
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.21, April 2013

39

A Density based Priority Queue Strategy

to Evaluate Iceberg Queries Efficiently using

Compressed Bitmap Indices

Vuppu Shankar

Assoc.Prof.,
Department of Computer Science and Engineering,

Kakatiya Institute of Technology & Science-
Warangal,Andhra Pradesh,India-506 015

C.V.Guru Rao, PhD.
Professor & Head

Department of Computer Science and Engineering
S.R.Engineering College

Warangal, Andhra Pradesh, India - 506371

ABSTRACT

In particular, iceberg query is a special class of aggregation query

that computes aggregated values upon user interested threshold

(T).The bitmap index is a common data structure for fast retrieval

of matching tuples from data base table. These resultant tuples

are useful to compute aggregations such as SUM, COUNT,

AVG, MIN, MAX, and RANK. In this paper, we propose a

density based bitmap pruning strategy to evaluate iceberg queries

efficiently using compressed bitmap indices. The strategy

prioritizes the vectors to be enter in to priority queue by allowing

high density of 1’s count that achieve optimal pruning effect.

Extensive experimentation demonstrates our proposed approach

is much more efficient than existing strategy.

Keywords

 Data base, Iceberg query, Bitmap index, Priority queue, Bitwise-

AND operation, Threshold.

1. INTRODUCTION
The volume of the data base/ and or Data warehouse is increasing

enormously as the need of user requirements are increasing day

by day. The most aggregated value represent key information of

business such as net profit, total sales, net income etc. This is

often required by top officials such as executives, managers,

administrative officers and computer analysts to make important

decisions of an organization. Business Analysts are often

responsible to compute and use these aggregated values to

compete with present competitive modern business world. Mostly

data mining queries are iceberg queries. In particular, iceberg

query is a unique class of an aggregation query that computes an

aggregate value above user specified threshold (T).

Iceberg queries were first studied in data mining field by Min

Fang et.al. [12]. The syntax of an iceberg query on a relation R

(C1, C2… Cn) is stated below:

SELECT Ci, Cj, …, Cm, AGG(*),

FROM R,

GROUP BY Ci, Cj…, Cm,

HAVING AGG (*) > = T.

Where Ci, Cj,….Cm represents a subset of attributes in R and

referred as aggregate attributes. AGG represents an aggregation

function such as COUNT, SUM, MIN and MAX. The greater

than or equal to (>=) is a symbol used as a comparison predicate.

In this paper we focus an iceberg query with aggregation function

COUNT having the anti-monotone property [18]. Iceberg queries

have an intriguing anti-monotone property for many of the

aggregation functions and predicates. For example, if the count of

a group is below T the count of any super group must be below

T.

The present algorithms existing today in the literature are not that

much of effective for processing huge data sets, especially for

databases have large cardinality attributes. Therefore it is

necessary to develop efficient algorithms to process them easily.

The naïve algorithm was answered an iceberg query by referring

all tuples from top to bottom in a database over a single pass.

The algorithm was initialized a series of counters in memory to

store and count the data values of each unique target attribute

value for every single pass of data. However, in realistic it is

difficult because database table is several times larger than main

memory. Hence it requires more than one pass. Then a large

response time is needed.

The improvement over the above algorithm was to sort the

relation on the disk then passed them into memory to compute an

aggregation. Further it selects aggregation values which are

greater than a specified threshold. Still the available memory is

less than the table size then the data is to be passed over in more

number of passes from the disk. Therefore query evaluation

consumes long CPU execution time and inordinately large disk

requirements.

 To speed up the query processing, Bin He et.al. [1] used

compressed bitmap indices (Word Aligned Hybrid). A bitmap for

an attribute in a table can be viewed as a matrix having r rows

consisting corresponding number of tuples and v columns

indicating the number of distinct values of an attribute. If there is

a bitmap vector in the kth position of the attribute then the

element in the matrix is 1 else 0. A bitwise-AND operation was

conducted between aligned pair of bitmaps. The 1’s count in

resulting vector are above threshold are confirmed as iceberg

results. The dynamic pruning is best applied for pruning of

bitmaps in this algorithm. However the large time was consumed

for bitwise-XOR operations indeed.

