
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

50

RTM: A Relation based Testability Metric for Object

Oriented Systems

Sukhdip Singh

D C R University of Science &
Technology, Murthal, Sonepat

Haryana-131039, INDIA

Rajive Kumar
D C R University of Science &
Technology,Murthal, Sonepat,

Haryana-131039, INDIA

Raghuraj Singh
Harcourt Butler Technological
Institute, Kanpur UP-208002,

INDIA

ABSTRACT
The trend of day for object oriented software is highly

complex objects, interacting with each other very rapidly. As

a result it is becoming more and more difficult to manage and

measure the complexity of the systems being developed.

Relation-based testability measure is a metric, to provide the

highly desirable insight to the inherent complexity of any

object oriented system. We apply relation-based testability

measure (RTM) to a University Automation product to

measure the complexity of the system at an earlier stage of the

development. Based on the approach we have developed an

algorithm to measure the overall relational complexity of any

object oriented system. The algorithm is very generic,

accommodating both the flavors of traditional procedural

approach and the modern object oriented approach. Applied at

an early development stage, it can be very helpful for design,

development and testing teams to co-ordinate their efforts and

produce a much better and easy way to handle software

product.

Keywords
Cyclomatic Complexity(CC), Structural Complexity (SC),

Total Cyclomatic Complexity of Module (TCCM).

1. INTRODUCTION
The increasing dependence on software and the role of

software in almost every field is also creating new challenges

every day. In today’s scenario the task of testing any software

product is becoming increasingly complex and resource

consuming. To make these inherently complex systems more

manageable, the object oriented methodology is the flavor of

the day for software professionals. The increased complexity

of the systems poses many new challenges like infinitely

many input combinations and corresponding outputs. It is

almost impossible to cover all the paths of such systems with

the available means, manual and automated.

Relation-based testability measure is metric, which will help

to measure the overall testability of the complex object

oriented system. It is found that metrics available till date are

not sufficient for measuring the complexity of the systems at

an early stage with the available testability measures for

object oriented systems. Most of the available metrics are

applied after the design has been finalized, so they are of little

use for the designers of the software systems. More over the

complexity information is computed so late that it is very

costly to re-consider some design decisions.

The software complexity has been computed by many

researchers using different attributes like control flow graphs

[1], number of operators and operands used [2], number of

identifiers per unit program area [3], cognitive complexity [4],

[5], [6], [7] and spatial complexity [8], [9], [10], [11]. Voas

et.al. [19] define software testability as the probability that the

software will fail on its next execution, provided it contains

fault. Vaos has proposed a technique for implementation of

the different phases of their sensitivity analysis like

introduction of flags at various points of the source code of

the program. The program is run many times to find whether a

particular piece of code has been executed or not and for how

many times.

Freedman [21] proposes “domain testability”, based on the

notions of observability and controllability as adopted in

hardware testing. Observability captures the degree to which a

component can be observed to generate the correct output for

a given input. The notion of ‘controllability’ relates to the

possibility of a component generating all values of its

specified output domain. Adapting a component such that it

becomes observable and controllable can be done by

introducing extensions. Observable extensions add inputs to

account for previously implicit states in the component.

Controllable extensions modify the output domain such that

all specified output values can be generated. Freedman

proposes to measure the number of bits required to implement

observable and controllable extensions to obtain an index of

observability and controllability, and consequently a measure

of testability.

McGregor et. al. [20] has also given an approach to determine

the testability of an object oriented system. They proposed a

visibility component (VC), which is sensitive to the object

oriented features like encapsulation, inheritance, exceptions

and collaborations.

The VC depends upon following terms:-

1. Explicit Parameter: - An Object is an Explicit parameter of

a method iff it is named in the method’s signature.

2. Implicit Parameter: - An Object is an Explicit parameter of

a method iff it is ‘visible’ from within the method.

3. Constant Object: An Object is said to be constant with

respect to a method iff it is not modified with the execution of

the method.

4. Constant Method: A Method is constant iff its execution

does not affect any object of the system.

