
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.4, April 2013

27

Four Way Encryption Method for Secure Message

Coding by use of CBC, Merkle-Hellman,

Randomizers and Discrete Logarithmics

B. Padhmavathi
Department of CSE

SRM University
Vadapalani Campus
Chennai – 600026,
Tamil Nadu, India

Arghya Ray
Final year-Department of CSE

SRM University
Vadapalani Campus

Chennai-600026,
Tamil Nadu, India

Alisha Anjum
Pre-final year, Dept. of CSE

SRM University
Vadapalani Campus

Chennai-600026,
Tamil Nadu, India

ABSTRACT

The Cipher Block Chaining (CBC) and the Merkle-Hellman

algorithm are two different cryptosystems for encrypting

messages. But using these cryptosystems separately has

many drawbacks. However there are several ways of getting

rid of these drawbacks.

This paper demonstrates how to use the combination of both

the cryptographic algorithms along with randomized vectors,

keys and super-increasing sequence to encrypt messages. The

encrypted message is stored in secret buffers and these

positions are encrypted by use of discrete logarithmics and

sent. This not only strengthens the encrypted message but

also makes the transmission more secure, so that only the

intended recipient of the message is able to decipher the

message. This paper focuses on enhancing the confidentiality

of the message transfer.

General Terms

Cryptography; Discrete Logarithmics; Merkle-Hellman

Knapsack Cryptosystem; RSA algorithm

Keywords

 Security; cryptography; cryptosystem; blocks cipher; cipher

block chaining;discrete logarithmics;knapsack problem;

randomizers; superincreasing vector.

1. INTRODUCTION
 In the Cipher Block Chaining Mode of encrytion, the input

to the encryption algorithm is the output from the XOR

operation performed on the current plain text block and the

preceding cipher text block. A Symmetric key is used for

each block. Here the processing of the sequence of plain text

blocks is chained together. The input to the encryption

function for each plaintext block bears no fixed relationship

to the plain text block.

 On the other hand, the knapsack problem is a NP complete

problem in combinatorial optimization. The knapsack

problem selects the most useful items from a number of

items given that the knapsack has a certain capacity.

Knapsack problems are widely used to design solutions to the

industrial problems using Public-key cryptography.

 The 0-1 knapsack problem states that there is a knapsack

with a given capacity and a certain number of items that need

to be filled inside the knapsack. Each item has a value and a

weight associated with it. The knapsack problem selects the

items that can be put in the knapsack so that the value of all

the items maximizes the weight and does not increase the total

capacity of the knapsack.

This can be denoted as –

Maximize ∑n
i=0 bixi (1)

Subject to ∑n
i=0 wixi ≤ W (2)

xi= 1, if the item is included in the knapsack

 0,if the item is not included in the knapsack (3)

where,

‘b’ is the value associated with each item i

‘w’ is the weight associated with each item i

‘W’ is the maximum capacity of the knapsack

‘n’ is the number of items

 The subset sum problem is a special case of the knapsack problem

[5].This problem finds a group of integers from a list vector V, where

V = (v1, v2, v3, … vn), with the subset of elements in the vector V

gives a sum of S. It also determines if a vector X = (x1, x2, x3… xn)

exists where xi element of {0,1} so that V*X = S [5]. Then A super

increasing knapsack vector s is created and the super-increasing

property is hidden by creating a second vector M by modular

multiplication and permutation. The vector M is the public key of the

cryptosystem and is used to decrypt the message [2].

2. EXISTING SYSTEM
The existing system uses either Cipher Block Chaining Mode or

Merkle-Hellman Knapsack Cryptosystem to perform encryption and

decryption operations on the plain text. The Cipher Block Chaining

(CBC) Mode is a type of Block Cipher Modes of operation which

takes n-blocks of plain text and performs encrytion operation on all

the blocks simultaneuosly whereas, the Merkle-Hellman invented in

1978 is based on the superincreasing subset problem. But both the

crypto-systems had several disadvantages.

