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ABSTRACT 

Stability aspects of redundancy resolution both in velocity and 

acceleration level have been investigated for a method which 

augments the weighted least norm solution by weighted 

residual of the current joint rate and preferred pose rate in null 

space.  While doing this the first and second order inverse 

kinematics solutions with redundancy have been re-casted as a 

feedback control problem, with the classical Close Loop 

Inverse Kinematics (CLIK) both for range space and null 

space and its stability conditions are derived for continuous 

and discrete time domains using  Lyapunov and non 

Lyapunov based stability criteria. The non Lyapunov based 

analysis is based on the exponential convergence of the task 

space error system in discrete time domain.  For generality the 

stability conditions of regularized version of CWLS has been 

analyzed considering the null space contribution which will 

provide the information of feasible and unfeasible directions 

that is especially important in near  singularity configuration.  

General Terms 
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Keywords 
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1. INTRODUCTION 
The main difficulty in the study of algorithmic solutions to the 

inverse kinematics (IK) problem is related to the discrete-time 

nature of system at one hand, combined with its strong 

nonlinearity, deriving from the nonlinearity of the kinematics. 

On the other hand the differential kinematics equation 

represents a linear mapping between the joint velocity space 

and the operational velocity space, although it varies with the 

current configuration. This fact suggests the possibility to 

utilize the differential kinematics equation to tackle IK 

problem when it was initially addressed [1]. After wards 

various researchers resorted to different techniques like 

classical numerical methods, such as the Newton–Raphson 

algorithm [2], optimization techniques [3], inverting 

differential kinematics in a closedloop fashion by viewing the 

IK problem as a feedback control problem [4], classically 

knows as Closed Loop Inverse Kinematics (CLIK), mixed 

numerical–analytical approaches [5] etc. Dealing with 

redundancy in IK although leads to infinite solutions for the 

joint space but offers greater flexibility and dexterity in 

motion as different constraint based  or goal based criteria can 

be formulated as sub tasks in the solution. Two kinds of 

approaches have been reported in the literature to deal with 

this situation. One is set to exploit the null space of the 

Jacobian matrix in the homogeneous solution that infuses self 

motion of joints without affecting the task space. Typical 

method of this kind is gradient projection method (GPM) [6] 

and more recent [7]. In GPM the anti-gradient of a quadratic 

cost function, is projected in the null space of the task 

Jacobian, which is reminiscent of the projected gradient 

method for constrained minimization. The other is weighted 

least norm (WLN) approach [8], which minimizes the 

weighted norm of joint rate. In both the cases the primary task 

is to follow the prescribed trajectory and there may be 

multiple secondary tasks or nested subtasks with priority 

fixation [9 ][10].  

The stability analysis of IK problem in discrete time domain 

comes in to picture when it requires implementation in 

hardware level as it provides useful guidelines for gain 

selection in relation to the sampling time. The approaches are 

mainly Lyapunov based  [11]-[14] or non Lyapunov based 

using local exponential asymptotical stability condition [15]. 

  

This paper does not intend to propose any novel stability 

proof but investigates the stability conditions of first and 

second order redundant IK system which is formulated by 

augmenting the weighted least norm (WLN) solution. The 

WLN solution is augmented by weighted residual of the 

current joint rate and preferred pose rate in null space, so that 

we can arrive at a solution which is able to handle both joint 

limits and preferred joint configuration simultaneously 

satisfying the primary task, henceforth called as composite 

weighted least norm solution (CWLS). While doing this, the 

first and second order inverse kinematics solutions with 

redundancy have been re-casted as a feedback control 

problem, with the classical Close Loop Inverse Kinematics 

(CLIK) both for range space and null space and its stability 

conditions are derived for continuous and discrete time 

domains. 

 

2. INVERSE KINEMATICS PROBLEM 
The first and second order kinematics for the time variant  

task space defined as ( 1)( ) mx t   and joint space 

1( ) nq t   related by the direct kinematic  non linear and 

transcendental vector function ( )tk q , whose time 

differentiation  will define the non square analytic Jacobian  

matrix ( ) ( ) /  ; ij j m n
t t iJ q J q k q n > m    ,  with its 

assumption of bounded higher order terms and linearization. 

