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ABSTRACT 

Punctual identification of protein-coding regions in 

Deoxyribonucleic Acid (DNA) sequences because of their 3-

base periodicity has been a challenging issue in 

bioinformatics. Many DSP (Digital Signal Processing) 

techniques have been applied for identification task and 

concentrated on assigning numerical values to the symbolic 

DNA sequence and then applying spectral analysis tools such 

as the short-time discrete Fourier transform (ST-DFT) to 

locate periodicity components. In this paper, first, the 

symbolic DNA sequences are converted to digital signal using 

the Z-curve method, which is a unique 3-D plot to illustrate 

DNA sequence and presents the biological behavior of DNA 

sequence. Then a novel fast algorithm is proposed to 

investigate the location of exons in DNA strand based on the 

combination of Linear Predictive Coding Model (LPCM) and 

Goertzel algorithm. The proposed algorithm leads to increase 

the speed of process and therefor reduce the computational 

complexity. Detection of small size exons in DNA sequences, 

exactly, is another advantage of our algorithm. The proposed 

algorithm ability in exon prediction is compared with several 

existing methods at the nucleotide level using: (i) specificity - 

sensitivity values; (ii) Receiver Operating Curves (ROC); and 

(iii) area under ROC curve. Simulation results show that our 

algorithm increases the accuracy of exon detection relative to 

other methods for exon prediction. In this paper, we have also 

developed a useful user friendly package to analyze DNA 

sequences.   
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1. INTRODUCTION 
Deoxyribonucleic acid (DNA) is of the most important 

chemical compounds in living cells, bacteria and some viruses 

[1]. A sequence of DNA is a long molecule of biopolymer 

origin which carries the genetic information and has the 

ability of expression and replication. It consists of two strands 

of linear polymers, each made of monomer nucleotide units. 

Figure 1 shows the DNA molecule structure [2]. Each 

nucleotide is made of three chemical components: a sugar 

(deoxyribose), a phosphate group, and a nitrogenous base. 

There are four possible bases: Adenine and guanine which are 

purines and have bicyclic structures, and cytosine and 

thymine which are pyrimidines, and have monocyclic 

structures. The nucleotides, based on containing bases, are 

often abbreviated as A, G, C, and T, respectively. 

In eukaryotic cells, the DNA is divided into genes and inter-

genic spaces. Only genes are responsible for protein synthesis. 

The information encoded in the genes, is copied to a molecule 

called messenger RNA (mRNA). This process is called 

transcription. The next step is called translation which 

converts mRNA into chains of linked amino acids called 

polypeptides. Proteins consist of a single type of polypeptides 

or combinations of different types. Every three nucleotide 

combination is called a codon. Each codon specifies one 

amino acid, so sequences of codons in mRNA determine 

specific polypeptide chains. Each gene consists of exon and 

intron regions (Figure 2). In transcription of eukaryotic DNA 

into mRNA, introns are omitted (spliced away) and only 

exons are translated into proteins. Therefore, exons are called 

protein-coding regions because they carry the necessary 

information for protein coding [3-5]. The proteins are the 

machinery of the cell and determine its properties, so 

detection of protein-coding regions is very important in 

understanding of biological functions. Protein-coding regions 

exhibit a period-3 behavior that is not found in other parts of 

the DNA and this property can be used in digital processing 

methods for gene detection and exon prediction purposes [6]. 

The attendance of long-range correlation which is considered 

as the background noise results in more difficulty of exon 

finding in DNA sequences [7-8]. Also because of the complex 

nature of the gene identification problem, we usually need a 

more efficient model that can effectively represent the 

characteristics of protein-coding regions. Up to now, 

distinctive methods have been proposed to overcome these 

problems which in a comprehensive categorization they can 

be divided into two groups; Model-dependent or supervised 

methods and Model-independent or Filter-based methods. 

Model-dependent methods like Hidden Markov Model 

(HMM) [9], neural network [10] and pattern recognition [11], 

are based on some former information gathered from the 

available datasets, and have been successfully used to predict 

exons in genes. In [9] an HMM model is proposed for gene 

identification which resolves three basic problems; 

Evaluation, Decoding and Learning problems, which can be 

solved using Forward and Backward, Viterbi and Baum-

Welch algorithms, respectively. In [10] by introducing two 

new methods, one-vs-others and all-vs-all methods, and using 

Support Vector Machine (SVM) and Neural Network (NN) 

methods as base classifiers, protein fold recognition has been 

done. 