In the Cipher Block Chaining Mode the original text can be easily got

back from the cipher text by just knowing the key or the Initial

Vector. Again in case of Merkle-Hellman cryptosystem by knowing

the value of the number and the co-prime number, we can easily trace

back the plain text.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.4, April 2013

28

3. PROPOSED SYSTEM

 To overcome the drawbacks, we propose a system where we

use the combination of both the cryptosystems and also make

use of randomizers and discrete logarithmics in order to

encrypt messages so that only the intended recipient of the

message is able to decipher the messages.
The structure is prepared such that the plain text is encrypted

using Cipher Block Chaining Mode and then further

encrypted using the Merkle-Hellman cryptosystem. The key

keeps on varying since it’s calculated based on the final

output of the previous block. This helps to get an encrypted

message of higher strength because we use a randomized

vector, key as well as a super-increasing subset. Even the

encrypted codes are stored in secret buffers and only those

positions are encrypted through discrete logarithmics and

sent to the receiver.

 The original message can be obtained by performing the

operations in the reverse order. i.e, perform Merkle-Hellman

algorithm and then the Cipher Block Chaining Mode on the

cipher text with the help of the varying vector, key and super-

increasing sequence which was used during encryption.

 We describe the various steps of our proposed

cryptosystem in the following paragraphs. The encryption

procedure for the message is described in section IV of this

paper where we use the string “Go” as input secret message

and perform several operations on it to get the message to be

transmitted as “000300460131013900310159”.

 In section V, we describe the steps to decrypt this received

message “000300460131013900310159” and get back the

original message “Go”. Both the encryption and decryption

processes take the same initial vector, initial key and super-

increasing which is chosen by the use of a random number

generating algoritm.

 In section VI, we show the outputs for both encryption and

decryption techniques. Thus we prove that our proposed

cryptosystem is working correctly. We have discussed about

the future enhancements to our proposed technique in section

VIII of this paper.

4. ENCRYPTING MESSAGES
 The proposed cryptosystem performs encryption in three

steps. First the plain text is divided into single characters and

the characters are converted to their binary equivalent. Each

of these represents a block of code. Each of these blocks is

encrypted by CBC to form blocks of temporary cipher text.

The initialization vector and the key are randomly generated.

 Secondly, the temporary cipher text is encrypted through the

Merkle-Hellman encryption scheme whose main idea is to

create a subset problem which can be solved easily and then

to hide the super-increasing nature by modular multiplication

and permutation. The super-increasing sequence is generated

randomly.

Thirdly the encrypted message is stored in secret buffers and

sent to receiver. The postions where this message is stored is

hashed, encrypted by use of discrete logarithmic functions

and sent to reciever.

 The key used to encryt the text of successive blocks in

CBC is made to be varying based on the final output of the

previous block of code. The transformed vector forms the

encrypted message and the original superincreasing vector

forms the private key and is used to decipher the message.

The encryption process works as a whole where the blocks are

simultaneously encrypted.

 Figure 1 demonstrates the encryption technique. The plain text is

broken down into blocks of seven bits each. p1, p2,…., pn represents

the blocks of plain text. Each block of plain text is encrypted by

using a vector and a key, thereby producing a temporary code (TC).

This temporary code is further encrypted using the Merkle-Hellman

cryptosystem to get the final blocks of cipher text (C1, C2,.. Cn).

After all blocks of code have been encrypted, they are combined

together to get the cipher text.

Figure 1: Block diagram of the encryption process

4.1 Mathematical Explanation
The first step is to generate a random initial vector (IV) and a key and

a super-increasing sequence.These are used to perform the first

encryption process.

The second step is to convert all the characters of the message into

binary. The binary sequence is represented by the variable “b”.

The third step is to perform CBC to get the temporary cipher text.

The fourth step is to take the super-increasing sequence already

generated randomly. A superincreasing sequence is one where every

number is greater than the sum of all preceding numbers.

 s = (s1, s2, s3, …. sn) (4)

The fourth step is to choose two secret numbers – an integer (a),

which is greater than the sum of all numbers in the sequence‘s’ and

its co-prime (r).The sequence ‘s’ and the numbers ‘a’ and ‘r’

collectively form the Private key of the cryptosystem.

 A sequencing vector (b) is used during the second stage of

encryption. Its used to calculate the set of the vector sequence by

multiplying the co-prime number ‘r’ with the corresponding element

in the super-increasing sequence set (s) and then taking the modulus

of the product with respect to ‘a’.