We denote the desired task space positions, velocities, and 

accelerations as ,d d dx x and x respectively and reference 

joint configuration as .rq  Dropping the subscript t for brevity, 

the classical forward kinematics differential relationships can 
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be expressed as  

( ) ; ( ) ( , )x J q q and x J q q J q q q             (1) 

and inverse kinematics least norm (LN) general solution as 

† †
1

† †
2

( )

( ) ( )

p h

d

q q q J x I J J

q J x Jq I J J





    

   

               (2) 

where ( )pq J  is particular solution, ( )hq J  is  

homogeneous solution,  † 1( )  T TJ J JJ   is the right 

pseudoinverse of the Jacobian, 1
1 2

nand   are arbitrary 

vectors and †( )I J J  is the null space projector. The 

Weighted Least Norm (WLN) solution formulates the 

problem as 2
1 1( )[ ( )] ( ) ( )[ ], Tmin q q min q q min q q W q H st 

( ) 0x Jq  , 1
n nW   is the symmetric  positive definite 

weighing matrix. To stabilize the ill posed condition of LN or 

WLN solution near singularities, Tikhonov like regularization 

has been used, which makes a trade off between tracking 

accuracy and the feasibility of the joint velocities, known as 

classical damped least square (DLS) solution.  The trade off 

parameter is the damping factor is  . If the objective is 

specified through a configuration rate dependent performance 

criteria 2( )qH , set to be the closest to some particular pose, 

hence forth called the reference configuration ( )rq  the 

problem is reformulated as 

2 2

2

min( )[ ( )] min( )[(1 / 2)( ) ( )]

.   ;

T
r r

n n

q q q q q W q q

s t Jq x W 

  

  

H
    (3) 

 

2.1 Composite weighted least norm 
In our approach an augmented objective function has been 

formulated by combining configuration rate dependent 

performance criteria 2( )qH in Eq.(3) for pose optimization 

and 1( )qH for joint limit avoidance, subjected to the 

requirement of primary task space, as 

2 1 2( ) ( ) ( ) ( , ) ,n nq q q and W W     1H H H  henceforth 

called as composite weighted least norm solution (CWLS) as, 

1

2

( ) ( )  ( )[(1/ 2)

(1/ 2)( ) ( )]; .   

T

T

r r

min q q min q q W q

q q W q q s t Jq x



   

H            (4) 

To solve this optimization problem with equality constraint, it 

should satisfy both the necessary condition 0qL   and 

sufficient condition 2 0 qL  , where the Lagrangian is   

( , ) ( ) ( )L q q Jq x   H  and we can directly 

evaluate 2
1 2( ) 0 qL W W    , which is true for 

minimization. Putting the value of q  from 0qL   in the 

expression 0L  , we get  .  Substituting   back in q  

from 0qL  , and 
1 1 1( ) ,T TJ W J JW J     

1 2( )W W W  , 1 ,rq  the general solution of CWLS 

reduces to [Appendix-I.A] 

1
2 1( )q J x I J J W W                   (5) 

It is trivial to show 1
2( )I J J W W  is the null space 

projector of reference joint rate vector rq and hence no impact 

on task space as JJ I . The optimization in the direction of 

the anti-gradient of a scalar configuration dependent 

performance criteria 3( )qH can also be set up by minimizing 

3( )qH for weighted reference configuration ( )rq  as  

3 2

3 2

( ) (1/ 2)( ) ( )

( ) ( )

T

r r

q r

q q q W q q

q W q q

  

  

H

H
             (6) 

1
1 1 2 2 3 ( ) ( )H qk W W W q     H , for  a positive scalar 

Hk ,  the GPM flavor of CWLS  formulation is 

1
2 1

2

( )

( ) ( )d

q J x I J J W W

q J x Jq I J J





   

   
                       (7) 

Using, the relation † †JJ JJ   and after simplification we 

can establish the relation between 
2  and 1  as.  

