theinterface must display information

related to the

possible annotations and also the controls that will allow the user

to operate the system (e.g. accept, reject annotation). In addition,

the information related to each annotation should be editable, so

that the user can use their own knowledge to adjust possible

annotations whenever necessary.

2.2 Key Features of the Interface

Some of the main features of the interface design are listed

below.

- Each section of information about a possible annotation is

encapsulated so that it is obvious to the user what the

information relates to. This is also aided by clear headings

above each section of information.

- The information related to each class can be edited by

changing the value of the annotation or by selecting a

different class for it to relate to.

- Properties may be added to an individual class by selecting

the property value and the type of property.

- The controls of the system have simple names and are

located together at the bottom of the interface. This is a

logical position for the controls as the user will need to

process the information above the controls first before

using them.

An example on semantic tagging ontology is shown in Fig.2.

Fig.2: Semantic tagging ontology

2.3 Method
The method focuses on representing the documents succinctly

and explicitly through extracting only the related resultant

semantics from the document. The methods also consider

integrating the semantic annotations within Ontology which

allow distinguish between the same words in different contexts

that gives different meaning. For example, the chosen texts

about Ford motor company have

Ontology to express and represent the concepts presenting in the

specified domain related to their relationships and attributes. The

specific domain ontology will assist the extraction process. The

guidance to the modelling process and decoupling of the

knowledge base from the required documents is provided by the

proposed framework. The following methods are used in the

system:

1. LoadOntologyFromURI

This method loads the ontology from the URI

specified and extracts the class information into the

JTree in a hierarchical manner.

2. LoadOntologyFromFile

This method loads the Ontology from the specified file

in the local system and extracts the class information

into the JTree in a hierarchical manner.

3. ShowClass

This method will extract the class names in Ontology

document in a heirarchichal order.

This method uses Jena library to extract knowledge

from Ontology document.

Campus

College

College

University

Lecturer

Lecturer

Stude
nt located

_at

label

works
_at

is_part
_of

label

studies_
at

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.1, April 2013

7

4. LoadURL

LoadURL method downloads the contents from the

HTML page and shows it to the user in a JEditorPane.

5. AnnotatePage

This method makes entry into the second JTree for all

true results from the search method. Search Method is

used to search for each class description in the JTree to

find any match in the loaded web page.

6. SearchObject

This method searches the whole content loaded in the

JEditopane for each object or phrase passed as

parameter. It will return true if a match is found.

3.CHOICE OF PROFRAMMING LANG -

GUAGE
The logical choice for the type of programming language to

develop the system was an object oriented one due to the use of

an OOD methodology [5]. From early on in the design stage it

was decided that the automatic annotation system would be

created using Java. By choosing to use Java, a range of benefits

were gained including:

 Simplicity - Java has been designed to be compact and

does not include some features found in other languages

like pointers and multiple inheritances. Also the Java

Virtual Machine automatically handles many complex

issues like garbage collection. As a result Java is an easy

language to use for building small and large-scale

systems.

 Platform Independence - One of the key design features

of Java is that it is platform independent. Java source

code is turned into simple binary instructions like other

languages such as C++. However, whereas C++ source

is refined to native instructions for a particular family of

processor, Java source is compiled into a universal

format (bytecode) that is executed by the Java Virtual

Machine [5]. Java also familiar in implementing Jena

source code. Jena API is fully compatible with RDF data

model and OWL ontologies and so this would provide an

efficient and well-defined mechanism for creating and

manipulating ontologies written in OWL.

 Security-The safe language to be used is Java. It

offersnumerous layers of protection from dangerously

faulty code including compilers and a bytecode verifier

that ensure applications built with Java only execute

legitimate code [6]. The language is also type safe,

meaning that an object cannot be mistakenly viewed as

an incompatible type.

Like any programming language, Java does have some

disadvantages. The main one being speed of execution. This is

mainly due to the architecture of Java and the many security

mechanisms it provides. Despite this, the author feels that the

benefits provided by Java clearly outweigh any disadvantages.