Jungmayr [22] takes an integration testing point of view, and

focuses on dependencies between components. He proposes

the notion of test-critical dependencies as well as metrics to

identify them and subsequently removing them, using

dedicated refactoring.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

51

 In [26] the available object oriented metrics have been

studied and compared with each other and their relative

usefulness has been discussed.

 The available metrics may be classified as under:-

Fig 1. Software Metrics

2. EXISTING METRICS
The objective of this paper is to develop an approach using

well known existing metrics for procedural as well as object-

oriented systems, to predict the testability of the object

oriented system. In section 2.1 and section 2.2, the relevant

procedural metrics and object oriented metrics have been

identified. Then, in section 2.3, an algorithm to calculate the

Cyclomatic Complexity of the system has been proposed.

The algorithm has been extended to calculate the complexity

of the system based on object oriented metrics. After that the

total relation based complexity of the system is calculated.

The testability metric has been applied on three Java based

projects and the results are analyzed in section 3.

2.1 Procedure Oriented Metric
Out of the available metrics, we have chosen the Cyclomatic

Complexity [18] as the metric to measure the complexity of

the individual method. To compute the Cyclomatic

complexity (CC) we need to draw the control flow graphs for

the program. Control flow graphs can be drawn from the flow

charts of the program directly. CC provides a quantitative

measure of the logical complexity of the method. The

Cyclomatic Complexity can be computed in three ways:-

1. The number of regions of flow graph corresponds to

Cyclomatic complexity.

2. Cyclomatic complexity, V(G) for a flow graph , G, is

defined as

 V(G)= E-N+2, where E is the number of flow graph edges.

N is the number of flow graph nodes.

3. Cyclomatic complexity, V(G) for a flow graph, G is also

defined as

V(G)=P + 1, where P is the number of Predicate nodes

contained in flow graph G.

According to McCabe’s [1] structured testing criterion,

unreachable control flow paths need to be constructed.

Theoretically, the control flow graphs can be constructed, but

the actual efforts needed are influenced by the source code

factors. The class-under-test will need to be initialized such

that effective testing can be done. In our case, this entails that

the fields of (an object of) a class are set to the right values

before a test case can be executed. Furthermore, if the class-

under-test depends on other classes, as it uses members of

those classes, needs to be initialized. A class which deals with

external interfaces (hardware, etc.) will typically require the

external components to be initialized as well.

 Software Metrics

Object Oriented Procedure Oriented

McCabes
Complexity Metrics
(Cyclomatic Complexity)

Mood Metrics

Chidamber &
Kremer Metrics

Halstead Metrics

Function Points

Henry Kafura’s Information flow metrics

Bansiya’s

Metrics

Briand’s Metrics

Harison’s Metrics

Lorenz & Kidd
Metrics

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

52

2.2 Object-Oriented Metrics
To select the object oriented metrics which are suitable

candidates for characterizing the testability of the system, is

really a tedious task. We have used the well-known metrics

suite provided by Chidamber and Kemerer [14], as basis for

this experiment. CK Metrics have direct impact on the

testability of the system. The metrics have been discussed

below. They are used in our experiment to implement and

understand.

2.2.1 Inheritance Based Metrics
Inheritance is a powerful mechanism in an Object-Oriented

(OO) programming. This mechanism supports the class

hierarchy design and captures the IS-A relationship between a

parent class and its child class. The two metrics for measuring

inheritance, which we have considered are:-

2.2.1. 1 Depth of Inheritance Tree (DIT)

It is “the maximum length from the node to the root of the

tree”. It gives a measure of ancestor classes that can

potentially affect this class. Higher value of DIT shows a

higher potential for reuse but increased complexity.

2.2.1. 2 Number of Children (NOC)

It is the number of immediate sub-classes subordinated to a

class in the class hierarchy. It is a measure of the child classes

which inherits the methods of the parent class. High NOC

value indicates high potential for reuse and likelihood of

improper abstraction.

2.2.2 Coupling Based Metrics
These indicate the degree of interdependence among the

modules of a software system. Low value of coupling is

considered to be good for any software design. High value of

coupling makes a system more complex because due to

interdependency of modules on each other, it becomes very

difficult to understand, control and modify the module. A

class is said to be coupled to another class if it uses variables

or methods of another class.