†

2 1 1( )J J q                                    (8)  

                                                                                  

2.2 Control formulation 
Introducing proportional ( )PK  and derivative ( )DK  error 

control in Eq.(7) by positive definite diagonal gain matrices  

and task space error ( )d de x x x q   ,  we can arrive at 

the second order close loop kinematic scheme with task space 

error system 

2( ) ( )

0

h h

d D P

D P

q J x Jq K e K e I J J

e K e K e

     

  
        (9)         

In defining the null space controller, the first question that has 

to be answered is how many sub tasks the null space can 

simultaneously handle?  If we choose k  sub tasks each of 

rank
kr , the limit is 

1

k

i

i

r n


 . Once all the dof’s are 

exhausted, it is useless to put additional low priority tasks, as 

their contribution will be always projected in to null space or 

they can even corrupt the primary task.  Dropping the 

regularizing term for the time being and defining the null 

space error as 
Ne , the null space contribution 

N  is   

1 1

1

( )[ ( )]

( )( )

h h

N N N ND N

h

N

I J J K e K e J J q

e I J J q

  



     

  
     (10)   

with Proportional ( )NK  and Derivative ( )NDK  error control 

gain  in null space. 

 

3. STABILITY 
A Lyapunov direct method argument can be used to analyze 

dependence q  that ensures asymptotic stability of the error 

system in Eq.(9), as it associates an energy-based description 

with a (linear or nonlinear) autonomous system and its 

primary basis rests on the principle that for each system state 

with the exception of the equilibrium state, the time rate of 

such energy is negative, then energy decreases along any 

system trajectory until it attains its minimum at the 

equilibrium state; this argument justifies an intuitive concept 

of stability.  
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3.1 First order continuous time domain 
Choosen as Lyapunov function candidate ( )V e  in positive 

definite quadratic form and pK  , 
NSK  are the symmetric 

positive definite matrices, 

2

2 2

1 1
( )  ;  

2 2

T T

p NSV e e K e V where V q K q  
 

2 2 2( ) ( )T T T T

p p d p d pV e e K e V e K x x V e K x e K Jq V       

1 2( )

T T h T h

p d p d p p

T

p n n

e K x e K JJ x e K JJ K e

e K J I J J V

  

  
 

1 2

( )

( )    

T h T h

p d p p

T

p n n

e K I JJ x e K JJ K e

e K J I J J V

  

  
 

1;   ( ) = O   h

n nJJ I and J I J J  
 

2( ) T T

p pV e e K K e V                               (11) 

Considering the case of a constant reference ( 0)dx  , the 

function ( )V e  is  negative definite, under the assumption of 

full rank for J and   is so chosen such that  
2V  is negative.  

3.2 First order discrete time domain 
The approach in [12]-[15] which uses both Lyapunov and non 

Lyapunov methods,  has been followed and implemented in 

CWLS solution for stability proof. Non Lyapunov methods 

prove the stability of the algorithm according to the 

comparison principle for discrete-time systems. The adopted 

methodology is not based on Lyapunov arguments, since to 

prove that the origin of the task space error space is 

asymptotically stable is not so trivial, because the Lyapunov 

function candidate depends not only on the task space but on 

the configuration variables too. Therefore, it cannot be shown 

to be positive definite without the inclusion of the terms that 

depend on the configuration variables [15].For sampling time 

T, with  proportional gain matrix pK  in CLIK, forward 

kinematics relation ( )k kx q , the first order update rule for 

( 1)k th  time step is 

1 1,( ( )) ( )h h

k k p d k k k kq q TJ K x q T I J J      
       (12) 

With constant dx , and as null space has no effect in task space 

error ( )e , defining ( ) ( )h
k k k p k kr q r K TJ e  as residual of 

Taylors series expansion of ( )k kq q  ,it can be proved that 

2 10: ( ) ; : .n
k k kr q q q q q         Neglecting 

higher order terms in linearization in the definition of 

Jacobian matrix,  the dynamics of the task space error in 

Eq.(12)  can be established as 

1
( )

