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ABSTRACT 

Every regular expression can be transformed into a Non-

deterministic Finite Automaton (NFA) with or without   - 

transitions. A well known algorithm called subset construction 

technique is used for conversion of NFA into DFA. In this 

paper, initially, the construction of the position automaton is 

given for the same. Also, the algorithm to convert this 

Position Automaton into DFA using subset construction 

technique is discussed. 
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1. INTRODUCTION 

Let  A  be a finite alphabet and A
 denote the set of all 

finite strings of symbols in A . The empty string is denoted by

 . Any subset of A
 is a language over A . A regular 

expression is a declarative way of defining a regular language    

[9]. Because of the simplest and clear syntax, the regular 

expressions are the common choice to represent the regular 

languages.  The regular expression can be built from the 

symbols in A  and the special symbols “ ”, “ “, using the 

binary operations “+” and “.” and the unary operation “*”. 

Parentheses are used to indicate grouping, the operators “+” 

and “.” are written in infix notation, “*” is written in postfix 

notation. Given a regular expression E over an alphabet A , 

we write ( )L E for the subset of A
, that is denoted by E. 

The size of regular expression E, denoted E , is the number 

of symbols occurred from A  in E. 

A finite automaton is the simplest abstract computing device, 

and has mainly three variations, such as Deterministic finite 

automata (DFA), Non-deterministic finite automata (NFA) 

and NFA with  -moves. In DFA, for every input symbol of 

the given alphabet, next move is uniquely determined. In 

NFA, at any stage, different choices may be given from the 

set of moves. In  -NFA, automaton has the power to change 

the state without the change of head position.  

Most importance given in the automata theory is regular 

expression. Regular expressions have become the basis of 

standard utilities such as scanner generators, editors, or 

programming languages. The recent researchers are using 

regular expressions as additional tool to reduce the 

programming effort. Implementations of regular expressions 

can be done using finite automata.  

Glushkov [5] and McNaughton and Yamada [8] 

independently proposed Position Automaton. Their algorithm 

starts with linearized form of the regular expressions. The 

symbols are given as positions in the regular expression E. 

The number of states of the position automaton is the number 

of occurrences of symbols in E plus initial state. Many well 

known researchers have been proposed to obtain this position 

automaton with quadratic time complexity, like Champarnaud 

and Ziadi [2, 3], Chang and Paige [4] and Bruggermann–

Klein [1]. Their NFA construction size was between linear 

and quadratic time.  

In this paper, initially, a Glushkov position automaton is 

constructed, using Glushkov functions for a given regular 

expressions. Then, this Glushkov NFA is converted into DFA 

using subset construction. In this DFA, subset construction 

involves all subsets of the set of states of Glushkov NFA. The 

illustrations with some examples are discussed. 

2. BASIC NOTIONS 

The languages that are recognized by the various forms of 

automata are called regular languages. Here the discussion is 

about the regular expressions. This is a declarative way of 

defining regular languages [9]. Before giving the exact 

definition of regular expressions, an important notion is 

introduced. i.e., Kleene closure or simply closure L of a 

language L.  L  is nothing but the set of all strings that can be 

formed by taking any number of strings even with repetitions 

and taking concatenation of all them. For better undertaking 

of L , consider the language  0,1L   .  0L   ; And 

for i>1,
iL  is the strings by getting after the concatenation of i 

copies of L are defined. For example,  

   

 

1 2

3

0,1 ; 00,10,01,11

000,001,010,100,110,101,011,111 ....., .

L L and

L and soon

 



The Kleene closure is called by the notation 

0

i

i

L L






  

The regular expressions over the given set A
 of input 

symbols are described as follows: 

1. The empty string   is a regular expression 

2. Any symbol of A  is a regular expression.  

3. If a is a regular expression, then, the occurrences of 

zero or more times of a and (a) are also regular 

expressions. 