2.2.2. 1 Response for Class (RFC)

It is number of methods that can be invoked in response to a

message sent to an object of a class. Accordingly the larger

the number of methods that can be invoked from a class

through messages, the greater the complexity of the class. If a

large number of methods can be invoked in response to a

message, the testing and debugging of the class becomes

complicated since it requires a greater level of understanding

on the part of the tester.

2.2.2. 2 Coupling Between Objects (CBO)

It is a count of the number of other classes to which a class is

coupled. CBO counts the non-inheritance related calls.

According to this property larger the number of couples, the

higher the sensitivity to changes in other parts of the design

and therefore maintenance is more difficult. Strong coupling

complicates a system since a class is harder to understand, and

modify. Two classes are said to be coupled if member

functions declared in one class make use of methods or

instance variables defined by other class. In fig 2 the value of

CBO for class Ration is 2 and CBO is 0 for class

TobePurchased and Available.

2.2.3 Cohesion Based Metrics
It is a measure of how strongly-related or focused the

responsibilities of a single module are. As applied to object

oriented programming, if the methods that serve the given

class tend to be similar in many aspects, then the class is said

to have high cohesion. Low cohesion modules for example are

modules with coincidental cohesion, are indicative of a

module that performs two or more basic functions. High

cohesion modules have functional cohesion which indicates

that modules perform only one basic function.

2.2.3. 1 Lack of Cohesion in Methods (LCOM)

It is a measure for the number of not connected method pairs

in a class representing independent parts having no cohesion.

It represents the difference between the number of method

pairs not having instance variables in common, and the

number of method pairs having common instance variables.

High value of LCOM indicates that the class should probably

be split into two or more classes.

2.2.4 Complexity Based Metrics

2.2.4.1 Weighted methods per Class (WMC)
It may be defined as the sum of complexity of all the methods

defined in a class. If complexity of all the methods in class is

assumed to be unity, then the WMC for that class will be

equal to the number of methods defined in the class.

The following class diagram is used to show how the value of

a particular metric is computed for a module, class or object

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

53

Fig 2: Class Diagram of Hostel management System

Table1. Object oriented metric values for class diagram

Fig 3: Class Diagram for Inventory System of Hostel

Metric/Class Student Undergraduate Postgraduate ResearchScolar Room

DIT 0 1 1 1 2

NOC 3 1 1 1 0

 WMC(Assuming

complexity of each

method to be unity)

4 3 3 3 2

Student

Attributes:

Name RollNo Gender

Methods:

GetName GetRollNo
GetGender DisplayInfo

Available

Attributes

AvlItem1
AvlItem2

Methods

GetItem1
GetItem2

Show

Inventory

Attributes

TotalItem1
Available itemItem2

ToBePurchased

item3
Methods

Getdata

GetTotalItem

ToBePurchased

Attributes

PurItem1
PuItem2

Methods

GetpuItem1
DisplaypurItem1

Undergraduate

Attributes:

Branch Semester Dues

Methods:
GetBranch GetSem

DisplayDues

Postgraduate

Attributes:

Branch Specialization Dues

Methods:

GetBranch GetSem

GetSpecializn DisplayDues

ResearchScholar

Attributes:

Branch RegnDate Dues

Methods:

GetBranch GetRegndate

DisplayHRA DisplayItemIssued

Room

Attributes:

RoomNo RollNo

Methods:

GetRoomNo GetStatus

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

54

The following algorithm is used to compute the Cyclomatic

complexity of all the methods used in all the classes of all the

modules of the system first and then the overall relation based

complexity of the system is computed :

3. ALGORITMH
RelationBasedTestabilityMetric : Compute RTM

Input: Class and Use-case diagrams of Object Oriented System, Total No of Modules