( ) ( )

h

k k p k k k k k

h

p k k k k k

e e K TJ J e r q

I K T e r q J J I


  

   

                        (13) 

In [15] it has been established that assuming †J   , initial 

bounded task space error 0e     lies   between 

1
0 || ||

 
0

p k

e
K T 

 


or
2

0 || ||
 

p
0

p k

K T
e

K T 


 


, and the gain 

between  0 1/ .pK T   or 1/ 2 /pT K T  ,  the least norm 

version of the CLIK algorithm  ensures the exponential 

convergence of the task space error dynamics with  

   0; (0,1)k
ke k                       (14)   

We will use this relation in proving the discrete time 

convergence in CWLS solution. Using notation   for 

max(svd()) and   for  min(svd()), as spectral norm is a 

function of   ,  form algebra of matrix norms we can define 

1 1 10: ;w wW     1
1 1 10 : (1/ )w wW    ; 

2 2 20:w wW    , 1
2 2 20 : (1/ ),w wW     since 

n n 
1 2[ , ]W W  are symmetric  positive definite and  diagonal  

matrices resulting [ Appendix-I.B] 

*

12

† †

2

|| || ( ) 

1
=  =   

( )

h

w

h

w

J

and J J J
J




  









               (15) 

where * 1 1 2 1|| || ( ) .h T T

m mJ W J JW J I  

 Now we have to 

establish the bound of 1kq  .  The bound of   1kq   can be 

shown from Eq.(12)  as  

1 1,

2 1,

  ( )

 ( )  

h h
k k p k k k k k

h
k p k k k k

q q K TJ e T I J J

q K T e T I J J



 

    

   
  (16) 

( ) 1h
k kI J J  (Norm of null space projector is 1) and 

from Eq.(13) 

1 2 , ( ) k
k k p H w k r kq q K T k K T q q       

2 , ( ) ||k
k p H w k H w r kq K T k K T q k K T q      

, 2 (1 )

 (   )

k
H w k H w r k p

ns H w

k K T q k K T q K T

K k K null space gain

    


 

1 , 2 (1 ) k
k ns k ns r k pq K T q K T q K T         (17)                                                                

The equivalent scalar liner system of Eq. (17) is  

1 , 2(1 ) ( ) k
k ns k ns r k pq K T q K T q K T                (18)                                                                               

and its response 0k   with initial condition  0 iq q and 

0 r riq q  is 

2
0 0(1 ) ( ) (1 )

1

p k
k ns ns r

K T
q K T q K T q

 





    


         (19)                                                                   

1,(1 )  exp    1,   k will ontially converge to as k    , 

hence 0k   

2
0 0   (1 ) ( )  

1

p
k k ns ns r

K T
q q K T q K T q

 





     


     

(20)                       

From Eq.(16) 

1 1   k k k kq q q q     

, 2 (1 )  k
ns k ns r k p kK T q K T q K T q       

, 2 (2 )ns k ns r k p kK T q K T q K T e     

2 2
k

p k pK T e K T      

1 21  0;   k
k k pand k q q K T                   (21)                                             

1,( )  exp    0,   k will onentially converge to as k    ,  
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1 lim 2
lim

 =  ( )  =0k
k k k p

k

q q K T   


                  (22)                                                                   

This is true with the inclusion of an additional bounded 

condition for Null Space gain factor nsK .  Hence the bound 

for gains are, 

0
2

0
2

0 1 /

1
0 1 /   e   

2
,  1 / 2 /   e  

ns

p
p k

p
p

p k

K T

K T and
K T

K T
or T K T and

K T

 

 

 

  



  



            (23)                                                                                

If pK  is a positive definite (usually diagonal) matrix, the 

system is asymptotically stable. The error tends to zero along 

the trajectory with a convergence rate that depends on the 

eigenvalues of matrix pK , the larger the eigenvalues, the 

faster the convergence. Since the scheme is practically 

implemented as a discrete-time system, it is reasonable to set  

an upper bound exists on the eigenvalues; depending on the 

sampling time T,  ( 0 1/pK T   and 0 1/nsK T  ) along 

with initial error norm( 0 2e 1/ p kK T  ), there will be a 

limit for the maximum eigenvalue of pK  under which 

asymptotic stability of the error system is guaranteed. 