The major drawback of using model-dependent techniques is 

that coding regions may not represented in the accessible 

datasets but exist in the sequenced organism. To overcome 

this problem, Model-independent or Filter-based techniques 

which are based on the Fourier spectral [12-13] have been 

mentioned in recent years as a successful method in gene 

finding. Several Model-independent algorithms have been 

proposed in literatures for determining the protein coding 

regions of genes based on period-3 property. In [14] Fourier 

transform is used for this purpose. In this way, a fixed-length 

window is selected and moved on the numerical sequence. 

Then, we determine the exonic regions by calculating the 

power spectrum. In our previous work [15], we used the 
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Notch filter with the central frequency of 2π/3 in order to 

remove the background noise. In [15], first, the numerical 

DNA sequence is passed through a notch filter and then a 

sliding windowed Discrete Fourier Transform (DFT) is 

applied on the filtered sequence. In [16] a windowless 

technique based on the Z-curve has been proposed to identify 

gene islands in total DNA sequence which called cumulative 

GC-Profile method. The main characteristic of the proposed 

method in [16] is that the resolution of the algorithm output in 

displaying the genomic GC content is high since no sliding 

window is used, but the computational complexity of this 

method is also high. In [17] an appropriate method is 

proposed to predict the protein regions by combining the DFT 

and Continues Wavelet Transform (CWT). CWT leads to 

eliminate the high frequency noise and therefore improves the 

accuracy of the prediction. In [18] a new algorithm is 

proposed based on Fourier Transform using Bartlett window 

to suppress the non-exonic regions. Authors in [19] used time 

domain algorithms to determine the coding regions in DNA 

sequences. Adaptive filters [20] are one of the best tools for 

prediction tasks. In [21-22] authors proposed two adaptive 

filtering approaches based on Kalman filter and Least Mean 

Squares (LMS). However, the major problem with LMS is 

that the convergence behavior of the algorithm is slow which 

leads to high computational complexity. In [23] a parametric 

method based on autoregressive (AR) model is proposed for 

spectral estimation. The AR model has the advantage over the 

DFT that they work with smaller window sizes and, thus, 

shorter sequences. Using the fixed-length window is the major 

restriction of discussed filter-based algorithms. In many cases, 

size of the selected window is not successful to predict the 

small size coding regions. So these methods have no 

sensitivity to determine the protein coding regions, especially 

small size of exon regions. Also the run process in the 

mentioned algorithms is high, so there is a demand for 

presenting a fast and efficient method to overcome these 

limitations. 

In this paper, a fast model-independent method based on a 

Liner Predictive Coding (LPCM) and Goertzel algorithm is 

proposed to identify the exon regions based on period-3 

property in DNA sequences. First, the symbolic DNA 

sequence is converted into the numerical values by the Z-

curve method. Then an appropriate model which named 

Linear Predictive Coding Model (LPCM) has been provided 

to remove the redundancy information in numerical DNA 

signal (i.e., high frequency noise components). Finally the 

Goertzel algorithm is applied to the estimated sequence in 

order to extract the period-3 components. Compared with the 

other existed techniques, increasing the speed of process and 

reducing the computational complexity are the major 

advantages of our proposed algorithm. Also the amount of 

background noise is greatly reduced in our method and the 

protein coding regions with small sizes are well recognized. 

The rest of the paper is organized as follows: In section 2 the 

proposed algorithm is described in details. The evaluation 

criteria at nucleonic level are expressed in section 3. 

Simulation results using Genbank database are reported in 

section 4. Finally, conclusion is mentioned in section 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: DNA molecule structure. 

 

 

Fig 2: Exon/Intron regions for eukaryotic DNA. 

 

2. PROPOSED ALGORITHM 
Figure 3 shows the block diagram of our proposed algorithm 

to identify protein coding regions. The main steps of the 

algorithm are as follows that will be discussed in more details 

in this section. 

- Mapping of DNA sequence to the numerical form 

using the Z-curve method, 

- Using Linear Predictive Coding Model (LPCM) to 

remove the noise from the numerical sequence and 

achieve an appropriate model of numerical 

sequence, 

- Using Goertzel algorithm to extract the period-3 
components. 