Therefore, bi = r * si mod (a). (5)

 All elements b1, b2, b3, …. bn of the sequence b are multiplied

with the corresponding elements of the binary sequence b. The

numbers are then added to create the encrypted message Ci.

This sequence C = (C1, C2, C3… Cn) forms the coded message of

the cryptosystem.

These blocks of code are stored in the secret buffer and the index of

the stored message are encrypted by use of discrete logarithm and

sent to the receiver along with the initial vector, key, hash

information and the sequence information.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.4, April 2013

29

4.2 Example
 For encrypting the string “Go”
Step 1.
The first step is to generate a random IV (Initial Vector) and

the random key.

Suppose the randomly generated initial vector (IV) and the

key (k1) are: The IV = 0 0 1 1 1 1 1

 Key (k1)= 0 1 0 1 1 1 0

Then all the characters in the string are converted into binary

 G = 1 0 0 0 1 1 1

 o = 1 1 0 1 1 1 1

 Here the binary equivalents of each and every character are

considered as a separate block.

The super-increasing sequence to be used later is also

generated randomly. Here, three randomly genreated

numbers are used to generate the required random sequence.

Suppose, the three numbers are 1, 5 and 9.

Using this, the random sequence is generated through a

certain combination as {1, 5, 10, 20, 40, 80, 160}

Step 2: For 1
st
 block.

The binary value of ‘G’ is XORed with IV and then the result

is again XORed with the key.

 p1, p2,…., pn represents the blocks of plain text. Each block

of plain text is then encrypted by using a vector and a key,

thereby producing a temporary code (TC). TC1,TC2,… TCn

represents the temporary codes for the plain text blocks

p1,p2,..pn respectively.

Thus,TC1= ((0011111) XOR (100011 1))XOR (010111 0)

 = 1 1 1 0 1 1 0

This completes the CBC stage of 1st block.

 Now we perform Merkle-Hellman scheme on the temporary

output of 1st block.

The first step is to choose a superincreasing sequence. In this

case the sequence is s = (1, 5, 10, 20, 40, 80, 160)

The two secret numbers chosen are a = 4439, r = 10.

The sequence vector is b = b1, b2,… bn

 Where bi = r * si mod a.

The message is encrypted by multiplying all the elements of

sequence b with the corresponding elements of sequence s

and adding the resulting sum.

Therefore, the encrypted message

 C = ∑n i=0 bi* (TCj)i (6)

 Where, j represents the jth block

 b1 = 1 * 10 mod 1439 = 10

 b2 = 5 * 10 mod 1439 = 50

 b3 = 10 * 10 mod 1439 = 100

 b4 = 20 * 10 mod 1439 = 200

b5 = 40 * 10 mod 1439 = 400

b6 = 80 * 10 mod 1439 = 800

b7 = 160 * 10 mod 4439 = 161

Encrypting the character G –

 b = (10, 50, 100, 200, 400, 800, 161)

 and TC1= (1 1 1 0 1 1 0)

 CG = 10+50+100+400+800 = 1360

Step 3: For 2nd block

 The second character to be encrypted is o.

Here the temporary encrypted value of the previous block ‘G’ is

taken as the Initial vector IV, from previous step and perform XOR

operation with the input block.

The previous temporary encrypted value was TC1= 1 1 1 0 1 1 0.

The key is obtained by taking the final output of the 1st block and

then calculating the remainder value by dividing it by 128.

 i.e. k2= binary equivalent of (CG mod 128)

 = binary equivalent of (1360 mod 128)

 = binary equivalent of (80)

 = 1 0 1 0 0 0 0.

Now, TC2= ((1 1 1 0 1 1 0) XOR (1 1 0 1 1 1 1)) XOR (1 0 1 0 0 0 0)

= 1 0 0 1 0 0 1

 b = (10, 50, 100, 200, 400, 800, 161) and TC2= (1 0 0 1 0 0 1)

Therefore, Co = 10 + 200 + 161 = 371.

Therefore, the actual encrypted message value is C= 13600371.

Step 4: Performing the hashing and logarithmic functions.