                                                                              

3.3 Second order continuous time domain 
In second order analysis we will start with the regularized 

form of CWLS solution, considering  J  is the particular 

case of *, 0J   , * 1 1 2 1( ) .T TJ W J JW J I     We 

can set the error system with  null space projector ( )I J J  

as 

*

2

*

*

[ ( ) ( ) ]

( )[ ]; ( )

[ ]; ( )

h h

d D P

h h

d D P

h

d D P

x J J x Jq K e K e I J J Jq

I JJ x Jq K e K e J I J J O

N x Jq K e K e I JJ

      

      

     N

 

which   reduces to the error differential system 

[ ]D P d D Pe K e K e x Jq K e K e     N               (24) 

Introducing [  ]T T Te e   in Eq.(24), results in  

00

( )( ) ( )

T T

T T
dP D

Ie e

N x JqN I K N I Ke e


      
        

          

 and 

( ) N I   

00
 ;       

( )( )dP D

I
A and D

I x JqK K

  
    

     
, the error  

system can be reduces to  

A D                                        (25)                                                                                                                  

which describes a linear time invariant system with nonlinear 

state-dependent perturbation term and input disturbance. A 

Lyapunov direct method argument can be used to analyze 

stability of system in Eq.(25), as it associates an energy-based 

description with a (linear or nonlinear) autonomous system. 

Let the Lyapunov function candidate be 

( ) ;

 

P DT
K K I

V e P P
I I

and positive scalar

 
 





 
   

 



                (26)                                      

where positive definiteness of ( )V e  is realized by the 

adoption of a quadratic form as P is a symmetric positive 

definite block-diagonal matrix and ( ) 0, 0V e e   ; 

( ) 0, 0V e e    and ( ) , eV e    .Putting the values 

in the  Lyapunov equation TA P PA Q   , and after 

simplification  reduces to  

2 ( )( )

( )( ) 2( )

P P D

P D D

K I K K
Q

I K K I K

 

 

   
   

   
           (27) 

Considering the case with out regularization ( 0)  , then 

*J J , ;hJJ I  ,N O  ( + ) ,I O   Eq.(24) reduces to 

Eq. (9) and Eq.(27) reduces to  

2
;

2( )

P

D

K O
Q I

O K I





 
    

 
                 (28)                                                                     

which is symmetric positive definite block-diagonal matrix, as 

long as the arbitrary positive constant   is smaller than the 

minimum element of the diagonal matrix 
DK  i.e 

min0  Dk                                         (29)    

For regularized composite weighted least  norm ( RCWLN) , 
* *( ) ( )h hN I I JJ I JJ        , and  *hI I JJ   . 

2 2
max0      , the expression 1 2( )T

m mJW J I

  is 

always symmetric positive definite, since 1 TJW J  is 

symmetric positive definite. This implies 
* 1 1 2 1( ) ( )h T T

m mJJ J W J JW J I  

   is symmetric positive 

definite, and *hJJ    is always symmetric negative 

definite, resulting Q in Eq.(27) to be always symmetric 

positive definite. If  1( ) TB J W J    ( ) 1,and iff B   (for 

satisfying the convergence criteria) 
* 2 1( )h

m mJJ B B I 

  1 2 1[ ]BB I B   2 1[ ]I B   . 