3.1 Code Conventions
Standard code conventions were adhered to in the

implementation stage for a number of vital reasons. Firstly a

standardcoding styleimproves thereadability of

software, allowing other people unfamiliar with the software to

fully understand it quicker [6]. The majority of software is

developed by the author, so a standard coding style helps

increase maintainability as code is clearer and simpler to

understand. The code conventions used are subdivided into

separate categories and a few of the essential conventions are

listed below:

Naming Conventions

 The class names have to be nouns. Where in varied

case the first letter of each internal word capitalized.

They should also use whole words and be simple and

descriptive [4].

 Methods have to be verbs. Where in varied case the

first letter lowercase and the first letter of each internal

word capitalized [4].

 Variables should be short yet meaningful, in varied

case with a lower case first letter [4].

Comments

 Comments could be provided to give indications of

code and make available further information that is not

available in the code itself. Comments should contain

only relevant information to understand the

program[4].

Programming Practices

 Variable to be assigned to the same value in a single

statement must be avoided.

 Coding literals directly must be avoided except the

numerical constant 1, 0, and 1. These constant may

appear in for loop for counting purpose.

3.2 Integrating with WordNet

This sub section outlines how the automatic annotation system

was integrated with WordNet. To provide an automatic

annotation system, the extracting knowledge capabilities of

WordNet along with the interface and associated classes

developed by the author had to be integrated with Ontology.

This would allow the automatic annotation system to make use

of the powerful ontology browser and web browser provided by

Jena API. These are fundamental parts of the system as they

allow the annotator to view web pages and also provide a

graphical representation of ontologies.

One of the main benefits of WordNet for developers is its plugin

interface. This provides a simple way to interact with the various

components of the system and also allows the system to be

easily extended in the future. Each of the components of

WordNet has a specific plugin interface that can be used query

the component for information.

3.2.1 ExtractingKnowledge based Ontologies
The focusing of semantic annotation was in isolated annotations

of web pages. However, achievement has been done on

annotation of pages with semantic information by semantic web

in order to enrich the content of web pages.

The existing information on the web is as natural language

documents. IE provide a promising approach to access this

knowledge with reducing the documents to tabular from the

documents to be retrieved by clients. However, such methods

still remains not easy for practical purposes due to time

consumed and efforts required to achieve annotations. The

certain entities in any text documents are identifying by many IE

systems depending on predefined templates.

 However, there is a limitation in using vocabulariesstructures by

web document and it is very difficult for any IE systems to

overcome this challenge.

In this sub-section description on how the extracting knowledge

component was implemented. During the design phase of the

work, it was decided that WordNet would be used to extract

knowledge from documents. The program code used to control

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.1, April 2013

8

System.getProperties().put("wordnet.database.di
r","C:\\Wordnet\\2.1\\dict");
BrowserFramefrm= new BrowserFrame();
frm.setVisible(true);
publiccheckWordNet(String wordForm) {
WordNetDatabase database =
WordNetDatabase.getFileInstance();
Synset[] synsets
=database.getSynsets(wordForm);
String[] wordForms =
synsets[i].getWordForms();
 String temp[] = new String[length +
wordForms.length];

jSplitPane1.setDividerLocation(150);
jTabbedPane1.setTabPlacement(javax.swing.J
TabbedPane.BOTTOM);
trvOntology.setModel(newDefaultTreeModel(ne
wDefaultMutableTreeNode(newannot
("Ontology"))));
trvOntology.addMouseListener(new
java.awt.event.MouseAdapter() {
public void
mouseClicked(java.awt.event.MouseEventevt) {
trvOntologyMouseClicked(evt);

WordNet based on parse tree. An example code fragment to

show how to check and create a WordNet database is shown in

Fig.3.

Fig.3: Code Fragment to Check a WordNet Database

3.2.2 Loading Ontology

There are various methods to write down the ontology, and

different thoughts as to what breeds of definition should go in

one. The kinds of the application will guide and drive the

contents of the ontology. In this section, explanation will be

provided on how to load the ontology.