In this step the encrypted values are hashed onto some positions and

those position values are encrypted using discrete logarithmic

functions by using the concept of RSA algorithm.

A random number is generated to make the hash more secure. Here

the hash value generated is 3.

Here the encrypted codes are hashed onto the positions 2 and 3.

These positions are encrypted using the RSA algorithmic concepts

where the fixed values considered are p = 17; q = 11; n= p*q = 187; ø

(n) = (p-1)*(q-1) =160; e=7;

For the above values d=23

Thus, while encrypting the position values the fomula used is:

 Ci = Me mod n

Thus for position2, the encrypted position code is

 Cpos2= 27 mod 187 =128

This is added to the hash value to enable more secrecy.

Thus the resulting position value is 128 + 3 = 131.

This hash number is multiplied with itself and the resulting number is

stored in the original hash number.Thus the present hash value

becomes 9.

For the 3rd position, the encrypted position index becomes,

 Cpos3= 37 mod 187 = 130

This is added to the hash value to enable more secrecy.

Thus the resulting position value is 130 + 9 = 139.

The cipher text to be transmitted now becomes

000300460131013900310159 where the first four digits represent the

random hashing number generated. The next four digits represent the

key. The next eight digits represent the position of the two character

codes. The next four digits represent the initial vector and the last

four digits contain information to generate the super-increasing

sequence.

Thus, the message to be transmitted is 000300460131013900310159.

5. DECRYPTING MESSAGES
 During the decryption process, the received message is first broken

down into the cipher text part (position information), initial vector,

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.4, April 2013

30

hash information, key information and the sequence

information. These encrypted position codes are decrypted to

find out the original positions where the encrypted blocks

were hashed onto. These blocks of cypertexts are then

decrypted simulataneously. Each block is first decrypted

using the Merke-Hellman, and then further decrypted using

the vector and the key. This is repeated for all the blocks as

the system is a CBC scheme.

 Figure 2 demonstrates the decryption technique. The

decryption process is opposite to the encryption process. The

encrypted cipher text is broken down into blocks of code

C1,C2,…, Cn. Each of these blocks is first decrypted by

using Merkle-Hellman Decryption algorithm. We get a

temporary code (TC) which acts as the vector for XOR

operation of the next block of code. The key and vector are

used for the decryption process of the temporary code TC by

CBC decryption technique. The output of the CBC

decryption process gives the original block of plain text. To

get the original message back the plain text blocks

p1,p2,…,pn are chained together.

Figure 2: Block diagram of Decryption Process

5.1 Mathematical Explanation
To decrypt the message C, the recipient of the message

would have to find the bit stream which satisfies the

Equation [1]–

 M = ∑n
i=0 pi* bi (7)

To solve equation (7), the user would need the private key (s,

a, r).

 The first step finds out the original hash positions by

decrypting the encrypted positions using the RSA concepts to

decrypt.

The formula used is Pi = Cid mod n

From the original position values, the encryted message

blocks are got.

The second step is to calculate the modular multiplicative

inverse of ‘r’ in r mod a [4].

This is calculated using the Extended Euclidean algorithm.

This modular multiplicative inverse of ‘r’ in r mod a is

denoted as r-1.

 The third step is to multiply each element of the encrypted message

(C) with r-1 mod a.

The largest number in the set which is smaller than the resulting

number is subtracted from the number. This continues until the

number is reduced to zero[1]. This temporary code is then fed into

the CBC cryptosystem where each temporary block is passed through

the decryption algorithm. The result is XORed with the preceeding

ciphertext block to produce the plaintext block. [7]

The decryption technique involves the same algorithms executed in

the reverse order.

 5.2 Example
 Decrypting the message: 000300460131013900310159.

Step 1.
From the received message the message is broken down into four

parts. The information about hash, the randomly generated key, the

encryted position indexes, the initial vector and the information about

the super-increasing sequence.

The first four digits represent the random hashing number generated.

The next four digits represent the key. The next eight digits represent

the position of the two character codes. The next four digits represent

the initial vector and the last four digits contain information to

generate the super-increasing sequence.

Thus the hash number is 3, the key is 46, the encrypted positions are

131 and 139, the initial vector is 31 and the sequence information

contains the numbers 1, 5 and 9.