To further improve the query evaluation time the deferred XOR

strategy was proposed in GS [20]. The strategy deferrs bitwise-

XOR operations between original and resultant vectors after

AND operation. And it discards XOR operations by pruning the

bitmaps whose cardinality is below threshold. i.e. no XOR

operations were performed on the bitmaps that are going to

prune.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.21, April 2013

40

Therefore it is understood that from the above algorithms an

efficient bitmap pruning strategies are more needed to process

large databases especially a database which consists of high

cardinality attributes. The more pruning of bitmaps effects on less

computation time which increases the speed of answering the

iceberg queries.

 In this paper, we propose a special bitmap pruning strategy

which is based on high cardinality attributes. The higher order

cardinality attributes are placed first in the PQs. The strategy

takes an opportunity to prune more number of bitmaps which is

possible by selecting a large number of aligned positions from

huge cardinality. An efficient dynamic pruning step is added as

usual to this strategy in order to achieve optimal pruning effect.

Hence, the density based pruning strategy is more efficient than

existing strategies while answering iceberg queries using

compressed bitmap indices.

The experimental results for a large synthetic data set used

signify a considerable improvement and is more efficient iceberg

query computation.

Section II reviews the related research work on computing

iceberg queries and conventional bitmap indices. The proposed

research work is described in section III. Section IV gives the

details of implementation carried out on the proposed research

work. The experiments conducted on the implementation are

explained in section V. Section VI analyses the obtained results

when experiments were performed. In section VII the research

work is concluded followed by bibliography

2. REVIEW OF RELATED RESEARCH
Necessity is the mother of invention. This is the time to provide

related research works which is introduced in the above section

of this paper. This section is divided into two sub sections to

describe briefly about the successful algorithms which are helpful

to current investigation. In the first subsection, i.e. A the

processing of iceberg queries using tuple-scan based approach is

reviewed. We also review the related research using bitmap

indices in second sub section i.e. B which is the focus of this

paper for optimization of iceberg queries.

In recent times, the evaluation of iceberg queries has attracted

researchers significantly due to the demand of scalability and

efficiency.

2.1 Iceberg Query Evaluation
Processing of iceberg query was first studied by Fang et.al [12]

by extending the probabilistic techniques [11] and suggested

hybrid and multi buckets algorithms. The sampling and multiple

hash function techniques were used as basic building blocks of

probabilistic techniques such as scaled-sampling and coarse-

count algorithms. They estimated the sizes of query results in

order to predict the valid iceberg results. This improves query

performance and reduces memory requirements greatly.

However, these techniques erroneously resulted in false positives

and false negatives. To recover from these errors, efficient

strategies are designed by hybridizing the sampling and coarse-

count techniques. To optimize the query execution time of hybrid

strategies by extending the linear counting probabilistic algorithm

for counting the number of unique values in the presence of

duplicates. The linear counting algorithm is based on hashing

technique allocates a bitmap (hash table) of size m in main

memory. All entries are initialized to “0”s. The algorithm then

scans the relation and applies a hash function to each data value

in the column of interest. The hash function generates a bitmap

address and the algorithm sets this addressed bit to “1”. The

algorithm first counts the number of empty bitmap entries. It then

estimates the column cardinality by dividing this count by the

bitmap size m and plugging the result.

Jinuk Bae et. al. [6] had proposed a Partitioning Algorithms for

computation of Average Iceberg Queries based on a theorem to

select candidates by means of partitioning. The characteristics of

this POP algorithm are to partition a relation logically and to

postpone partitioning in order to use memory efficiently until all

buckets are occupied with candidates. All these techniques were

tuple-scan based approaches as they require at least one scan of

each tuple in the relation. None of them leverage the bitmap

indices for query optimization.

A comparison was presented for Collective Iceberg Query

Evaluation (CIQE) [7] using three benchmark algorithms such as

Sort-Merge-Aggregate (SMA), Hybrid-Hash-Aggregate (HHA)

and ORACLE. CIQE indicates that performance on data sets

with low to moderate number of targets, and moderate to high

skew was better than SMA but, not for low skew and high

number of targets. HHA performance was not robust and quite

bad when the number of targets was high. In addition, it has

implementation difficulties. There was a considerable

performance gap between the online algorithms and ORACLE,

indicating a scope for designing better iceberg query processing

algorithms.

