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ABSTRACT 
With increasing demand for applications in multimedia, 

mobile communications and computer networks, the field of 

image coding attracts many researchers. Accomplishment of 

higher compression ratio while retaining good image quality 

is needful in the present demanding environment. 

 

Many multimedia applications are demanding for low disk 

memory requirement, faster and good perceptual quality for 

images/video. In this paper, authors have reviewed abundant 

attempts made by researchers to fulfill the requirement of 

lossy to lossless image coding. One of the best choices for 

image coding was DCT which is replaced by DWT. 

 

Authors have presented state of art for various methods in 

lossy to lossless coding domain. With the advancement in 

research in the fields namely filter banks and lifting based 

wavelet transforms, image coding with filter banks is 

currently best suitable method in all aspects. 
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1. INTRODUCTION 
Image compression deals with the problem of reducing the 

amount of data required to represent an image. Image 

compression enables the compact representation of an image, 

thereby reducing the image storage/transmission 

requirements. With the great advancement in multimedia and 

internet applications, the demands and requirements of the 

technologies used, grew and developed. To fulfill these 

demands and requirements in area of still image compression, 

many efficient techniques with considerably different features 

have been formulated for both lossy and lossless compression. 

Lossless compression algorithms do not provide high 

compression ratios. Hence, lossy compression algorithms are 

preferred for multimedia compression.  

There are many lossy compression algorithms developed for 

image coding such as the classical predictive coding [1], the 

popular transform coding [2], the wavelet coding [3] and 

vector quantization [4]. Predictive coding deals with de-

correlation of similar neighboring pixels within an image to 

remove redundancy. Transform coding, an efficient coding 

scheme is based on employment of inter-pixel correlation 

which is a core technique recommended by JPEG. Another 

well-known form of data compression which is adapted for 

image and audio compression is Wavelet coding. Whereas a 

technique called vector quantization which is often used in 

lossy data compression requires preparing of an appropriate 

codebook to compress data. 

One of the most efficient methods of lossy compression of 

images and other random signals is transform coding. 

Image compression began to deal with transform coding from 

year 1971 with application of discrete Fourier transform for 

achieving image compression [5]. Usually transform coding 

uses the Fourier related transforms such as the KL transform 

[6], HADAMARD transform [7] etc. The representation of the 

data using smaller number of variables known as Singular 

value decomposition [8] had been widely used for image 

compression. In past few decades, Discrete Cosine Transform 

has been widely used for image coding as it provides optimal 

performance and can be implemented at a reasonable cost. 

With the debut of wavelet from recent advances in signal 

processing tools opened up a new horizon in image coding. 

Wavelets for image coding applications were used first in the 

year 1989.  The wavelet transform has established beyond 

consideration to be very effective and has gained popularity 

over the DCT. Discrete Wavelet Transforms have the skill to 

solve the blocking effect that sticks in the DCT. From last few 

years Different wavelets and its variants were used to 

accomplish better compression. Various transforms have been 

proved to be reliable for picture coding, including   Karhonen-

Loeve, DCT, lapped orthogonal, lifting based wavelet and 

filter banks. 

This paper focuses on various transform coding methods 

which combine the advantages of classical methods to 

improve the respective techniques and accomplish better 

quality reconstructed image with higher compression ratio. 

Rest of the paper is organized as follows: section 2 deals with 

the Performance Measurement, section 3 briefs about 

traditional techniques of lossy image coding and is devoted to 

Multirate Filter Banks and Wavelet Approach based Image 

coding .Discussion & conclusion of this review is presented in 

section 4. 

2. PERFORMANCE METRICS 
In order to evaluate the performance of image compression 

systems, a technique to measure compression is needed. 

For this purpose, the compression ratio (CR) metric is often 

employed and is defined as [9] 

                  
bitsin    size  age im   pressed com

bitsin    size  age im   original
CR      (1) 

Sometimes compression is instead quantified by stating the bit 

rate (BR) achieved by compression in bpp (bits per pixel). 

The bit rate after compression and compression ratio are 

simply related as [9] 

CR

age im  originalfor     /pixelbits
BR          (2) 

http://www.vocabulary.com/dictionary/accomplish
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In the case of lossy compression, the reconstructed image is 

only an approximation to the original. The difference between 

the original and reconstructed signal is referred to as 

approximation error or distortion. It is most commonly 

expressed in terms of mean-squared error (MSE) or peak-

signal-to-noise ratio (PSNR). These quantities are defined, 

respectively as stated in [9], 

 

MSE= 










1

0

1

0

2]),[],[ˆ(
1

M

i

N

j

jixjix
MN

                          (3) 

And [9] 
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Where x is the original image with dimensions M   N having 

P bpp, and x̂  is the reconstructed image. Evidently, smaller 

MSE and larger PSNR values correspond to lower levels of 

distortion vary with the amount of compression. In other 

words, distortion is implicitly a function of rate (i.e., 

compression ratio). For this reason, plots (or tables) of 

distortion versus rate are often used to analyze lossy 

compression performance. Obviously, for any given rate, the 

lowest possible distortion is desired. 

3. TRADITIONAL LOSSY IMAGE 

CODING 

3.1 Karhonen-Loeve Transform (KLT)  
The Karhonen-Loeve transform is a reversible linear 

transform that utilizes the statistical properties of the vector 

representation. It optimally decorrelates the input signal. 