Step 2:
 Finding out the original positions.

Using the RSA concepts now the encrypted position indexes are

decrypted.

The formula used is Pi = Cid mod n

The values used were p = 17; q = 11; n= p*q = 187;

ø (n) = (p-1)*(q-1) =160; e=7;

From the above values we got d=23

Thus to get the first position, we perform the decryption operation.

First the position is reduced by the hash number. Thus pos1=131-

3=128. It is then operated for logarithmic decryption.

Pos1= 12823 mod 187 = 2

Thus we come to know that the first block of encypted message is in

position 2.

Similarly, for position 2 the hash number is multiplied with itself and

subtracted from the encrypted position2 value. Its then operated for

logarithmic decryption.

Pos 2 = (139-9)23 mod 187 = 3

Thus the second block of encypted message is in position 3.

In position2, we find out the encrypted block to be 1360

In position3, we find out the encrypted block to be 371.

Therefore, C1= 130, C2 = 371

Here C1, C2 represent the cipher blocks of code.

Step 3: Decrypting 1
st
 block.

 Perform Merkle-Hellman scheme on C1=1360

The modular inverse of 10 in 10 mod 1439 is calculated by using the

extended Euclidean algorithms and was found to be 144.

The encrypted message is again broken down into blocks of three

digits each as C1,C2,..,Cn.

The encrypted message for first block of code C1 is 285 and

s = (1, 5, 10, 20, 40, 80, 160)

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.4, April 2013

31

To decrypt the message we multiply the block of encrypted

code with the modular inverse got and then modulus of it is

taken with respect to the number chosen initially.

Thus, 1360 * 144 mod 1439 = 136

The largest number in the sequence s, which is smaller than

136 is 80.

 136 – 80 = 56

 56 – 40 = 16

 16 – 10 = 6

 6 - 5 = 1

 1 - 1 = 0

Therefore, the binary sequence becomes 1 1 1 0 1 1 0.

This is same as the temporary code (TCi) we got during

encryption of the same block.

 Now we apply CBC on the 1st block. The Cipher text is

XORed with the key and then with the IV or C i-1 to get the

required blocks of plain text in binary form, which is

converted to alphabet format to get the message back.

We XOR it first with the Initial key k1 and then with the

Initial Vector (IV) to get the first block of plain text.

Therefore,

 P1= ((0 1 0 1 1 1 0) XOR(1 1 1 0 1 1 0))XOR (0 0 1 1 1

1 1)

 = (1 0 0 0 1 1 1)

The character equivalent of this binary value is G.

Step 4: For 2
nd

 block
Similarly, for the second block C2= 371 we perform Merkle-

Hellman Decryption technique first.

For C= 371 * 144 mod 1439 = 181

 181 – 160 = 21

 21 - 20 = 1

 1 - 1 = 0

Therefore, TC2= (1 0 0 1 0 0 1).

Now for block 2,

The key is got by taking the cipher code C1 and getting the

remainder got by dividing it with 128 and then getting the

binary equivalent of the reaminder.

i.e. k2= binary equivalent of (CG mod 128)

 = binary equivalent of (1360 mod 128)

 = binary equivalent of (80)

 = 1 0 1 0 0 0 0.

We XOR the second block of cipher text (C2) first with the

key k2, and then with the temporary code of previous step

TC1 to get the second block of plain text.

Therefore,

P2= ((1 0 1 0 0 0 0) XOR(1 0 0 1 0 0 1)) XOR (1 1 1 0 1 1

0)

 = 1 1 0 1 1 1 1

The character equivalent to it is ‘o’.

Thus the original message “Go” is got back.

 Thus, by taking the initial vector, key and super-increasing

sequence randomly and by use of hash functions and the

plain text as input, we encrypt the plain text and get the

cipher text as output. In order to get back the original

message this cipher text is used along with the same initial

vector, key and super-increasing sequence for decryption.

6. EXPERIMENTAL RESULTS
To demonstrate the proposed system we use Java platform and BlueJ

version 1.3.5 as the software. The number of lines used in coding for

developing the cryptosystem is 763.

We take any string, and a difficulty level as inputs and we get the

cipher text as output.