4. If a and b are regular expressions, then a + b, ab are 

also regular expressions. 
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The language for each regular expression is represented. In 

the case of , the language    L   . Similarly, the 

language of a is    L a a . The languages of the regular 

expressions a + b and ab are    L a L b  and 

   L a L b  respectively. The language of the regular 

expression a
 is   L a



. 

The following are some simple regular expressions and the 

language they represent as in the construction given. 

(i). a
 – It denotes the language of strings of a’s that have 

any number of a’s. i.e,    , , , ,....L a a aa aaa   the 

automaton accepting this language is in the fig .1 

 

Fig.1. The automaton accepting a


 . 

(ii). ab
  – It denotes the language of strings of a’s and b’s 

that begin with a single a followed by any number of b’s. i.e., 

   , , , ,....L ab a ab abb abbb   . The automaton 

accepting this language is in the fig 2. 

 

Fig.2. The automaton accepting ab
 . 

(iii). a + b – It denotes the language consisting the strings a 

and b.            ,L a b L a L b a b a b      . 

The automaton accepting this language is given in the 

following fig 3. 

 

Fig.3. The automaton accepting a + b. 

(iv).  a b


  – It represents the language of strings of a’s 

and b’s consisting either a’s or b’s or both occur at any 

number of times. i.e., The corresponding automaton is given 

below in fig.4. 

  
, , , , , , , , , ,

, , , , ,...

a b aa ab ba bb aaa aab aba
L a b

baa bba bab abb bbb

  
   

 
 

 

 

Fig.4. The automaton accepting  a b


 . 

(v).  b ab ab


  
 – It represents the language of a’s and 

b’s consisting even number of as, because the occurrence of 

aa is must except in the case of   and 1’s may come at any 

number of times including zero times at any place in aa. The 

automaton accepting this language is in fig.5 

 

Fig.5. The automaton accepting  b ab ab


  
. 

2. POSITION AUTOMATA 

Position automata basically a non-deterministic finite 

state automaton discussed by Glushkov [5] and McNaughton 

and Yamada [8]. The basic principle behind this construction 

is that the occurrence of each symbol in a regular expression 

is considered as a different symbol by making with a unique 

index.  

Let E be a regular expression over the set of symbols A . The 

set of positions of E is defined as

   1,2,...,
A

pos E E .    0( ) 0Pos E Pos E  . 

The expressions obtained from E after rewriting with its 

position is denoted as

 , ,1i A
E A where A a a A i E     . 

 For example, if   E aa ba aba   , then, 

 1 2 3 4 5 6 7E a a b a a b a   . For a regular expression E, 

the three mappings, First, Last and Follow are defined as 

follows: 

    
    
    

,

,

, .

i

i

i j

First E i a w L E

Last E i wa L E

Follow E i j ua a v L E

 

 

 

 

Let h be the alphabetic mapping from  pos E  to A  such 

that   , 1i A
h x x i E    , and   'h E E  . 

In position automaton, the subscripted symbols after applying 

this alphabetic mapping would become as follows:  

       1 2 3 4, ..,h a h a a and h b h b b etc   

Position automaton of a regular expression E is the automaton 

 0( ), , , ( )EP Pos E A Last E  such that 

   0, ( ) | ( ) ,a x First E h x a a A       
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   

0

, ( , ) ( ) ,

( ),

x a y y Follow E x and h y a

x Pos E a A

   

   
 . 

2.1 Example: 

For regular expression    E aa b bb a
 

   , the state 

diagram of position automaton is constructed as in fig. 6. The 

linearized expression of this regular expression is 

   1 2 3 4 5 6E a a b b b a
 

    . The position sets are 

calculated as below:  

   

   
   
   
   
   
   
   
   
   

1 2 3 4 5 6

1 3 4 6

2 3 5 6

1 2

2 1 3 4 6

3 1 3 4 6

4 5

5 4 6

6 4 6

, , , ;

, , , ;

, ;

, , , , ;

, , , , ;

, ;

, , ;

, , ;