2.2 Bitmap Indices
The concept of bitmap index was first introduced by professor

Israel Spiegler et al [19]. Bitmap indices are known to be

efficient in order to accelerate the iceberg queries especially used

in the data warehousing applications and in column stores. Model

204 [15] was the first commercial product making extensive use

of the bitmap index. This implementation was a hybrid between

the basic bitmap index (without compression) and the list of row

identifiers (RID-list). Overall performance of Model 204 was

similar to the index organized as a B+tree. Early bitmap indices

are used to implement inverted files [2]. In data warehouse

applications, bitmap indices are shown to perform better than tree

based index scheme, such as the variants of B-tree or R-tree [13],

[15], [17]. Compressed bitmap indices are widely used in column

oriented data bases, such as C-store [14] to improve the

performance over row oriented data bases. Word-Aligned Hybrid

(WAH) [9] and Byte-aligned Bitmap Code (BBC) [3] are two

important compression schemes mostly used in query processing

with little effort. More importantly, bitmaps are compressed with

BBC and WAH can directly participate in bitwise operations

without decompression. BBC is effective in both reducing index

sizes and query performance. BBC encodes the bitmaps in bytes,

while WAH encodes in words. The new word aligned schemes

use only 50% more space, but perform logical operations on

compressed data 12 times faster than BBC. The development of

bitmap compression methods [9], [3] and encoding strategies [16]

further broaden the applicability of bitmap index. Nowadays it

can be applied on all types attributes such as high cardinality

categorical attributes [11], numeric attributes [11], [16], and text

attributes [8]. And it is very efficient for OLAP and warehouse

query processing [9], [3].

Hsiao H et.al, [4] proposed an approach of executing the iceberg

queries efficiently using the compressed bitmap index and

developed an effective bitmap pruning strategy for processing

iceberg queries. The index-pruning based approach eliminates the

need of scanning and processing the entire data set (table) which

speeds up the iceberg query processing.

Bin He et al. [1], proposed an efficient vector alignment

algorithm by exploiting the property of bitmap indices. This

algorithm completely solves an empty bitwise-AND results

problem by pruning the bitmaps whose resultants are zero

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.21, April 2013

41

vectors. This is the best pruning strategy in the literature available

so far and it opens for more scope in evaluation process of

iceberg queries.

The deferred XOR strategy in GS [1] further prunes the bitmaps

whose cardinality is not more than threshold after every AND

operation. This is possible by deferring the XOR operations from

the suite of AND operation. Thus deferred strategy was took a

scope to prune the bitmaps in order to improve query evaluation

process.

The novel idea behind this pruning approach is there is a

probability for selection of more aligned positions from large

number of 1’s count in a bitmaps is possible. This theory is

proved mathematically for several cases previously in studies of

probability theory for selecting approximate/exact values. This is

the best case to reduce time complexity of solving iceberg

queries.

The next section presents a proposal to arrange the vectors in the

priority queue by high cardinality ordered bitmaps.

3. PROPOSED REASERCH WORK
This section proposes the research work to be carried out on the

topic under investigation in the following three sub sections. In

the first sub section i.e., A, the block diagram of the proposed

research work model is described. In the second sub section i.e.

B, an algorithm for pruning the bitmaps by computing latest

cardinality of bitmaps for reinsertion in to PQs. The last sub

section i.e., C validates the proposed algorithm on sample

database.

3.1 The Proposed Block Diagram
In fig, the DB indicates database which is input to the proposed

algorithm. The PQA and PQB in the diagram denote priority

queues A and B respectively. The priority queues are commonly

used to place the bitmap vectors prioritized by latest cardinality

of bitmaps. The AND block is specified to perform the bitwise-

AND operation between pair of bitmap vectors chosen from PQA

and PQB. The diamond shaped box used to check whether the

ones count of resultant vectors are above or below threshold. If it

is ‘Y’ send this pair to iceberg result set and ‘N’ send to

computational block. The rectangular computational block is

used to compute the latest counts of the bitmap vectors that are

inputted by AND operation. The outputs of computed values are

inputted for once again checking of whether these counts are

above or below threshold using diamond shaped check box.

Based on the output of check box the vectors are going to be

prune or reinsert into priority queues. Then with all the reinserted

vectors with its latest counts is subjected to realize the priority

queues are restructured after each AND operation. The same

process is continued till the end of either of these queues becomes

empty.

