
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.23, April 2013

13

A Structural Construction of a Deterministic

Position Automaton

O.V.Shanmuga Sundaram,
Asst.Prof in Mathematics

Sri Shakthi Institute of Engg & Tech,
L & T Byepass Road, Coimbatore, India – 641 062

N.Murugesan,
Asst.Prof in Mathematics

Govt. Arts College (Autonomous)
Coimbatore, TN, India – 641 018

ABSTRACT

Every regular expression can be transformed into a Non-

deterministic Finite Automaton (NFA) with or without  -

transitions. A well known algorithm called subset construction

technique is used for conversion of NFA into DFA. In this

paper, initially, the construction of the position automaton is

given for the same. Also, the algorithm to convert this

Position Automaton into DFA using subset construction

technique is discussed.

AMS MSC2010 Certification: 68Q45, 68Q70

Keywords

Regular expressions, Position automaton, subset construction,

DFA and NFA.

1. INTRODUCTION

Let A be a finite alphabet and A
 denote the set of all

finite strings of symbols in A . The empty string is denoted by

 . Any subset of A
 is a language over A . A regular

expression is a declarative way of defining a regular language

[9]. Because of the simplest and clear syntax, the regular

expressions are the common choice to represent the regular

languages. The regular expression can be built from the

symbols in A and the special symbols “ ”, “ “, using the

binary operations “+” and “.” and the unary operation “*”.

Parentheses are used to indicate grouping, the operators “+”

and “.” are written in infix notation, “*” is written in postfix

notation. Given a regular expression E over an alphabet A ,

we write ()L E for the subset of A
, that is denoted by E.

The size of regular expression E, denoted E , is the number

of symbols occurred from A in E.

A finite automaton is the simplest abstract computing device,

and has mainly three variations, such as Deterministic finite

automata (DFA), Non-deterministic finite automata (NFA)

and NFA with  -moves. In DFA, for every input symbol of

the given alphabet, next move is uniquely determined. In

NFA, at any stage, different choices may be given from the

set of moves. In  -NFA, automaton has the power to change

the state without the change of head position.

Most importance given in the automata theory is regular

expression. Regular expressions have become the basis of

standard utilities such as scanner generators, editors, or

programming languages. The recent researchers are using

regular expressions as additional tool to reduce the

programming effort. Implementations of regular expressions

can be done using finite automata.

Glushkov [5] and McNaughton and Yamada [8]

independently proposed Position Automaton. Their algorithm

starts with linearized form of the regular expressions. The

symbols are given as positions in the regular expression E.

The number of states of the position automaton is the number

of occurrences of symbols in E plus initial state. Many well

known researchers have been proposed to obtain this position

automaton with quadratic time complexity, like Champarnaud

and Ziadi [2, 3], Chang and Paige [4] and Bruggermann–

Klein [1]. Their NFA construction size was between linear

and quadratic time.

In this paper, initially, a Glushkov position automaton is

constructed, using Glushkov functions for a given regular

expressions. Then, this Glushkov NFA is converted into DFA

using subset construction. In this DFA, subset construction

involves all subsets of the set of states of Glushkov NFA. The

illustrations with some examples are discussed.

2. BASIC NOTIONS

The languages that are recognized by the various forms of

automata are called regular languages. Here the discussion is

about the regular expressions. This is a declarative way of

defining regular languages [9]. Before giving the exact

definition of regular expressions, an important notion is

introduced. i.e., Kleene closure or simply closure L of a

language L. L is nothing but the set of all strings that can be

formed by taking any number of strings even with repetitions

and taking concatenation of all them. For better undertaking

of L , consider the language  0,1L  .  0L  ; And

for i>1,
iL is the strings by getting after the concatenation of i

copies of L are defined. For example,

   

 

1 2

3

0,1 ; 00,10,01,11

000,001,010,100,110,101,011,111, .

L L and

L and soon

 



The Kleene closure is called by the notation

0

i

i

L L








The regular expressions over the given set A
 of input

symbols are described as follows:

1. The empty string  is a regular expression

2. Any symbol of A is a regular expression.

3. If a is a regular expression, then, the occurrences of

zero or more times of a and (a) are also regular

expressions.

4. If a and b are regular expressions, then a + b, ab are

also regular expressions.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.23, April 2013

14

The language for each regular expression is represented. In

the case of , the language    L   . Similarly, the

language of a is    L a a . The languages of the regular

expressions a + b and ab are    L a L b and

   L a L b respectively. The language of the regular

expression a
 is   L a



.