 

2.1 DNA numerical representation 
Converting the DNA sequences into digital signals [24, 25] 

opens the possibility to apply signal processing methods for 

analyzing of genomic data and reveals features of 

chromosomes. The genomic signal approach has already 

proven its potential in revealing large scale features of DNA 

sequences maintained over distance of 
86 1010  base pairs, 

including both coding and non-coding regions, at the scale of 

whole genomes or chromosomes [26-28]. 

There are many methods for converting the DNA sequences 

into numerical signals. In [5] and [12], Voss mapping 

technique is adapted to convert the DNA sequence into a 

numerical sequence. In [29] the EIIP method which is based 

on the electron-ion-interaction potential associated with each 

nucleotide is used for this purpose. In this paper, the Z-curve 
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representation is used to map DNA character string into 

numerical sequence. Based on this curve, each DNA sequence 

could be described separately by three independent 

distributions nX , nY  and nZ , which each of these 

distributions is as follows [30]: 

   

     
   iiiii

iiiiiiii

iiiii

CGTAz

izyxTGCAy

TCGAx







3,2,1,1,1,,

 

(1) 

where iA , iC , iG , and iT  are the cumulative numbers of the 

bases A, C, G and T, respectively, occurring in the sub-

sequence from the first to the 
thn base in the DNA sequence. 

We define 00000  TGCA . Each of these 

components has a biological interpretation. The first 

sequence nX  indicates the existence of either A or G which 

represents a differentiation between the purines/pyrimidine 

(R/Y) bases along the DNA strand. Similarly, the second 

sequence nY  represents the distribution of the amino/keto 

(M/K) types bases along the DNA sequence while the third 

sequence nZ  represents the distribution of the strong/weak 

hydrogen bonds (S/W). For the sub-sequence which made of 

the first base to the 
thn base of DNA sequence, when purine 

bases (A or G) are more than pyrimidine ones (C or T) 

then nX  > 0 and if not nX  < 0. When the amounts of 

purines and pyrimidine bases are equal then nX = 0.  

Similarly when Amino bases (A or G) are more than keto 

bases (C or T) then nY > 0 and if not nY < 0 and if these bases 

are equal then nY  = 0 and finally when strong hydrogen 

linkage bases (A or T) are more than weak hydrogen linkage 

bases (G or C) nZ > 0 and if not nZ < 0 and in case amounts 

of these bases are equal then nZ =0. Therefore Z curve 

includes all these data that has a DNA sequence adapted to 

itself [31]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Linear Predictive Coding Model 
Linear Predictive Coding Model [32] is one of the more 

efficient techniques for analyzing of non-stationary signals. 

The importance of this method lies to its ability to provide 

extremely accurate estimates of the signal parameters, and in 

its relative speed of computation. The main idea of this model 

is that a signal sample can be estimated as a linear 

combination of its previous samples. By minimizing the sum 

of the squared error between the actual signal samples and the 

estimated ones, a set of estimated coefficients can be 

calculated. 

Let N..,2,1,ns(n),  be a protein sequence with length N 

whose elements are represented the Z-curve values for the 

corresponding amino acids. The estimated Z-curve value of 

each amino acid at position n is shown by )(ˆ ns  and it can be 

calculated as a linear combination of p previous Z-curve 

values as follows: 





p

1k

k k)s(na(n)ŝ  (2) 

where  ka  are called the linear prediction coefficients. In 

this paper, the value of p is chosen 6. 

The prediction error e(n) between the observed Z-curve value 

s(n) and the estimated Z-curve value )(ˆ ns is defined: 





p

1k

k k)s(nas(n)(n)ss(n)e(n) ˆ  (3) 

The estimated coefficients  ka  can be efficiently 

determined by minimizing the sum of squared error as 

follows: 

Fig 3: Block diagram of the proposed algorithm. 
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To solve Eq. (4), we differentiate E with respect to each ka  

and equate result to zero: 

p....,1,k,0
a

E

k





 (5) 

By solving Eq. (5), a set of p linear equations is obtained as 

follows: 





p

1k

k p...,1,m,r(m)k)r(ma  (6) 

in which, r(m) is the autocorrelation of s(n), that is: 