E aa b bb a

E a a b b b a

First E a b b a

Last E a b b a

Follow E a a

Follow E a a b b a

Follow E b a b b a

Follow E b b

Follow E b b a

Follow E a b a

 

 

  

   

 

 

 

 

 

 

 

 

 

 

Fig.6 Position automaton for    E aa b bb a
 

     

3. DETERMINISTIC POSITION 

AUTOMATA 

In general, the construction of NFA is simpler than the 

construction of DFA. For every NFA, there is an equivalent 

DFA that accepts the same language as the language 

acceptance of NFA. For this equivalence of these two 

automata, many authors were using one general algorithm, 

called the subset construction algorithm. Using this algorithm, 

one can construct DFA with the help of NFA states. Initially, 

all the subsets of all states of NFA are found and computed. 

Suppose if there are n states of NFA, then the DFA may have 

larger number of 2n
 states in worst case. Otherwise the 

number of states of DFA may be very smaller than 2 1n 
(empty set avoided), because some inaccessible states from 

starting state may be eliminated.  

In this paper, the Deterministic Position Automata (DPA) is 

constructed that is of NFA type, the modified definition of 

Glushkov position automaton is given. 

In the definition of position automaton, initially, it has 

   0( ) 0Pos E Pos E  . As the convenience, 

{0} is taken as  0q  , which is defined as starting state in 

DPA.  

Now, Glushkov NFA (Position automaton) is defined as 

   0, , , ,G G GG Q A q F  ,  

Where  

GQ  - the set of states (positions of E) plus start state 

 0q
 
i.e.,    0Pos E q  

A    - the set of alphabet symbols. 

G   - the transition function  

   0 , ( ) | ( ) ,G q a x First E h x a a A     

   
0

, | ( , ) ( ) ,
( ),

G x a y y Follow E x and h y a
x Pos E a A

   
   

. 

GF - Final states  

= 
     

 

0( )

( ) ,
G

Last E q if L G
F

Last E otherwise

 
 


. 

Procedure of subset construction: 

1. Start with NFA  0, , , ,G G GG Q A q F . 

Using this NFA, the construction of the DPA 

  0, , , ,P P PP Q A q F is computed 

such that    L P L G . 

2. In this procedure, the components of DPA are 

specified as below: 

a. PQ  is the set of all subsets of all states of GQ . 

b. PF  is the final set of all subsets, called S of  

GQ  such that .GS F   which 

contains the set of states of PF . i.e., PF is all 

sets of G’s states that include at least one accepting 

state of G. 

c. For every set PS Q  and each symbol a in 

A , it is defined as  

   , ,P G

q S

S a q a 


  . From this, it 

can be shown as    L P L G  . 
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       i.e., for computing  ,P S a , come across all the 

states q in S, for which states N goes to from q on 

input a, and combine all those states as union. 

3. The input symbols of these two automata are the same 

and the starting state of DPA is the set containing only 

the start set of NFA. 

4. After reading sequence of input symbols w, the built 

DPA is in one state of the set of NFA states as it reads 

w. Also the accepting states of the DPA are those sets 

that included in any one of the accepting states of 

NFA. The NFA also accepted if it in any one of its 

accepting states, we can conclude that the DPA and 

NFA accept exactly the same strings, and therefore 

accept the same language. 

For the equivalence, the following theorems based on the 

subset construction are used: 

Theorem 1 [Hopcroft J.E, Rajeev Motwani & Ullman J.D] [7] 

If   0, , , ,P P PP Q A q F  is the DPA 

constructed from NFA  0, , , ,G G GG Q A q F  

by the subset construction, then    L P L G  . 

Theorem 2 [Hopcroft J.E, Rajeev Motwani & Ullman J.D] [7] 

 A language L is accepted by some DPA if and only if L is 

accepted by some NFA. 