2 1I B    , which is symmetric positive definite. It 

does not affect the symmetric positive definiteness of Q in 

Eq.(27), being in minor diagonal of Q. Computing the time 

derivative of Eq.(26) we get 

( ) 2 ( )T TV e Q Pk e                          (30)                                                                              

Now the first term on the right-hand side of Eq.(30) is 

negative definite and the stability problem is reduced to 

searching a control law so that  k e renders the total ( )V e  

negative (semi-)definite. Substituting ,Q and P in Eq.(30)  

and after expansion, rearranging we get 

( ) [2 2 ( ) 2 ( )

2 ( ) ] 2( )( )( )

T T T

P P D

T T T

D d

V e e K e e I K e e I K e

e I K e e e I x Jq

 

 

     

     
   (31)   
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 For CWLN solution without regularization, i.e *h hJ J   

-   ( ) I and I O    ,Eq.(31) reduces to 

( ) 2[ ( ) ]T T

P DV e e K e e K I e                        (32)                                                               

Eq. (32) is always negative definite hJ  with the condition 

min0 Dk   . Hence assuming at equilibrium, 0e  , of the 

Composite Weighted Least Norm (CWLN) solution is 

asymptotically  stable in Lyapunov sense.  

For regularized CWLN solution there are contributions from 

|| ||I  , along with gain matrices, and also from maximum 

norm of desired end effector velocity and acceleration. We 

can derive the bound in terms of 
1 2(  )W W W   for RCWLS 

through singular value inequalities using the notation 

max( ( ))svd J , min( ( ))svd J , max( ( ))w svd W and   

min( ( ))w svd W , resulting [Appendix-I.C] 

  
2

2

2 2
0;   ( )  w

w

I
 

 
  

   


          (33)                                                                

1, 2, 1, 2,0 [ , ] 0;[ ] 0;[ ] 0; 0.w w w wand               

For estimation of bounds of the term || ||Jq , writing the ith 

component   of the vector Jq , in the quadratic form as 

( )
( ) ,  

( ) ( )
( )   ( , )

T Ti
i i

i i
i

J q
q q q N q q

q

J q J q q
N q and J q q

q q t




 


  
 

  

 

we can express 

* *

|| || || ( ) ||   || ||  || ( ) ||  || ||  

 || ||  || ( ) ||  || ||

T T

i i

T h T h T

i

q N q q q N q q

x J N q J x

  


 

and deriving the expressions for the terms  || ||hJ , 
*|| ||  h

h J [ Appendix-I.B] and || ( ) ||iN q , we can finally 

establish  

* 2 2 2 2

2
|| || || ||  ( ) || || || ||h

h

w

J q x x


   
  

 


           (34) 

If W1= W2 =I in Eq.(34), h reduces to Regularized Least 

Norm and along with this , if  2 0  , it reduces to Least 

Norm with † †|| || || ||  1/hJ J     .Putting the relation 

( ) dx x e  in Eq.(34) and  dv as maximum norm of end 

effector velocity, we can express 

2 2 2|| ||   ( 2 || || || || )h d dv v e e                     (35) 

Rewriting the upper bound of Eq.(31) in terms of  in 

Eq.(33) ,  || ||d da x , || ||p PK , || ||d DK  

2 2

2 2 2

2 2 2 2 2

|| || ( ) || || [( ) ]|| ||

 ( ) || || || || 2  || |||| || 2  || ||

(  ) || || ( || || || ||) || ||

p p d d

p d d h d h

d d h h h

V e e

e e v e e v e

a v e e e e

       

        

        

      

     

     

 

2 2(  ) || ||d d ha v e                                                        (36) 

Substituting ( ),p p p      2 ( ),pd p d      

( )d d d      , 2 2

0 (  ),d d ha v     2

1 2  d hv      

and 2

2  ,h     after rearrangement Eq.(36) can be 

expressed as  
2 2

2

0 1 2

|| ||  || || || |||| || || ||

( || || || ||)(  || || || || )

p pd dV e e e e

e e e e

  

   

   

   
                  (37) 

which can be rearranged to 

  
2

0 1 2|| || 1 [ [0 ] 0T T T TV z Gz z z z                   (38) 

/ 2|| ||
 ;

/ 2|| ||

p pd

pd d

e
z G

e

 

 

  
       

 