N

1n

m)s(ns(n)r(m)  (7) 

The matrix form of Eq. (6) can be expressed as: 

rRa   (8) 

where R is a p×p autocorrelation matrix, r is a p×1 

autocorrelation vector, and a is a p×1 vector of prediction 

coefficients. So, the three parameters R, r and a are defined as 

follows: 
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(9) 

2.3 Goertzel algorithm 
In order to apply the Goertzel algorithm, Blackman window is 

used to segment the estimated sequence from LPC model. The 

impulse response of the FIR windows has been discussed in 

[33]. According to [33], Blackman window has the highest 

amount of attenuation between the other windows. So the 

background noise is more suppressed by Blackman. The 

Goertzel algorithm is a digital signal processing technique 

which provides a means for efficient evaluation of individual 

terms of the Discrete Fourier Transform (DFT), thus results in 

useful certain practical application, such as dual-tone multi 

frequency (DTMF) signals [34], digital multi frequency (MF) 

receiver [35] and in a very small aperture terminal (VSAT) 

satellite communication system [36]. In order to express the 

functionality of this algorithm, it must be noted that the DFT 

can be formulated in terms of a convolution as follow: 
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Processing of the signal x[n] through an LTI filter with 

impulse response ][][ nuWnh nk

N

  and evaluating the 

result, ][nyk  at n=N will give the corresponding N-point 

DFT coefficient ][][ NykX k . This LTI filtering process 

is illustrated as follows: 

 

 

 

Based on the Z-transform of the filter, we have: 
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(11) 

The filtering operation can be equivalently performed by the 

system: 
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So, the filtering operation can also be equivalently performed 

by: 
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Hence, as can be seen from Figure 4, the Goertzel filter is 

composed of a recursive part and a non-recursive part. The 

DFT coefficients are obtained as the output of the system after 

N iterations. The recursive part is a second-order IIR filter 

(resonator) with a direct form structure. The resonant 

frequency of the first stage filter is set at equally spaced 

frequency points; that is, 
N

k
k




2
 (This value is chosen

3

2  in 

our work to extract the period-3 components). The second 

stage filter can be observed to be an FIR filter, since its 

calculations do not use of the previous values of the output. In 

fact, we only compute the recursive part of the filter at each 

sample and the non-recursive part is computed only after the 

Nth time instant when the Fourier coefficients are to be 

determined. 

The major advantage of Goertzel algorithm is its ability to 

reduce the computational complexity relative to other 

existence methods such as DFT. This algorithm requires N 

real multiplications and a single complex multiplication to 

compute X[k] for a given k. However, DFT and decimation in 

time FFT require 
2N and N N2log complex 

multiplications to compute X[k], respectively [33]. 

 

 

 

 

 

 

 

 

Fig 4: Filter realization of the Goertzel algorithm [33]. 

 

3. Evaluation criteria at nucleotide level 
In order to compare accuracy of the different methods for 

protein coding regions detection the evaluation is done at 

nucleotide level. For this purpose, we introduce some 

parameters that are listed as follows: 

Sensitivity and Specificity: Figure 5 shows these parameters 

definition, where true positive (TP) is the number of coding 

nucleotides correctly predicted as coding, false negative (FN) 

is the number of coding nucleotides predicted as non-coding. 

Similarly, true negative (TN) is the number of non-coding 

nucleotides correctly predicted as non-coding, and false 

positive (FP) is the number of non-coding nucleotides 

predicted as coding. By definition of these four quantities, the 

parameters sensitivity ( nS ) and specificity ( pS ) and 

precision (P) are defined as follows [37]: 

FNTNFPTP

TNTP
P

FPTP

TP
S

FNTP

TP
S

p

n












 

(13) 

Receiver Operating Characteristic (ROC) curves: The 

receiver operating characteristic (ROC) curves were 

developed in the 1950s as a tool for evaluating prediction 

techniques based on their performance [38]. An ROC curve 

explores the effects on TP and FP as the position of an 

arbitrary decision threshold is varied. The ROC curve can be 

approximated using an exponential model as follow [39]: 

  xβxβ 21e1αy


  (14) 

in which, parameters  , 1 and 2 can be determined by 

minimizing the error function: 

   
2







n

1i

i

xβxβ
ye1αE(p) i2i1

 (15) 

where  T21p  and  ii yx , are points in the 

ROC plane. 