Fig.; 1.Proposed Block diagram for research model

3.2 Proposed Algorithm pruning of bitmap

vectors using priority queues with high

density counts
 An algorithm is proposed in this subsection to evaluate an

Iceberg query by pruning the bitmap vectors dynamically using

high counts:

IcebergDQ (attribute A, attribute B, threshold T)

Input: {attribute A, attribute B, threshold T}

Output: Iceberg results

1: PQA.clear, PQB.clear

2: for each vector a of attribute A do

3: a.count = BIT1 COUNT (a)

4: if a.count >= T then

5: PQA.push (a)

6: for each vector b of attribute B do

7: b.count = BIT1 COUNT (b)

8: if b.count >= T then

9: PQB.push (b)

10: R = null

11: a, b = nextAlignedVectors (PQA, PQB, T)

12: while a <> null and b<> null do

13: PQA.pop

14: PQB.pop

15: r = a and b

16: if r.count >= T then

17: Add iceberg result (a. value, b.value, r.count) into R

18: a. count= a. Count- r.count

19: b.count= b.count- r.count

20: if a. count >= T then

21: a = a XOR r

22: PQA.push (a)

23: if b.count >= T then

24: b = b XOR r

25: PQB.push (b)

26: a, b = nextAlignedVectors (PQA, PQB, T)

27: return R

The above IcebergDQ algorithm is described in a density priority

queue strategy to GS [20]. The algorithm operates in two phases.

In the first phase, it prioritizes the bitmap vectors in PQ by

density of 1’s count. The function BIT1_COUNT generates the

count of 1’s in a bitmap vector which is defined as density of that

vector (from line number 1 to 9). In second phase, the

nextalignedvector function returns all aligned vectors pair from

the inputted bitmaps . Then an Iceberg query is processed by

conducting bitwise-AND operations between vectors that are

chosen from each respective PQs as top positioned. After every

AND operation, the 1’s count in resultant vector is examined to

determine whether this count is above threshold or not. If it is

above T, that vector pair is added to iceberg result set along with

its count value in line number 17 of alg. Then the original vectors

are decreased by r’s count. The XOR operations are deferred to

conduct immediately after AND operation such that no XORing

is taken place for the bitmaps whose 1’s count is below threshold

that is shown in line numbers 21 and 24 of alg. After XORing,

the bitmaps are updated. If the cardinality of updated bitmaps

are above threshold will be re entered in to respective PQs. The

rest of the bitmaps are pruned out. The same process is repeated

until either of the PQs becomes empty.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.21, April 2013

42

3.3 Validation of Density Priority queue

strategy on sample database

This subsection demonstrates the validity of the proposed density

based queue strategy and evaluates an iceberg query having two

aggregate attributes with COUNT function.

SELECT A, B, COUNT (*) FROM R GROUP BY A, B

HAVING COUNT (*) > 2;

Fig2: An Iceberg query with count function

A B C A1 A2 A3 B1 B2 B3

A2 B2 1.23 0 1 0 0 1 0

A1 B3 2.34 1 0 0 0 0 1

A2 B1 5.56 0 1 0 1 0 0

A2 B2 8.36 0 1 0 0 1 0

A1 B3 3.27 1 0 0 0 0 1

A2 B1 9.45 0 1 0 1 0 0

A2 B2 6.23 0 1 0 0 1 0

A2 B1 1.98 0 1 0 1 0 0

A1 B3 8.23 1 0 0 0 0 1

A2 B2 .11 0 1 0 0 1 0

A2 B1 3.44 0 0 1 1 0 0

A3 B1 2.08 0 0 1 1 0 0

Database table(R) Bitmap Index -A Bitmap index-B

 Fig. 3.: Sample data base table (R) and Bitmap indices of an

aggregate attributes A and B.

The above listed query is assigned to fetch the count of attribute

A and B values from the database table R under a specified

parameter called threshold T which is greater than the value 2

should be selected. The iceberg query that we need to answer is

in fig 2, the data base table R and bitmap indices are those in fig

3a and fig 3b.

The bitmap vectors are entered into respective priority queues say

PQA and PQB in the high order of their density of 1 bits are as

A2, A1 and B1, B2, B3. Here, the vector A3 is not been entered

because its density is less than threshold. Hence it is directly

pruned by monotone property of iceberg query. The top

positioned bitmap vectors A2: 101101110100 and B1:

001001010011 are chosen from PQA and PQB respectively.