4. Examples 

4.1 Example  

For the regular expression 

   E aa b bb a
 

    of the position 

automaton have constructed in the figure 6. Now the DFA of 

this position automaton is below. Firstly, all the subsets of the 

position automaton of E are found and computed. This regular 

expression contains 6 symbols. Therefore there are 7 states in 

the position automaton including the starting state {0}. Using 

this, from the above state diagram of position automaton, a 

transition table is formed and computed as follows: 

Table 1: Transition table 

 a b 

q0 {q1, q6} {q3, q4} 

q1 {q1, q2}   

q2 {q6} {q3, q4} 

q3 {q1, q6} {q3, q4} 

q4   
{q5} 

q5 {q6} {q4} 

q6 {q6} {q4} 

 

For the Glushkov position automaton, it is given that   

   

 

0

0 1 2 3 4 5 6, , , , , ,

GQ pos E q

q q q q q q q

 


 ., 

  
 ,A a b and    2 3 5 6, , ,GF Last E a b b a   .  

For the DFA conversion, all the subsets of all states of GQ  

is given as below. 

           

         

   

0 1 2 3 4 5

6 0 1 0 2 0 3 1 2

1 3 0 1 2 3 4 5 6

, , , , , , ,

, , , , , , , , ,

, ,......, , , , , , ,

G

q q q q q q

Q q q q q q q q q q

q q q q q q q q q

 
 

  
 
 

  

= 128 different states. 

       

 

2 3 5 6

0 1 2 3 4 5 6

, , , ,

......, , , , , , ,
G

q q q q
F

q q q q q q q

  
  
  

 

 

     The reachable states are in table 2. 

Table 2: Transition table 

 

           

 

 

 

 

 

 

 

The construction of the DFA is  

 

Fig.7 The DFA for the position automaton of 

   E aa b bb a
 

   . 

 a b 

{q0}  {q1} {q2, q3} 

{q1}  {q1} {q2, q3} 

{q1, q4} {q1, q4} {q2, q3, q5} 

{q2, q3} {q1, q4} {q2, q3, q6} 

{q2, q3, q5} {q1, q4} {q2, q3, q6} 

{q2, q3, q6} {q1, q4} {q2, q3, q5, q6} 

{q2, q3, q5, q6} {q1, q4} {q2, q3, q5, q6} 
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4.2 Example 

For the regular expression

   E a b b a bb
 

   , the construction of 

DFA containing 7 states including the starting state {0}.  

 

 

 

       The reachable states are in table 3 

Table 3: Transition table 

 

 

 

 

 

 

 

 

 

 

 

 

The construction of the DFA is 

 

Fig.8. The DFA for the position automaton of 

   E a b b a bb
 

   . 

The position and C-Continuation automata are 

isomorphic [2, 3]. The relation that exists between the 

Glushkov position functions First, Follow and Last sets and 

the C-continuations is enlightened.  The construction of 

C-Continuation automaton may be constructed as a DFA. 

5. CONCLUSION 

Normally, NFA are useful for representing a pattern matcher 

that scans a large body of text for one or more keywords. 

These automata are either simulated directly in software or 

first converted to a DFA, which is then simulated. Here, the 

construction of the given various regular expressions and 

constructed the position automaton of the regular expression 

is illustrated. Then, the modified algorithm is given to 

implement existing Glushkov Position automaton (NFA) 

reduction into DFA equivalences.  

Future work involves evaluating the impact of using Glushkov 

NFA reduction to C-Continuation automaton, even to 

equation automaton, which is the quotient of the C-

Continuation automaton instead of applying state elimination 

method.  
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 a b 

{q0}  {q1, q6} {q3, q4} 

{q4}   
{q5} 

{q5} {q6} {q4} 

{q6} {q6} {q4} 

{q1, q6} {q1, q2, q6} {q4} 

{q3, q4} {q1, q6} {q3, q4, q5} 

{q1, q2, q6} {q1, q2, q6} {q3, q4} 

{q3, q4, q5} {q1, q6} {q3, q4, q5} 