Area under the ROC curve (AUC): This parameter is also a 

good indicator of the overall performance of an exon-location 

technique. The greater the AUC leads to the better 

performance of the tested algorithm [37]. 

 

 

 

 

 

 

 

Fig 5: Parameters for evaluation of the accuracy of the 

algorithms. 

 

4. Simulation Results 
In order to demonstrate the performance of the discussed 

methods, the proposed algorithm is applied on four gene; 

F56F11.4, AF009962, AF019074 and AJ223321 from 

Genbank dataset [40]. The gene sequence F56F11.4 

(GenBank No. AF099922) is on chromosome III of 

Caenorhabditis elegans. C elegans is a free living nematode, 

about 1mm in length, which lives in temperate soil 

environment. It has five distinct exons, relative to nucleotide 

position 7021 according to the NCBI database. These regions 

are 3156-3267, 4756-5085, 6342-6605, 7693-7872 and 9483-

9833. AF009962 is the accession number for single exon 

which has one coding region at position 3934-4581. The gene 

sequence AF019074 has the length of 6350 which has three 

distinct exons, 3101-3187, 3761-4574, and 5832-6007. 

AJ223321 is in the HMR195 dataset. This dataset consists of 

195 mammalian sequences with exactly one complete either 

single-exon or multi-exon gene. All sequences contain exactly 

one gene which starts with the 'ATG' initial codon and end 

with a stop codon (TAA, TAG, or TGA). There is one coding 

region existed in AJ223321 gene sequence which its location 

is 1196-2764. All mentioned sequences are converted to 

numerical sequences using Z-curve method. 

Figure 6 shows our user friendly package designed to analyze 

DNA sequences. This tool has been designed by our research 

group on genomic signal processing at Sahand University of 

Technology, Tabriz, Iran and consists of two main parts: the 

graphic display and the DSP tools for analyzing the DNA 
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After 

Projection 

 

TP 

FP FP FP 

TN 

Decision 

Threshold 

is 0.161 

sequences. The graphic display allows the user to view the 

structure record either as a graphic or as a text record in txt 

formats. Also it can be useful to search option for special 

patterns in the sequences (for example, start and stop codons 

in DNA sequences). The DSP tools are applying to DNA 
sequences in order to spectral analysis.     

Briefly, there are some advantages for this tool as 
mentioned below: 

- Loading of any DNA sequences, 

- Genomic sequence representation, 

- Conversion of the genomic sequence into digital 
values by EIIP, binary methods and z-curve, 

- Search option for special patterns in the sequence, 

- Applying of DSP and non-DSP methods such as 
DFT on the signal, and 

- Prediction of the protein coding regions. 

 

 

 

 

 

 

 

 

 

 

Fig 6: A view of the designed user friendly package for 

analyzing of the DNA sequence. 

Figure 7 (a) shows the Z curve for a sample gene sequence 

(F56F11.4). As we can observe, it is hard to display such a 

long character-based sequence on computer screen. Even 

though the display is made possible, the extraction of any 

feature from the sequence is still difficult. By applying the Z 

curve for visualize this sequence; some features of global and 

local nucleotide composition of a genome can be displayed in 

a perceivable form. Although the screen resolution in 

insufficient to convey the details of the curve and help a user 

to display local features of the Z curve involved at single 

nucleotide level. To provide more detailed information than 

the original Z curve, three 1-D projection curves are 

determined. Figure 7 (b) shows three 1-D curves, which are 

obtained by projecting the Z curve onto x, y and z axes, 

respectively. 

In this paper, to compare the performance of the proposed 

algorithm and other tested methods, we use the 

parameters nS , pS  and P which were described in section 3. 

Amounts of these parameters achieved from equations (13). 