The Tz Gz  term enforces the condition for positive 

determinant (det( ))G  
20; 0; / 4p d p d pd                         (39) 

which  puts a upper positive bound for '  

1      1 / dand                          (40) 
Defining [Appendix-I.D] 

2 2 2

2

1
2

( ) ( 2 )
| || || / 1

2 1

p d p d p d pd
G

      
 



    
 


              

Eq.(38)  can be rewritten as  

2

0 1 1 2

2 2

0 1 1 2

|| ||   || 1 ||  || ||

|| [0 ] ||  || || || 0 ||  || ||

         ( 1 ) || || ( ( )|| || || || )

T

T

V z

z z

z z z



   

    

   

        

    

 

                                                 
2

0 1 1 2(|| ||   ( ( )|| || || || )Tz z z        
2|| ||   ( 1 ) || || (|| ||)T TV z z                      (41) 

Considering (|| ||) 0,Tz           

2
1 1 1 1 0 2

1,2
2

( ) ( ) 4

2

     




    
                           (42) 

1 2

2
1 1 0 2 1 1 0 2

    ( , )  (|| ||) 0;

( ) 4 2

Treal and distinct roots of z 

       

  

    
     (43)                                                                                                                                                

 ( )V e  is upper bounded by a negative definite function in 

the region  

 1 2|| ||: || ||z z                                 (44) 

  If the initial error norm is bounded, i.e 

0 2 0|| ||  z T T   , 0   and 0T  so that 

1 0|| ||   tz T T T      . In the case the initial error norm 

is 0 1|| ||z  , then  ( ) 0V e   may not be negative and the 

error norm will rise. Hence we can conclude [i]  0 2|| ||z   , 

( ) 0   0V e e   i.e negative definite . [ii] The norm of the 

error ( || ||z ) is bounded both for 0 2|| ||z  and 0 1|| ||z  . 

Hence Regularized Composite Weighted Least Norm 

(RCWLN) solution is asymptotically stable in Lyapunov 

sense. 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.21, April 2013 

36 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. DISCUSSIONS 
The above stability analysis results in getting relations among 

various system parameters. For a given trajectory if the upper 

bounds of the end effector velocity (
dv ) and acceleration 

(
da ) and estimates of [ , ]   are known, then the estimates of 

,   h and    can be sought. Then it is possible to choose 

different parameters like damping factor ( ), feedback 

gains ( , )P DK K  etc, weighing matrix (W1,W2), and positive 

scalar ( ) based on the relations  in Eq.(29), Eq(39), Eq.(40) 

and Eq.(43). 

 

To illustrate the performance, we discuss the results of null 

space optimized _ ( )rcwls optq t  form as in Eq.(7) and its 

particular solution _ ( )rcwls pq t , for a planar serial 3RRR 

manipulator following a lamniscate trajectory ( s ), crossing  

both workspace  and configuration singularities. In both cases 

the regularized version is used. The link parameters in 

Denavit Hardenberg standard convention 

are [1.5,0.9,0.7] , [0,0,0], [0,0,0]i i il cm d    and 

1 2 3[ , , ]i q q q  . The iteration started with 1 3 3,W I   

2 [75.0 75.0 75.0],W diag  [45 45],PK diag  

[0.45 0.45],DK diag  and [0.1 0.1].IK diag  The null 

space controller parameters are 0.95,Hk   

[45 45 45],NPK diag  [2.5 2 . ,.5 2 5]NDK diag  and 

[1.01.01.0]NIK diag . The simulation time is 2s with 

increment 0.01dt s . 