Now the vectors are subjected to verify the alignment between

them. If they are aligned, bitwise-AND operation is conducted,

and obtained resulting bitmap vector ‘r’ as 001001010000. We

compute the density in the resulting vector ‘r’ as 3 and compare

with T. This is above threshold (where T is equals to above 2).

Therefore, this pair of bitmap vectors A2 and B1 is identified as

iceberg result and added to the iceberg result set along with its

count value. Further these vectors are also sent to the

computational block to compute the latest density by subtracting

the density of result vector ‘r’ from each vector. The same is

formulated as follows: A2.count = A2.count- r. count which is

equals to 4 and B1.count = B1. count - r. count is 2. Then the

count of the both vector are compared with threshold. The vector

A2 is passing the threshold where as the vector B1 do not. That

means the future reference of vector B1 is no need. Hence, it is

pruned. Whereas the vector A2 is reinserted into PQA with its

latest count by changing the aligned 1’s as 0 by conducting the

bitwise-XOR operations between vector A2 and resultant vector

‘r’ . Therefore PQA is required to restructure and arranging them

up on latest counts. Then vectors in PQA and PQB are modified

as A2 and A1 & B2 and B3. The same process is continued until

either of priority queues becomes empty.

The next section describes the implementation details of all the

modules in the java platform.

4. IMPLIMENTATION
This section describes the various modules that were proposed in

the previous section and the details:

4.1 Generate Bitmap
The first module Generate Bitmap responses to input query

shown in fig 2. This generates the equivalent bitmap values in

terms of sequence of 1 and 0 bits of each attribute value specified

in the iceberg query (IBQ). Then the generated bitmaps are stored

in the in the series of arrays in compressed format. In the process

the bitmap vectors are used existing word aligned hybrid

compression scheme and arranges all the bitmap vectors into

compressed words. These compressed bitmaps are placed in PQs

ordered by high cardinality computed through BIT11-COUNT(

).

4.2 Next Aligned Vectors
This module nextAlignedVectors is used to align two bitmap

vectors from each of the priority queue with first 1-bit positions

by comparing them by using first 1 bit position algorithm. If the

bitmaps are found as aligned returned to main algorithm for

further processing. Otherwise, next bitmap vector is chosen from

PQs to repeat the same process.

4.3EfficientBitmapPruningbypriorityqueues

with high 1’s count
This is the main part of algorithm EfficientBitmapPruning

module accepts two aligned bitmap vectors as input. A bitwise-

AND operation is performed on these aligned vectors. The

resulting bitmap vector ‘r’ is examined for the count of number of

1’s. If the number of 1’s is greater than T then the pair is added to

the iceberg result set. Otherwise bitmap vectors are pruned.

Further the number of 1’s in resulting vector ‘r’ is now compared

with 1’s count in v1, v2 and if the count is greater than T then a

bitwise-XOR operation is performed on the same and reinserted

in to corresponding PQs prioritized by its updated density value.

Else the bitmap vectors are pruned.

The above modules are implemented using JAVA for the purpose

of experimentation. The next section explains the experiments

conducted on this implementation.

5. EXPERIMENTAL EVALUATION

5.1 Experimental set up
This section describes the experiments carried out on the

implementation described in the previous section under a

specified iceberg threshold values.
 The experiments are conducted on a following computer system

with i3 processor of 2.4 GHz, 1.0GBmain memory running on

Micro soft Windows XP ver., and all algorithms are implemented

in java platform.

The experiments are carried out repeatedly a minimum of 3 to 4

times of same threshold with synthetic data set consists of 1.2

millions in zipfian distribution.

 The experiments are conducted for high threshold values such as

from 1000 to 10000 and the cardinality is taken as 99999 unique

valued attributes.

5.2 Experimentation
First, the iceberg query is responsible to select the similar records

with A and B aggregate attributes from the database table R

which are having a threshold value ranging between 1000 and

10000. Then, the experiment is to be conducted by firing an

iceberg query as stated in Fig .2 on the database table which

consists of 1.2 millions of tuples with two attributes A and B and

COUNT as an aggregation function. The first function i.e.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.21, April 2013

43

GenerateBitmaps accepts all these tuples as input. This function

first produces one bitmap vector of each distinct value of an

aggregate attribute and aligned the words in a compressed model.