Output: Relation based Testability Metric value of Object Oriented System

RTM ←0

Step1 :- While (Module_Number ≠ Null) do

Step 2: For each class Ci in module MODi do

Step3 :- For each method Mi in class do

Step4 :- Compute Cyclomatic Complexity of the method Mi ϵ Ci , CCi

 End for

 Step5 :- Compute the total Cyclomatic Complexity of Class Ci , 0

n

i

TCCi CCi

 End for

Step6:- Compute Total Cyclomatic Complexity of Module 1

M

J

TCCM TCCj

End While

Step7:- While (Module_Number ≠ Null) do

Step 8:- For each class Ci in module MODi do

Step 9:- SCi DITi NOCi RFCi CBOi LCOMi WMCi End for

 Step10:- 0

m M

m

TSC SCm

 End While

Step11:- RBT=TCCM+TSC

Table 2. Notations

Abbreviation Full Form

RBT Relation Based Testability

C Class

MOD Module

M Method

CC Cyclomatic Complexity

SC Structural Complexity

TSC Total Structural Complexity

TCCM Total Cyclomatic Complexity of

Module

4. ANALYSIS
The algorithm has been applied on three Java projects.

Project1 is a small project with low degree of modularity.

Each module has a small number of classes. The complexity

of the individual methods of the class is low. The methods in

the classes are related to each other, the degree of dependence

is also low. The second project is of moderate size and the

values of metrics are also moderate. The third project is

relatively larger in size and the metric values are also large.

Project1 was developed during our experiment and the

feedback provided to the developers proved to be very useful.

As is evident from the table below and the chart thereafter ,the

RBT metric gives an indication of the complexity of the

system to be developed at the earlier stage and may be used to

guide the team to keep the complexity of the system as low as

possible without compromising the functional structure of the

system . The low value of RTM suggests that the system will

be more testable at the later stages and it will help the testing

team to perform their work more efficiently. In the projects

considered for this study Project1 consisted of 3 packages and

20 classes, project2 consisted of 5 packages and 30 classes

and project3, which is an open source project . All the projects

have packages ,sub-packages and classes ,the proposed

metrics take into account diff erent types of connections

between two diff erent packages such as class −class, sub-

package−sub-package, subpackage −class and class−sub-

package . The logical structure of methods of the classes and

their interaction and direction of connection between methods

have also been taken into consideration during the

measurement of complexity. The proposed metrics have been

validated theoretically as well as empirically. The empirical

validation of the proposed metric has been provided by

evaluating three Java projects. Our Study clearly reflect that

the proposed metric is a valid indicator of the complexity of

the system under consideration.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

55

Fig 3 Histogram of the RTM for projects

Table 3: Analysis of results

 Project1 Project2 Project3

No. of

Modules

5 7 10

TCCM 3+4+6+5+4=22 2+4+3+6+2+4+5+6=33 3+4+3+6+4+4+3+5+2+4= 38

TSC 3.6+4.3+6.2+5.4+4.7=24.2 2.3+4.2+3.7+6.3+2.3+

4.7+5.1+6.3=34.9

3.4+4.3+3.3+6.4+4.5+

4.6+3.3+5.4+2.2+4.3=41.7

RBT 46.2 77.9 79.7

5. CONCLUSION
In this paper efforts have been made on measuring the

relation based complexity of the object oriented system. The

paper presents an algorithmic approach to measure the

complexity of the system considering its procedural and object

oriented features simultaneously. The results obtained by

applying this approach on the experimental projects have

shown that the new approach has an edge over the existing

approaches and is helpful for the developers. It provides an

early indication of the complexity of the system and the

developers may improve their design. As the metrics may be

used in early stages it will help to evaluate the complexity of

the system at an early stage. By using this approach better

products may be designed in terms of understandability,

maintainability and testability.

6. REFERENCES
[1] McCabe, T.J., 1976. A Complexity Measure. IEEE

Transactions on Software Engineering, SE-2 (4), 308-

320.

[2] Halstead, M.H. 1997. Elements of Software Science,

Elsevier NorthHolland, New York.

[3] Harrison. W. 1992. An Entropy-based Measure of

Software Complexity. IEEE Transactions on Software

Engineering, 18(11), 1025-1029.

[4] Misra, S. 2006. Modified Cognitive Complexity

Measure, In: 21st ISCIS’06, LNCS, vol. 4263,.1050-59.