The following are some simple regular expressions and the

language they represent as in the construction given.

(i). a
 – It denotes the language of strings of a’s that have

any number of a’s. i.e,    , , , ,....L a a aa aaa  the

automaton accepting this language is in the fig .1

Fig.1. The automaton accepting a


 .

(ii). ab
 – It denotes the language of strings of a’s and b’s

that begin with a single a followed by any number of b’s. i.e.,

   , , , ,....L ab a ab abb abbb  . The automaton

accepting this language is in the fig 2.

Fig.2. The automaton accepting ab
 .

(iii). a + b – It denotes the language consisting the strings a

and b.            ,L a b L a L b a b a b      .

The automaton accepting this language is given in the

following fig 3.

Fig.3. The automaton accepting a + b.

(iv).  a b


 – It represents the language of strings of a’s

and b’s consisting either a’s or b’s or both occur at any

number of times. i.e., The corresponding automaton is given

below in fig.4.

  
, , , , , , , , , ,

, , , , ,...

a b aa ab ba bb aaa aab aba
L a b

baa bba bab abb bbb

  
   

 

Fig.4. The automaton accepting  a b


 .

(v).  b ab ab


  
 – It represents the language of a’s and

b’s consisting even number of as, because the occurrence of

aa is must except in the case of  and 1’s may come at any

number of times including zero times at any place in aa. The

automaton accepting this language is in fig.5

Fig.5. The automaton accepting  b ab ab


  
.

2. POSITION AUTOMATA

Position automata basically a non-deterministic finite

state automaton discussed by Glushkov [5] and McNaughton

and Yamada [8]. The basic principle behind this construction

is that the occurrence of each symbol in a regular expression

is considered as a different symbol by making with a unique

index.

Let E be a regular expression over the set of symbols A . The

set of positions of E is defined as

   1,2,...,
A

pos E E .    0() 0Pos E Pos E  .

The expressions obtained from E after rewriting with its

position is denoted as

 , ,1i A
E A where A a a A i E     .

 For example, if  E aa ba aba  , then,

 1 2 3 4 5 6 7E a a b a a b a   . For a regular expression E,

the three mappings, First, Last and Follow are defined as

follows:

    
    
    

,

,

, .

i

i

i j

First E i a w L E

Last E i wa L E

Follow E i j ua a v L E

 

 

 

Let h be the alphabetic mapping from  pos E to A such

that   , 1i A
h x x i E   , and  'h E E .

In position automaton, the subscripted symbols after applying

this alphabetic mapping would become as follows:

       1 2 3 4, ..,h a h a a and h b h b b etc   

Position automaton of a regular expression E is the automaton

 0(), , , ()EP Pos E A Last E such that

   0, () | () ,a x First E h x a a A     

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.23, April 2013

15

   

0

, (,) () ,

(),

x a y y Follow E x and h y a

x Pos E a A

   

   
 .

2.1 Example:

For regular expression    E aa b bb a
 

   , the state

diagram of position automaton is constructed as in fig. 6. The

linearized expression of this regular expression is

   1 2 3 4 5 6E a a b b b a
 

    . The position sets are

calculated as below:

   

   
   
   
   
   
   
   
   
   

1 2 3 4 5 6

1 3 4 6

2 3 5 6

1 2

2 1 3 4 6

3 1 3 4 6

4 5

5 4 6

6 4 6

, , , ;

, , , ;

, ;

, , , , ;

, , , , ;

, ;

, , ;

, , ;

E aa b bb a

E a a b b b a

First E a b b a

Last E a b b a

Follow E a a

Follow E a a b b a

Follow E b a b b a

Follow E b b

Follow E b b a

Follow E a b a

 

 

  

   

 

 

 

 

 

 

 

 

Fig.6 Position automaton for    E aa b bb a
 

  

3. DETERMINISTIC POSITION

AUTOMATA

In general, the construction of NFA is simpler than the

construction of DFA. For every NFA, there is an equivalent

DFA that accepts the same language as the language

acceptance of NFA. For this equivalence of these two

automata, many authors were using one general algorithm,

called the subset construction algorithm. Using this algorithm,

one can construct DFA with the help of NFA states. Initially,

all the subsets of all states of NFA are found and computed.