The amounts of TP, FP, TN and FN are calculated by changing 

threshold level in range of 0 and 1 with small steps according 

Figure 8 (In this figure the value of threshold is 0.161). It can 

be observed in Figure 8 that if the decision threshold is very 

high, then there will be almost no false positives, but it won’t 

be really identified many true positives either. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7: Z-curve  representation for gene sequence 

F56F11.4. (a) 3-D Z curve (b) Projection curves of the 

original Z curve onto x, y and z axes, respectively. 
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In this paper, to evaluate the performance of the proposed 

algorithm, the DFT [14] and Multi-Stage filter (MS) [41] 

methods are implemented. Figures 9-12 (a) and (b) show 

results of implementation of these methods and the proposed 

algorithm in identifying protein coding regions in four gene 

sequences explained above. As can be seen, accuracy of the 

DFT method for protein coding regions estimation is not high 

due to the noise associated with the original signal. However, 

the MS filter resulted a good spectral component compared to 

DFT and reduced the computational complexity. Also the 

non-coding regions are relatively suppressed in it, but this 

method cannot recognize the small size exonic regions. As 

shown in Figures 9-12 (c), the large amount of noise is 

removed in the proposed method due to applying the LPC 

model, and small size exons (For example, first exon in 

F56F11.4 gene sequence) can be identified because of using 

the Goertzel algorithm. 

Figures 13 to 16 show the bar chart of sensitivity, specificity 

and precision in the proposed algorithm and other methods in 

different thresholds (from Th=0.2 to Th=0.8). As can be seen, 

the proposed algorithm yields the highest of these values in all 

threshold levels. By way of illustration, at Th=0.2, this 

algorithm exhibits relative improvements of 40% and 87% 

over DFT and MS filter in the Sensitivity in a typical gene 

sequence F56F11.4, respectively. Also the parameter pS  is 

improved by the factors of 3.1 and 5.7 relative to the DFT and 

MS filter in the sequence, respectively. Finally, the proposed 

algorithm shows relative improvements of 15% and 33% over 

the MS filter and DFT methods, respectively, in terms of 

Precision measure. Similar results of the proposed algorithm 

are apparent for the other gene sequences as shown in Figures 

14-16. 

In Table I, the number of false positive nucleotides, 

specificity and precision for specified sensitivities are 

presented for the proposed and the other tested methods. 

According to this table, the proposed algorithm has the 

minimum nucleotides incorrectly identified as exons in all 

four gene sequences. For example in F56F11.4, at the 

sensitivity of 0.5, the number of false positives in the 

proposed method is 18bp, while this quantity for MS filter and 

DFT are 1052 and 1183, respectively. Also, the proposed 

algorithm shows relative improvements of 18.1% and 19.8% 

over the MS filter and DFT methods, respectively, in terms of 

the precision measure in the same gene sequence. Similar 

results of the proposed algorithm are apparent for the other 

three gene sequences which are shown in Table I. 

To compare the computational efficiencies of the algorithms, 

the average CPU times over 1000 runs of the techniques were 

computed for the four gene sequences. Note that all of the 

implemented algorithms were run on a PC with a 1.6 Ghz 

processor (Intel (R) Pentium (R) M processor) and 2 GB of 

RAM. Table II summarizes results of the average CPU times. 

It is observed that the proposed algorithm has improved the 

average CPU times by the factor of 60.2, 25.75, 23.42 and 

19.23 relative to the next-best performing method, DFT in 

F56F11.4, AF009962, AF019074 and AJ223321 gene 

sequences, respectively. 

Finally, Figures 17-20 illustrate the ROC’s of the algorithms. 

It is obvious that the proposed algorithm has the highest value 

of its parameter over the other methods. By way of 

illustration, the area under the ROC curve is improved by the 

factor of 1.35, 1.74, 1.39 and 1.76 over the DFT and 1.9, 1.73, 

1.57 and 1.2 over the MS filter in F56F11.4, AF009962, 

AF019074 and AJ223321 gene sequences, respectively. This 

implies that the proposed algorithm is superior to the other 

methods for identifying exonic gene regions. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9: Results of the (a) DFT, (b) MS-filter and (c) Proposed algorithms for identification of the exonic 

regions on the gene sequence F56F11.4. 
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Fig 10: Results of the (a) DFT, (b) MS-filter and (c) Proposed algorithms for identification of the exonic 

regions on the gene sequence AF009962. 