Then the vectors are arranged with high density 1’s count order in

PQA and PQB through special function called PQ. These two

Density priority queues are given as input to

EfficientBitmapPruning function which repeatedly calls the

NextAlignedVector function and First1bitposition function as an

internal to it in to main program until any one of the Density

priority queue becomes empty. Each time the NextAlignedVector

function returns two top most aligned bitmap vectors from each

Density queue to the main program

i.e.,efficienticebergqueryevalautionwithDQs. From all such

records which are having a COUNT value greater than 1000 to

10000 are generated as an output. The experiment is repeated for

different iceberg thresholds by keeping the same number of

tuples in a database table and noted the results with density PQs

and without density PQs and as well as iceberg PQ.

The next section lists out the results of the experimentation and

analyses them.

6. RESULTS AND ANALYSIS
This section describes the results obtained in our experiments
conducted in the previous section and are tabulated in table 1.

The first row in table 1 indicates different thresholds. The second

and third rows correspond an execution time made in icebergPQ,

icebergDB (density PQ) and icebergWD(without density PQ)

functions respectively.

Table 1 tabulates the different execution times in seconds for the

iceberg result set with respect to icebergPQ, icebergDB and

icebergWD functions. The first row contains different thresholds.

The second and third row lists out the number of seconds

required to execute icebergPQ, icebergDB and icebergWD

functions respectively.

Table 1: Execution times with different thresholds

Threshold 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

icebergPQD 2.563 1.985 1.922 1.750 1.437 1.453 1.281 1.172 1.297 0.953

icebergDB 1.735 1.157 0.969 0.969 0.812 0.953 0.953 0.938 0.922 0.875

icebergWD 1.750 1.343 1.156 1.079 1.031 0.984 0.969 0.969 0.937 0.906

The above tabulated results are analyzed and the efficiency of the
strategy developed is presented in the following graph.

Fig 4: Execution times in icebergPQ, icebergDB and

icebergWD varying thresholds.

The above results are concluded in the next section.

7. CONCLUSION AND FUTURE SCOPE
This paper presents an efficient bitmap pruning strategy which is

based on order of high cardinality in PQ for processing an iceberg

query using compressed bitmap indices. The strategy allows flow

of vectors to enter in to PQs on high 1’ count achieved more

benefit for large pruning of bitmaps. The pruned vectors

inherently improves response time of answering IBQs. There are

several research directions in optimizing the iceberg query such

as preprocessing of unwanted bits from bitmaps, exclusion of

fruitless bitwise-AND operations and optimal priority queue

management.

8. ACKNOWLEDGEMENTS
Our thanks to my collogue Mr.B.Hanmanthu, Assistant Professor

,Department of CSE KITS-warangal. and my M.Tech.(SE)

student Mr.Sandeep Reddy who have contributed their time to

materialize this document.

9. REFERENCES
[1] Bin He, Hui-I Hsiao, Ziyang Liu, Yu Huang and Yi Chen,

“Efficient Iceberg Query Evaluation Using Compressed

Bitmap Index”, IEEE Transactions On Knowledge and

Data Engineering, vol 24, issue 9, sept 2011, pp.1570-1589

[2] D.E. Knuth, “The Art of Computer Programming : A

Foundation for computer mathematics” Addison-Wesley

Professional, second edition, ISBN NO: 0-201-89684-2,

January 10, 1973.

[3] G.Antoshenkov, “Byte-aligned Bitmap Compression”,

Proceedings of the Conference on Data Compression, IEEE

Computer Society, Washington, DC, USA, Mar28-30,1995,

pp.476

[4] Hsiao H, Liu Z, Huang Y, Chen Y, “Efficient Iceberg

Query Evaluation using Compressed Bitmap Index”, in

Knowledge and Data Engineering, IEEE, Issue: 99, 2011,

pp:1.

[5] Jinuk Bae,Sukho Lee, “Partitioning Algorithms for the

Computation of Average Iceberg Queries”, Springer-Verlag,

ISBN:3-540-67980-4, 2000, pp: 276 – 286.

[6] J.Baeand, S.Lee, “Partitioning Algorithms for the

Computation of Average Iceberg Queries”, in DaWaK,

2000.

[7] K. P. Leela, P. M. Tolani, and J. R. Haritsa.”On

Incorporating Iceberg Queries in Query Processors”, in

DASFAA, 2004, pages 431–442.

[8] K.Stockinger, J.Cieslewicz, K.Wu, D.Rotem and

A.Shoshani. “Using Bitmap Index for Joint Queries on

Structured and Text Data”, Annals of Information Systems,

2009, pp: 1–23.