Suppose if there are n states of NFA, then the DFA may have

larger number of 2n
 states in worst case. Otherwise the

number of states of DFA may be very smaller than 2 1n 
(empty set avoided), because some inaccessible states from

starting state may be eliminated.

In this paper, the Deterministic Position Automata (DPA) is

constructed that is of NFA type, the modified definition of

Glushkov position automaton is given.

In the definition of position automaton, initially, it has

   0() 0Pos E Pos E  . As the convenience,

{0} is taken as  0q , which is defined as starting state in

DPA.

Now, Glushkov NFA (Position automaton) is defined as

  0, , , ,G G GG Q A q F ,

Where

GQ - the set of states (positions of E) plus start state

 0q

i.e.,    0Pos E q

A - the set of alphabet symbols.

G - the transition function

   0 , () | () ,G q a x First E h x a a A     

   
0

, | (,) () ,
(),

G x a y y Follow E x and h y a
x Pos E a A

   
   

.

GF - Final states

=
     

 

0()

() ,
G

Last E q if L G
F

Last E otherwise

 
 


.

Procedure of subset construction:

1. Start with NFA  0, , , ,G G GG Q A q F .

Using this NFA, the construction of the DPA

  0, , , ,P P PP Q A q F is computed

such that    L P L G .

2. In this procedure, the components of DPA are

specified as below:

a. PQ is the set of all subsets of all states of GQ .

b. PF is the final set of all subsets, called S of

GQ such that .GS F  which

contains the set of states of PF . i.e., PF is all

sets of G’s states that include at least one accepting

state of G.

c. For every set PS Q and each symbol a in

A , it is defined as

   , ,P G

q S

S a q a 


 . From this, it

can be shown as    L P L G .

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.23, April 2013

16

 i.e., for computing  ,P S a , come across all the

states q in S, for which states N goes to from q on

input a, and combine all those states as union.

3. The input symbols of these two automata are the same

and the starting state of DPA is the set containing only

the start set of NFA.

4. After reading sequence of input symbols w, the built

DPA is in one state of the set of NFA states as it reads

w. Also the accepting states of the DPA are those sets

that included in any one of the accepting states of

NFA. The NFA also accepted if it in any one of its

accepting states, we can conclude that the DPA and

NFA accept exactly the same strings, and therefore

accept the same language.

For the equivalence, the following theorems based on the

subset construction are used:

Theorem 1 [Hopcroft J.E, Rajeev Motwani & Ullman J.D] [7]

If   0, , , ,P P PP Q A q F is the DPA

constructed from NFA  0, , , ,G G GG Q A q F

by the subset construction, then    L P L G .

Theorem 2 [Hopcroft J.E, Rajeev Motwani & Ullman J.D] [7]

 A language L is accepted by some DPA if and only if L is

accepted by some NFA.

4. Examples

4.1 Example

For the regular expression

   E aa b bb a
 

   of the position

automaton have constructed in the figure 6. Now the DFA of

this position automaton is below. Firstly, all the subsets of the

position automaton of E are found and computed. This regular

expression contains 6 symbols. Therefore there are 7 states in

the position automaton including the starting state {0}. Using

this, from the above state diagram of position automaton, a

transition table is formed and computed as follows:

Table 1: Transition table

 a b

q0 {q1, q6} {q3, q4}

q1 {q1, q2} 

q2 {q6} {q3, q4}

q3 {q1, q6} {q3, q4}

q4 
{q5}

q5 {q6} {q4}

q6 {q6} {q4}

For the Glushkov position automaton, it is given that

   

 

0

0 1 2 3 4 5 6, , , , , ,

GQ pos E q

q q q q q q q

 


 .,

 ,A a b and    2 3 5 6, , ,GF Last E a b b a  .

For the DFA conversion, all the subsets of all states of GQ

is given as below.

           

         

   

0 1 2 3 4 5

6 0 1 0 2 0 3 1 2

1 3 0 1 2 3 4 5 6

, , , , , , ,

, , , , , , , , ,

, ,......, , , , , , ,

G

q q q q q q

Q q q q q q q q q q

q q q q q q q q q

 
 

  
 
 

= 128 different states.

       

 

2 3 5 6

0 1 2 3 4 5 6

, , , ,

......, , , , , , ,
G

q q q q
F

q q q q q q q

  
  
  

 The reachable states are in table 2.

