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ABSTRACT 

Diseases are endemic in the Africa continent and one of the 

problems that affect economic development, malaria and fever 

is considered one of the most endemic diseases in eastern and 

central Africa, where Sudan is considered one of the countries 

in this region where the disease parasite. The proportion of the 

common symptoms of several types of fevers in this 

geographical area of Africa it is difficult in many cases 

determine the malaria fever for other fevers and thus may lead 

to give the patient treatment is not correct. Through this paper 

we compare three techniques to help in the diagnosis of 

malaria fever and other fevers thus giving the correct 

treatment and to fight the disease and minimize its spread. 

These techniques which will be used are neural network, 

genetic algorithm and fuzzy logic. 
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1. INTRODUCTION 

We Continued growth and rapid growth in the IT field can 

benefit from it in the process of diagnostic accuracy, and thus 

determine the correct treatment without mixing with the rest 

of other diseases. Is artificial intelligence and one from within 

the computer science that have helped in the process of 

determining the characteristics and qualities of diseases 

including malaria . , Malaria is one of the most serious 

diseases that cause of death in Africa, especially those located 

in or near the equator line. Human beings always make 

mistakes and because of their limitation diagnosis would give 

the major issue of human expertise. So, computer is widely 

used to help the physician from diagnosing the critical cases. 

As neural networks can do wonders with missing data, it is 

widely used for medical applications. Genetic Algorithm is 

used to reduce the problem of malaria vectors (Anopheles 

mosquitoes) shifting from their traditional locations to invade 

new zones is an important concern. Also in this paper we 

apply a fuzzy logic approach for classifying the shape of a 

mass.  As well as information that lead to earlier diagnosis 

and more efficient treatment.We will make comparison study 

between AI techniques in which their performance, accuracy 

and another measures.  

2. Related research  

All 2.1 In(Judith A Omumbo 2004) conducted a research 

study in Kenya that addressed the spread of the malaria 

parasite in the most important age group is children from the 

ages of one to 15 years of age Use the model climate-driven 

fuzzy model of suitability (FCS) for stable transmission 

developed by the Mapping Malaria Risk in Africa 

collaboration (MARA). Where the composition of a three-

classes (0%,> 0 - <25% and ≥ 25%) and three classes of FCS 

(0,> 0 - <0.75 and ≥ 0.75) were tested using the kappa (k) 

statistic and examined as continuous variables to define better 

levels of agreement. He has built the form on the following 

equation: 

 

As they represent x is a climate parameter, U is the value of x 

when conditions are unsuitable, and S is the value of x when 

conditions are suitable. When S is greater than U the 

suitability (1-y), increases with x; when S is less than U the 

suitability y, decreases as x increases. The model defines a 

monthly increasing curve (S = 22 C, U = 18 C) and decreasing 

curve (S = 22 C, U = 40 C) for mean diurnal air temperature, a 

monthly increasing curve (S = 80 mm, U = 0 mm) for rainfall, 

and a single increasing curve (S = 6 C, U = 4 C) for annual 

minimum temperature. The results were as shown in the 

following table: 

Table 1.  Agreement between parasite prevalence 

categories among 217 surveys spatially congruent 

categorical values of the Fuzzy Climate Suitability (FCS) 

using the 0.75 threshold for stable endemic malaria. 

Graphics FCS=0.00 FCS> 0 - <0.75 FCS>=0.75 Totals 

Parasite 

prevalence 

0% 

3 5 0 8 

Parasite 

prevalence 

0> - < 25% 

6 58 8  72 

Parasite 

prevalence 

>=25% 

0 58 97 137 

Totals 9 121 87 217 

 

2.2 In  (2009 conducted a research study carried out by Henri 

EZ Tonnang) talked about three types of female mosquito 

carrying the malaria parasite, the study also spoke about the 

impact of weather changes in the spread of these three types 

of female mosquito. He has been used by The genetic 

algorithm for rule-set prediction (GARP) model was used to 

predict the geographical and ecological distribution of three 
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species of the A. gambiae complex (A. gambiae, A. 

arabiensis, and Anopheles quadriannulatus). Has been adopted 

to construct the model on the following mathematical 

equations: 

1.  

 2.

3

4.  

Where: TIW and MIw represent the weekly temperature and 

moisture respectively, 52 is the number of weeks in a year. 