 

Fig 11: Results of the (a) DFT, (b) MS-filter and (c) Proposed algorithms for identification of the exonic 

regions on the gene sequence AF019074. 
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Fig 13. Comparison of sensitivity, specificity, and precision of the algorithms applied on 

F56F11.4 gene sequence by selecting different threshold levels. (a) Th=0.2, (b) Th=0.4, (c) 

Th=0.6, and (d) Th=0.8.
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Fig 12: Results of the (a) DFT, (b) MS-filter and (c) Proposed algorithms for identification of the exonic 

regions on the gene sequence AJ223321. 
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Fig 15. Comparison of sensitivity, specificity, and precision of the algorithms applied on 

AF019074 gene sequence by selecting different threshold levels. (a) Th=0.2, (b) Th=0.4, (c) 

Th=0.6, and (d) Th=0.8.
 

 

Fig 14. Comparison of sensitivity, specificity, and precision of the algorithms applied on 

AF009962 gene sequence by selecting different threshold levels. (a) Th=0.2, (b) Th=0.4, (c) 

Th=0.6, and (d) Th=0.8.
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TABLE I. Quantitative evaluation of the algorithms result using Genbank datasets.
 

           

           

  FP Sp P FP Sp P FP Sp  

 Proposed
 

0 1 0.90 0 1 0.92 18 0.96 0.96 

 MS-filter 222 0.29 0.87 620 0.29 0.842 1052 0.30 0.81 

 DFT 180 0.33 0.88 711 0.27 0.83 1183 0.27 0.80 

 Proposed 0 1 0.92 183 0.52 0.91 477 0.40 0.88 

 MS-filter 239 0.21 0.88 1421 0.12 0.73 2467 0.12 0.60 

 DFT 2791 0.11 0.55 1791 0.10 0.68 2791 0.10 0.55 

 Proposed 0 1 0.84 14 0.96 0.87 79 0.87 0.90 

 MS-filter 24 0.82 0.83 478 0.40 0.79 1036 0.34 0.74 

 DFT 83 0.57 0.83 479 0.40 0.79 1177 0.31 0.71 

 Proposed 0 1 0.72 0 1 0.78 84 0.90 0.83 

 MS-filter 2128 0.27 0.42 1660 0.22 0.45 2128 0.27 0.42 

 DFT 757 0.17 0.57 1468 0.24 0.49 2173 0.27 0.41 

Fig 16. Comparison of sensitivity, specificity, and precision of the algorithms applied on 

AJ223321 gene sequence by selecting different threshold levels. (a) Th=0.2, (b) Th=0.4, (c) 

Th=0.6, and (d) Th=0.8.
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Fig 17: ROC curves of different methods for the gene 

sequence F56F11.4. 

 

Fig 18: ROC curves of different methods for the gene 

sequence AF009962. 

 

Fig 20: ROC curves of different methods for the gene 

sequence AJ223321. 

 

 

TABLE II. Average computational time computed for the different algorithms. 

Gene 

identifier 

Sequence 

Length (bp) 

  

  

  
Proposed algorithm 

 Multi-Stage filter DFT 

F56F11.4 9833 11.93 714.97 718.40 

AF009962 7422 14.62 712.24 391.06 

AF019074 6350 12.04 710.17 282.04 

AJ223321 5321 10.05 710.51 193.29 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

5. Conclusion 
Gene identification is a complicated problem, and the detection 

of the period-3 patterns is a first step towards gene and exon 

prediction. Many different DSP techniques have been 

successfully applied for the identification task but still 

improvement in this direction is needed. In this paper, a fast 

model-independent algorithm is presented for exon detection in 

DNA sequences. First, Z-curve representation was used to 

convert the symbolic sequence into digital signal. The Z-curve 

method decreases the computational cost by removing the one 

redundant sequence from the four binary indicator sequences in 

the Voss representation explained in [5] and [12]. Then, the 

Average Computational Time (Second) 

Fig 19: ROC curves of different methods for the gene 

sequence AF019074. 
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Linear Predictive Coding Model was used to reduce the 

correlation between the numerical data and therefore reduce the 

high frequency noise. Finally, the Goertzel algorithm was 

applied to the estimated sequence for the period-3 detection. The 

proposed algorithm minimizes the number of nucleotides 

incorrectly predicted as coding regions which leads to increase 

the specificity. Also, area under the ROC curve is improved in 

the proposed algorithm over the other tested methods. High 

speed characteristic is the major advantage of our algorithm 

which leads to decrease the run process of the algorithm. 
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