Reusing and sharing of ontologies is supported by OWL through

making it portable for one ontology to import another one. All of

the properties, classes and individual definitions which are in the

imported ontologies are accessible to be used in the importing

ontology. The mechanism of how owl:imports will work to be

compatible to resolve the position of the required ontology and

provide its URI

Ontology in this method is load from the URI or from the

specified file in the local system specified and extracts the class

information into the JTree in a hierarchical manner. The screen

shot of how to load Ontology is shown in Fig.4.

3.2.3 Controlling Tree Model

In order to use WordNet to analyze a specific document, a tree

model must be created. This model is provided by the

framework and it is used to set entity. An example code

fragment to show how to create a new Tree model is shown in

Fig.5.An instance of the tree model is created using the import

om.hp.hpl.jena.rdf.model.ModelFactory, the method specified

by the abstract Model Factory. This approach is commonly

known as the factory pattern. It assists to model an interface for

generating an object which at formation time can let its

subclasses choose which class to instantiate.

This mechanism is widely used in Java programming as it allows

classes to be instantiated using different implementationsOver

time specific implementations may be updated and new ones

may be added to improve the functionality of a system.

Fig.4 Load Ontology Screen Shot

The parameters supplied to the tree model method are the

resource class name, the parameter values for the resource, the

features of the resource and the name of the resource which is

the version of jena.rdf supplied in the Framework being used.

Fig.5: Code fragment to create a new Tree model

The parameter vales and the feature values are actually just

empty DefaultMutableTreeNode objects as these are updated

later in the execution process. The screen shot below shows how

to extend tree as shown in Fig.6.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.1, April 2013

9

Fig.6: Ontology Tree Screen Shot

4. CONCLUSION

During the last few years, many formalization of WordNet as

Owl ontology have been developed but the complete number of

resulting concept classes is the main challenge to turn WordNet

into OWL ontology.

This paper describes how to support the annotation processes

through developing method to achieve the following:

- Collect sentences for each noun pair where the nouns exist.

- Extract patterns automatically from the parse tree and parse

the \sentences.

- Train a hypernym/hyponym classifier based upon these

features.

- Dependency tree considering the following relation:

(word1, category1:Relation: category2, word2).

Theproposed method is focusing on representing the documents

succinctly and explicitly through extracting only the related

resultant semantics from the document. The utilization of

WordNet improves the retrieval of information. The specific

domain ontology will assist the extraction process. The guidance

to the modelling process and decoupling of the knowledge base

from the required documents is provided by the proposed

framework.

5. REFERENCES
[1] Ala’aQasim Al-Namiy, (2009); “Towards

Automatic Extracted Semantic Annotation (ESA)”,

IEEE International Conference on Information

Processing, 2009. APCIP 2009. Asia-Pacific,

Shenzhen, China. Conference on. Issue Date: 18-19

July 2009. Volume: 2, Page(s): 614 – 617.

[2]

[3]

[4]

[5]

[6]

McEnery, A. M., Wilson, A. (2001)

CorpusLinguistics: An Introduction. Edinburgh:

Edinburgh UniversityPress.

John M. Carroll, (2010); “Conceptualizing a

possible discipline of human–computer interact-

ion”, Journal of Interacting with Computers, Vol.

22, Issue 1, January, pp. 3–12.

J.C.C, (1997) ; Java Code Conventions,

http://www.ingce.unibo.it/~mviroli/teaching/fondL

A2003/slides/CodeConventions.pdf

J. Domingue, M. Dzbor, and E. Motta. Magpie:

Supporting Browsing and Navigation on the

Semantic Web, Proceedings ACM Conference on

Intelligent User Interfaces (IUI), pp. 191–197,

2004.

Deng ZhiHong, TangShiwei, Yang

Dongqing,Semantic-Oriented Integration The role

ofOntology in Web Information

Integration,Computer Applications, 2002, vol.2,

no.1,pp. 15-17.