Both the encryption and decryption processes are demonstrated in the

figure 3 given below.Here we take the plain text as”Go” as input.The

initialization vector, the key and the super-increasing are generated

randomly. We get the message to be transmitted as

“000300460131013900310159”. Here the first four digits represent

the random hashing number generated. The next four digits represent

the key. The next eight digits represent the position of the two

character codes. The next four digits represent the initial vector and

the last four digits contain information to generate the super-

increasing sequence.

This data helps the receiver to decrypt the data.

 For the decryption process, the received message is

“000300460131013900310159”. From the received message the

message is broken down into four parts. The information about hash,

the randomly generated key, the encryted position indexes, the initial

vector and the information about the super-increasing sequence.

 Thus the hash number is 3, the key is 46, the encrypted positions are

131 and 139, the initial vector is 31 and the sequence information

contains the numbers 1, 5 and 9. Using this information we can find

out the positions where the coded message is hidden and then the

message can be decrypted to get the original plain text “Go” back.

Thus, by entering the original message as “Go” we generate a cipher

text which is transmitted to the receiver. This transmitted message is

fed to the decryption algorithm of the cryptosystem present on the

receiver side and we get the original message “Go” back. Thus the

cryptosystem works successfully.

Figure 3: Combined Output of Encryption and Decryption

Process

It is to be noted that the randomly generated sequence won’t be

displayed on the screen. Only the cipher text will be displayed. We

display the randomly generated sequence for reference in order to

explain our paper better.

7. CONCLUSION
 This paper explains how to encrypt and decrypt data by enhancing

the work of the Cipher block chaining mode through the use of

Merkle-Hellman Knapsack cryptosystem. Furthermore, the randomly

generated vector, key and super-increasing sequence strengthens the

encryption process. Since the encryption of the successive blocks

depends on the temporary codes and outputs of previous blocks, the

message to be transmitted gets really difficult to be broken. The

whole cryptosystem is mase even more secure by making the transfer

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.4, April 2013

32

of message in secret buffers which is kept hidden. Only the

positions where the encrpted messages are stored are

encrypted through discrete logarithmics and displayed. This

makes the proposed cryptosystem even more secure. The

whole cryptosystem was demonstrated by encrypting a string

“Go” and then decrypting it. The decrypted string matched

with the original string.

8. FUTURE SCOPE
The algorithms can further be strengthened by the use of

various schemes like the use of shifting algorithms where the

randomly generated key or vector can be rotated left or right

or in a circular way.

9. ACKNOWLEDGEMENTS
We are greatly thankful to Mr. Asish Agarwal for presenting

such a wonderful idea of sending secret messages through the

use of Merkle-Hellman Knapsack Cryptosystem. His idea is

the backbone of our proposed cryptosystem which will help

in tranfer of secret messages more securely.

10. REFERENCES
[1]. B.Padhmavathi, Arghya Ray, Alisha Anjum, Santhoshi

Bhat,“Improvement of CBC Encryption Technique by using the

Merkle - Hellman Knapsack Cryptosystem”, IEEE Madras

sponsored ISCO 2013

[2]. Ashish Agarwal ,“Encrypting Messages using the Merkle

Hellman Knapsack Cryptosystem”, IJCSNS International

Journal of Computer Science and Network Security, VOL.11

No.5, May 2011

[3]. A.Menezes, P.vanOorschot and S.Vanstone, “Handbook of

Applied Cryptography”, CRC Press, 1996

[4]. R.Merkle and M.Hellman, “Hiding information and

signatures in trapdoor knapsacks”, IEEE Transactions on

Information Theory – 24, 5, pp 525 – 530.

[5]. W.Diffie and M.Hellman, “New directions in cryptography”,

IEEE Transactions on Information Theory – 22, 6, pp 644 – 654.

[6]. http://www.mast.queensu.ca/~math418/m418oh/m418oh04.pdf

[7]. http://mathworld.wolfram.com/SubsetSumProblem.html

[8]. William Stallings,” Cryptography and Network Security”, fifth

edition,pg-225-227.

http://www.mast.queensu.ca/~math418/m418oh/m418oh04.pdf
http://mathworld.wolfram.com/SubsetSumProblem.html