Table 2: Transition table

The construction of the DFA is

Fig.7 The DFA for the position automaton of

   E aa b bb a
 

   .

 a b

{q0} {q1} {q2, q3}

{q1} {q1} {q2, q3}

{q1, q4} {q1, q4} {q2, q3, q5}

{q2, q3} {q1, q4} {q2, q3, q6}

{q2, q3, q5} {q1, q4} {q2, q3, q6}

{q2, q3, q6} {q1, q4} {q2, q3, q5, q6}

{q2, q3, q5, q6} {q1, q4} {q2, q3, q5, q6}

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.23, April 2013

17

4.2 Example

For the regular expression

   E a b b a bb
 

   , the construction of

DFA containing 7 states including the starting state {0}.

 The reachable states are in table 3

Table 3: Transition table

The construction of the DFA is

Fig.8. The DFA for the position automaton of

   E a b b a bb
 

   .

The position and C-Continuation automata are

isomorphic [2, 3]. The relation that exists between the

Glushkov position functions First, Follow and Last sets and

the C-continuations is enlightened. The construction of

C-Continuation automaton may be constructed as a DFA.

5. CONCLUSION

Normally, NFA are useful for representing a pattern matcher

that scans a large body of text for one or more keywords.

These automata are either simulated directly in software or

first converted to a DFA, which is then simulated. Here, the

construction of the given various regular expressions and

constructed the position automaton of the regular expression

is illustrated. Then, the modified algorithm is given to

implement existing Glushkov Position automaton (NFA)

reduction into DFA equivalences.

Future work involves evaluating the impact of using Glushkov

NFA reduction to C-Continuation automaton, even to

equation automaton, which is the quotient of the C-

Continuation automaton instead of applying state elimination

method.

6. REFERENCES

[1] Bruggermann-Klein A., Regular expressions into finite

automata, Theoretical Comput.Sci., 120:197 – 213,

1993.

[2] Champarnaud, J.M., Quardi F., and Ziadi D., Normalized

expressions and finite Automata, Intern. Journ. Of Alg.

And Comp., 17(1):141-154, 2007.

[3] Champarnaud J.M., and Ziadi D., Canonical Derivatives,

Partial Derivatives and Finite Automaton Constructions,

Theoretical Computer Science, 289:137-163, 2002.

[4] Chang C.H., and Paige R., From Regular Expressions to

DFA’s using Compressed NFA’s, Theoretical Computer

Science, 178, 1997, 1 – 36.

[5] Glushkov V.M., The Abstract Theory of Automata,

Russian Mathematical Surveys 16(1961), 1-53.

[6] Hromkovic J., Seibert S., and Wilke T., Translating

Regular Expressions into Small Epsilon-free

Nondeterministic Automata, Journal. Computer. System

Sci., 62(4):565-588, 2001.

[7] Hopcroft J.E., Rajeev Motwani and Ullman J.D.,

Introduction to Automata theory, Languages and

Computation, Narosa Publishing House, New Delhi,

1987.

[8] Hugo Gouveia, Nelma Moreira and Rogerio Reis, Small

NFAs from Regular Expressions: Some Experimental

Results, arXiv: 1009.3599v1

[9] McNaughton R., and Yamada H., Regular expressions

and state graphs for automata, IEEE Trans. on

Electronic Computers, 9(1):39-47, 1960

[10] Murugesan N., Principles of Automata theory and

Computation, 2004, Sahithi Publications.

[11] Murugesan N., and Shanmugasundaram O.V.,

Construction of State diagram of a regular expression

using Derivatives, www.m-hikari.com/ams/ams-

2012/ams.../sundaramAMS21-24-2012.pdf, Applied

Mathematical Sciences, Vol. 6, 2012, no. 24, 1173 –

1179.

[12] Saradhi Varma G.P., and Thirupathi Rao B., Theory of

Computation – Formal Languages and Automata Theory,

Scitech Publications (India) Pvt. Ltd., Chennai, 2005,

2.18 – 2.19.

 a b

{q0} {q1, q6} {q3, q4}

{q4} 
{q5}

{q5} {q6} {q4}

{q6} {q6} {q4}

{q1, q6} {q1, q2, q6} {q4}

{q3, q4} {q1, q6} {q3, q4, q5}

{q1, q2, q6} {q1, q2, q6} {q3, q4}

{q3, q4, q5} {q1, q6} {q3, q4, q5}