 

The first workspace singularity crossing occurs between 

0.08 0.3s t s   when the tip crosses from A to B in 

s (Figure-1[b]) and second workspace singularity occurs 

between 1.1 1.5s t s   when the tip crosses from C to D.  In 

between these two, the solution faces near configuration 

singularity when it crosses from P to Q between 

0.6 0.8s t s   and from R to S between1.6 1.8s t s  . It is 

to be mentioned here that initial high oscillating acceleration 

between 0.0 0.05s t s   in || ||e , in Figure-1[a], is due to the 

task space gains. || ||e  in _ ( )rcwls optq t  is considerably lower 

than that of _ ( )rcwls pq t  when crossing the workspace 

singularity D C  (Figure-1[a]). In the near configuration 

singularity cases (pq and rs) in Figure-1[c] which lowers 

( )m t , the damping parameter ( )t  does not interfere 

0.5  , the threshold value to initiate damping and  

( ) ( , ).mt f    

Although *|| ||hJ  is bounded by h , Figure-1[d], , the 

RCWLN solution is also very sensitive to the gain of the 

positive definite weighing matrix W  or w  value  since 

high gain 1W  steeply lowers w and w  in h  ( Figure-

1[d]) and hence the damping factor   is to be related to the 

 
Figure-1: [a]: Time history of || ||e for lamniscate trajectory s .[b] Trajectory trace for the solutions. Analytical 

trajectory generating workspace singularity s  is ABPQDCRSA. [c] Time histories for || ||, ,I     on 

left Y axis and , ( )m min svd J  on right Y-axis. [d] Time histories for † *, ,w h
w hJ J J  . 
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estimate w  of the Jacobian for a particular time step to 

confine its role in reducing the potentially high norm joint 

rates near singularity positions.  This implies that there must 

defined policies to separate the role of 1W  , 2W and   in 

RCWLN solution. For example  in the case when the solution 

is away both from joint limits and singularity,  the value of 

damping parameter alpha will be zero and the predominant 

role will be played by null space gain in the homogeneous 

solution as in Eq.(7). Since starting with
2 1[ , ]W W I , 

2 1|| || || ||,W W  1

1 2 2||( ) || 1W W W   and the contribution 

form null space will be maximum. This can be 

advantageously used as  ( )rq  will provide the information of 

feasible and unfeasible directions along which  joint space 

solution will move in self motion  as it does not has any effect 

in the task space. Again when the solution is approaching the 

joint limit, 
1|| || ,W   keeping 

1|| ||W  constant, 

1

1 2||( ) || 0W W   , which will drastically reduce the null 

space contribution.  The task space will remain unaffected as. 

, when 0,   || ||hJ  is independent of W . 

 

From Eq.(40),  ( ) 1max    for scalar  (Figure-1[c]). Also 

   closely follows || ||I  , than the formulation 
2 2 2 ( )       as in Figure-1[c].  When approaching a 

singularity, the minimum singular value of the Jacobian ( )  

decreases and in order to keep '  near about unity, value of  
2 1w   should be high. As || ||W  is already high in the 

formulation due to high gain of 2|| ||W , resulting high 
w ,  it 

is in coherence with the formulation as, very high value of  
2  is not required and we can preset the 2

max 0.5  .  This 

will avoid in generating high joint rates, of course at the cost 

of task space error. 

 

5. CONCLUSION 
Stability conditions in redundancy resolution of a solution 

augmenting weighted least norm solution by weighted 

residual of the current joint rate and preferred pose rate in null 

space have been derived for continuous and discrete time 

domains using Lyapunov and non Lyapunov based stability 

criteria. For generalization regularized version has been dealt 

with considering the null space contribution which will 

provide the information of feasible and unfeasible directions 

which is especially important in near singularity 

configuration. The relations among the parameters 

', ,|| ||, , ,w hI etc       obtained during the stability 

analysis can be verified from Figure-1[a]-[d], and valid only 

when the solution is approaching configuration or workspace 

singularity. During workspace singularity crossings 

A B and C D , they does not hold good any more and 

the stability of || ||e  drifted  but the  task space and null space 

controllers   recovers the solution and brings the task space 

error back to its stability zone. 
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Although w  has no effect in †|| ||wJ  or || ||hJ , but it has 

numerically validated using random matrices  that numerical 

value of I   has  close approximation to 
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 for wide range  values for 1W . The 

condition number steeply scales it during singularity 

crossings making    very high which directly violates the 

stability conditions.     
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