[9] K.Wu,E.J.Otoo and A.Shoshani. “Optimizing Bitmap

Indices with Efficient Compression”, ACM Transactions on

Database System, 31(1):1–38, 2006.

[10] K.Wu,EJ.Otoo,and A.Shoshani, “On the Performance of

Bitmap Indices for High Cardinality Attributes”, VLDB,

2004, pp: 24–35.

[11] K.-Y.Whang, B.T.V.Zanden and H.M.Taylor.”A Linear-

Time Probabilistic Counting Algorithm for Database

Applications”. ACMTrans.Database Syst., 15(2):208–229,

1990.

[12] M.Fang, N.Shivakumar, H.Garcia- Molina, R.Motwani and

J.D.Ullman.”Computing Iceberg Queries Efficiently”. In

VLDB, pages 299–310, 1998.

[13] M.Jrgens “Tree Based Indexes vs. Bitmap Indexes: A

Performance Study” In DMDW, 1999.

[14] M.Stonebraker, D.J.Abadi, A.Batkin, X.Chen, M.Cherniack,

M.Ferreira, E.Lau,A.Lin, S.Madden, E.J.O’Neil,

0

0.5

1

1.5

2

2.5

3

Ti
m

e
 in

 m
.s

e
c.

Threshold

Varying Execution
Time

icebergPQD

icebergDB

icebergWD

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.21, April 2013

44

P.E.O’Neil, A.Rasin, N.Tran and S.B.Zdonik.C-Store: “A

Column-oriented DBMS”. In VLDB, pages 553–564, 2005.

[15] P.E.O’Neil.”Model204 Architecture and Performance”. In

HPTS

 Pages 40–59, 1987.

[16] P.E.O’Neiland D.Quass. “Improved Query Performance

with Variant Indexes”. In SIGMOD Conference, pages

38–49, 1997.

[17] P.E.O’Neil and G.Graefe. “Multi-Table Joins Through

Bitmapped Join Indices”. SIGMOD Record, 24(3):8–11,

1995.

[18] R.Agarwal,T.Imilinski,andA.Swami.”MiningA ssociation

Rules between Sets of Items in Large databases”. In

SIGMOD Conference, pages 207-216, 1993.

[19] Spiegler I; Maayan R “Storage and retrieval considerations

of binary databases”. Information processing and

management: an international journal 21 (3): pages 233-54,

1985

[20] Dr.C.V.Guru Rao and V.Shankar,”Efficient iceberg query

evaluation using compressed bitmap indices by deferring

bitwise-XOR operations” 3rd IEEE,on Advanced

Computing Conference, 22nd &23 rd Feb 2013,New Delhi,

India,pp.1374-79.

AUTHOR’S PROFILE

Vuppu Shankar obtained his Bachelor’s degree in Computer

Technology from Nagpur University of India. Then he obtained

his Master’s degree in Computer Science from JNTU Hyderabad,

and he is also life member of ISTE. He is currently an Associate

Professor at the Faculty of Computer Science and Engineering,

Kakatiya Institute of Technology & Science (KITS), Kakatiya

University-Warangal. His specializations include Data mining

and Data warehousing, Databases and networking. His current

research interest in computation of an iceberg cubes and

evaluation of iceberg queries efficiently.

Dr.C.V.Guru Rao obtained a Bachealor’s in Electronics &

Communications Engineering from Nagarjuna University,

Guntur, India during December 1981. He is a Double

Postgraduate in Electronic Instrumentation as well as Information

Science & Engineering from Regional Engineering College,

Warangal and Motilal Nehru Regional Engineering, Allahabad.

Later he was awarded a Ph.D (Computer Science & Engineering)

from Indian Institute of Technology, Kharagpur during June

2004. He is currently working as Professor and Head, Department

of Computer Science & Engineering at SR Engineering College,

Warangal. His research interests are Computer Science &

Engineering with specialization in VLSI and Embedded Systems,

Software Engineering, Data Mining and Warehousing. He had

published 72 research papers in Journals/Conferences of

national/international repute. He is a Life Member of Indian

Society for Technical Education, Instrument Society of India. He

is also the member of Institution of Engineers (India), IETE,

MIEEE-CS (USA), MACM and MCSI. He was elevated as

Senior Member of IEEE (USA).