CS, DS, HS and WS are the annual cold, dry, heat and wet 

stress respectively. CDX, CWX, HDX, HWX and EI are the 

annual cold-dry, cold-wet, hot-dry,hot-wet and ecoclimatic 

index  stress interactions respectively. The model was used 

CLIMEX in sub-Saharan areas of Africa, by which the 

parasite carrier of the disease while taking into account the 

environmental factors affecting the lives of intermediate 

carrier of the disease is temperature and humidity were the 

results, as shown in the following table: 

Table 2. CLIMEX parameters values for African malaria 

vectors to the Anopheles gambiae complex 

 Values 

Parameter designation 
A. 

gambiae 

A. 

arabiensis 

Moisture parameters (proportion 

of soil moisture holding capacity) 
 

Lower threshold of soil moisture 

(SMO) 
0.35 0.15 

Lower limit of optimal range of soil 

moisture (SM1) 
0.70 0.40 

Upper limit of optimal range of soil 

moisture (SM2) 
1.50 0.60 

Upper threshold of soil moisture 

(SM3) 
2.50 0.80 

Temperature parameter (C0)   

Lower threshold of temperature for 

population growth (DVO) 
15 18 

Lower optimal temperature for 

population growth (DV1)  
28 30 

Upper  optimal for temperature for 

population growth (DV2) 
35 38 

Upper  threshold of temperature for 

population growth (DV3) 
40 44 

Cold-wet stress indices  

Degree –days threshold of cold-wet 

stress (DTCW)  
30.00 - 

Moisture threshold of cold-wet stress 

(MTCW) 
0.100 - 

Rate of accumulation of cold-wet 

stress (PCW) 
0.001 - 

Dry stress indices  

Soil moisture dry stress (proportion 

of soil holding capacity) (SMDS) 
0.260 0.300 

Rate of accumulation of dry stress 

(HDS) 
-0.006 -0.001 

Wet stress indices  

Soil moisture wet stress (proportion 

of soil holding capacity) (SMWS) 
2.50 0.900 

Rate of accumulation of wet stress 

(HWS) 
0.20 0.003 

Heat stress indices  

Threshold of heat stress (TTHS) 40.00 44.00 

Rate of accumulation of heat stress 

(TTHS) 
0.001 0.0002 

Cold stress indices  

Temperature threshold of cold stress 

(TTCS) 
2.00 2.00 

Rate of accumulation of cold stress 

(THCS) 
-1.000 -1.000 

Degree-days threshold of cold 

stress(DTCS) 
25.000 15.000 

Rate of accumulation of cold stress 

linked to degree-days(DHCS) 
-0.002 -0.001 

 

2.3 The application of artificial neural Networks to increase 

the accuracy of diagnosis of the symptoms of malaria were 

not available earlier study in the continent of Africa to 

facilitate the search process, but there is a study conducted in 

Brazil, addressed to determine the symptoms of malaria, using 

artificial neural Networks, has been the choice of Brazil as it 

is located in the same latitude, the same environment Climate 

This study was conducted in May 2010, was conducted by 

Bruno B Pndrade, having concluded that the diagnostic 

accuracy rate rose to 80% of what was in the past. To increase 

this rate used microscopy, nested PCR and an expert 

computational system based on artificial neural networks 

(MalDANN) using epidemiological data were compared with 

Compared to the rapid screening rapid diagnosis test (RDT). 

The following graph and table shows how to use the model: 
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2.4 Artificial neural network 

Artificial neural networks (ANNs) are commonly known as 

biologically inspired, highly sophisticated analytical 

techniques, capable of modeling extremely complex non-

linear functions. Formally defined, ANNs are analytic 

techniques modeled after 

the processes of learning in the cognitive system and the 

neurological functions of the brain and capable of predicting 

specific variables from other external variables after executing 

a process of so-called learning from existing data[25]. 

2.5 Genetic Algorithm 

GA are efficient search methods based on the principles of 

natural selection and population genetics in which random 

operators on a population of candidate solutions are employed 

to generate new points in the search space [26]. 

3. DISCUSSION 
The present study used different artificial intelligence 

techniques that have their own advantages and disadvantages. 

The artificial neural network model is more flexible because it 

allows the construction of the model for the non-liner input 

variables.However, the relationship between each input 

variable and output variable in the construction process is a 

black box that is difficult to explain. Genetic algorithms can 

be introduced easily into new problem domains, due to their 

operation requiring only a very small amount of problem-

specific knowledge A drawback of the domain independence 

is that a genetic algorithm sometimes achieves only a near 

optimal performance level, however, this problem can be 

tackled by exploiting the problem knowledge. 

Fuzzy logic appears as a useful tool to perform decision 

making in real life problems. 

The techniques are aimed to reduce the diagnosis time as well 

as increasing the accuracy percentage in classifying mass in 

malaria. 

Fuzzy logic approach can be used to formalize and determine 

the fever of malaria that makes it very important in diagnosis. 

4. CONCLUSION  
The prediction of clinical outcome of patients after malaria 

plays an important role in medical tasks like diagnosis and 

treatment planning. These kinds of estimations are currently 

performed by clinicians using non-numerical techniques. 

Artificial neural networks are shown to be a powerful tool for 

analyze data sets where there are complicated non-linear 

interactions between the input data and the information to be 

predicted, and fuzzy logic appears as an useful tool to perform 

decision making in real life problems especially as the 

continent of Africa a high incidence of endemic diseases that 

affect the lives of human African. 
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