[5] Misra, S. 2006.A Complexity Measure based on

Cognitive Weights. International Journal of Theoretical

and Applied Computer Science, 1(1), 1-10.

[6] Wang, Y., and J. Shao 2003. Measurement of the

Cognitive Functional Complexity of Software, In: IEEE

International Conference on Cognitive Informatics,

ICCI’03, 67-71.

[7] Wang, Y. and Shao, J. 2003 A New Measure of Software

Complexity based on Cognitive Weights. Canadian

Journal of Electrical & Computer Engineering, 28(2), 69-

74.

[8] Chhabra, J.K, K.K. Aggarwal, and Y. Singh 2003. Code

and Data Spatial Complexity: Two Important Software

Understandability Measures. Information and Software

Technology. 45(8), 539-546.

[9] Chhabra, J.K, K.K. Aggarwal, and Y. Singh 2004.

Measurement of Object Oriented Software Spatial

Complexity. Information and Software Technology,

46(10), 689-699.

[10] Douce, C.R., P.J. Layzell, and J. Buckley, 1999. Spatial

Measures of Software Complexity. In 11th Meeting of

Psychology of Programming Interest Group,

http://www.ppig.org/workshops/11th-programme.html

[11] Chhabra, J.K, K.K. Aggarwal, and Y. Singh , 2004, A

Unified Measure of Complexity of Object-Oriented

Software. Journal of the Computer Society of India,

34(3), 2-13

[12] Weyuker, E.J., 1988. Evaluating Software Complexity

Measure. IEEE Transaction on Software Engineering,

14(9), 1357-136

[13] Briand, L.C., S. Morasca, and V.R. Basili, 1996.

Property based Software Engineering Measurement.

0

20

40

60

80

TCCM TSC RTM

Project1 Project2 Project3

http://www.ppig.org/workshops/11th-programme.html

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.8, April 2013

56

IEEE Transactions on Software Engineering, 22(1), 68-

86.

[14] Chidamber, S., and Kemerer, C., 1994. A Metrics Suite

for Object-Oriented Design. IEEE Transactions on

Software Engineering, 20(6),

[15] Tegarden, D.P., S.D. Sheetz, and D.E. Monarchi, 1992.

The Effectiveness of Traditional Metrics for Object-

Oriented Systems. In Twenty-Fifth Hawaii International

Conference on System Sciences, Vol IV, IEEE Computer

Society Press.

[16] Tian, J., and M.V. Zelkowitz, 1992. A Formal Program

Complexity Model and its Application. J. Systems

Software, 17, 253-266.

[17] Lakshmanian, K.B., S. Jayaprakash, P.K. Sinha, 1991.

Properties of Control-Flow Complexity Measures. IEEE

Transaction on Software Engineering, 17(2), 1289-1295.

[18] Pressman Roger S. , Software Engineering :A

Practitioner’s Approach, 5th Edition, 448-450

[19] J. vaos , L Morrel and K Miller , 1991. Predicting Where

faults Can hide from Testing, IEEE Software, 8, 41-48 .

[20] [20] J. McGregor and S. Srinivas,1996. A Measure of

Testing Eff ort. In Proceedings of the Conference on

Object-Oriented Technologies, USENIX Association,

129–142.

[21] R. Freedman, 1991. Testability of Software Components.

IEEE Transactions on Software Engineering, 17(6), 553–

564.

[22] S. Jungmayr,2002. Identifying test-critical dependencies.

In Proceedings of the International Conference on

Software Maintenance, IEEE Computer Society, 404–

413.

[23] R. Binder, 1994. Design for testability in object-oriented

systems. Communications of the ACM, 37(9), 87–101.

[24] B. Henderson-Sellers, 1996. Object Oriented Metrics.

Prentice Hall, New Jersey.

[25] L. C. Briand, J. W. Daly, and J. K. W¨ust, 1999. A

unified framework for coupling measurement in object-

oriented systems. IEEE Transactions on Software

Engineering, 25(1), 91–121.

[26] Sukhdip Singh , 2008 . Testability of Object Oriented

Software : A Review. Proceedings of National

Conference on Information Security & Mobile

Computing 174-177.