When the transform basis functions are the set of eigenvectors 

of the autocovariance matrix of the input signal, effects of the 

quantization error are minimized. These vectors are defined as 

Karhonen-Loeve transform (KLT) [10]. Though KLT has the 

minimum bit rate, practically DCT proved to become best 

choice for still image coding due to ease of hardware 

computation and very good energy concentration 

3.2 Discrete Cosine Transform (DCT) 
In DCT, the visibility of coding artifacts due to coefficient of 

quantization may alter due to sensitivity of DCT to phase, 

depending on the position of an object. As the DCT is a 

strictly bounded block transform, problems of transform 

coding at low bit rates, called blocking effect may exist. The 

blocking effect is a natural consequence of the independent 

handling of each block. Due to these visible discontinuities in 

features, the cross block boundaries are observed in images 

(in the inter frame image coding with motion-compensated 

frame prediction) though blocking effects are not so 

disturbing, but are still perceptible [10]. 

In literature, some methods for the reduction of blocking 

effects have been discussed [11]-[13]. In [11], two methods 

were presented: overlapping, and filtering. In the overlapping 

method [12], redundant information is transmitted for samples 

in block boundaries, as blocks overlap slightly. At receiver, 

the reconstructed samples are average of neighboring blocks, 

in the overlapping areas. The disadvantage of this approach is 

the total number of samples to be processed is increased, and 

which further causes of an increase in the bit rate. In filtering 

method [13], the coding process at the transmitter is 

maintained same, and at the receiver low boundary pixels are 

subject to pass through a low-pass filter. However, this 

method does not increase the bit rate; the signal across block 

boundaries is blurred. In [13], authors have presented the 

filtering method that avoids blurring by employing a prefilter 

at the transmitter [10]. 

3.3 Lapped orthogonal Transform (LOT)  
A new family of transforms for blocking signal coding is 

presented which has similar advantages of the overlapping 

method cited above, but without an increment in the bit rate. 

These new transforms collectively referred to as the lapped 

orthogonal transform, or LOT [10],  
In traditional block-transform processing, such as in image 

and audio coding, the signal is partitioned into blocks of M 

samples, and each block is made to process independently, it 

is well known that  under an orthogonal transformation ,signal 

energy is preserved,[14]  assuming stationary signals, i.e., 

                             
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Where 2
i the variance of output is transform coefficient and 

2
x  is the variance of the input samples. 

For lapped transforms [15], the basis vectors can have length 

L, such that L >M. Traditional block boundaries are extended 

to the length of basis vector which results into the non-square 

transform matrix and  the equations those are valid for block 

transforms couldn’t applied to a Lapped Transform, 

Concentrating efforts on orthogonal Lapped Transform. 

Consider L = NM, where N is the overlap factor. Note that N, 

M, and hence L are all integers. In the case of block 

transforms, transform matrix is defined as matrix containing 

the orthonormal basis vectors as its rows. A lapped transform 

matrix P of dimensions M   L can be divided into 

Square M   M sub matrices Pi (i = 0, 1… N −1) as  

 110  Npppp                   (6) 

The orthogonality property does not hold because P is no 

longer a square matrix and it is replaced by the perfect 

reconstruction (PR) property[15], defined by 
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for   l = 0,1,….,N − 1, where )(l  is the Kronecker delta, i.e., 

)0( =1 and )(l  =0 for l ≠0  here,(7) states the PR 

conditions and orthogonality of the transform operating over 

the entire signal, Showing  that energy is preserved, such that 

(5)  is valid. 

 

 
Fig. 1 the signal samples are divided into blocks of M 

samples. The lapped transform uses neighboring blocks 

samples, as in this example for N = 2, i.e. L = 2M, yielding 

an overlap of (L −M)/2 = M/2 samples on either side of a 

block [10]. 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.17, April 2013 

11 

3.4 Generalized Linear-Phase LOT 

(GenLOT) 
The LOT is a popular Lapped transform with N = 2 whose 

basis functions are symmetric [16], its transform matrix, 

representing its fast algorithm, is given by 
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Where eD is the MM 2 matrix with the even-symmetric 

basis functions of the DCT and 0D  is the matrix with the 

odd-symmetric ones. Examining the symmetries of HD , it is 

easy to see that eD  and 0D  have the entries 
H

ijd  for i even 

and odd, respectively. 1U  and 1V  are 22 MM   orthogonal 

matrices. 1U  = 2MI , and approximates 1V  by 12M  

plane rotations [16] 

The GenLOT is defined as a Linear phase paraunitary Filter 

banks obeying  

 

    0121 )().....()()( EzKzKzKzE NN                (9) 

 

 Where 0E  is chosen to be the DCT matrix [17], which is 

denoted as HD . The output of the DCT is then separated into 

the groups of even and odd coefficients. The GenLOT with N 

− 1 stages after the DCT has basis functions (filters) with 

length L = NM and has its Polyphase Transfer Matrix defined 

as 

 
H

NN DzKzKzKzE )().....()()( 121             (10) 

 

3.5 Discrete Wavelet Transform (DWT) 
The main advantage of wavelet transforms over other more 

traditional decomposition methods (like the  DCT) is that the 

basis functions associated with a wavelet decomposition 

typically have both long and short support. The basis 

functions with long support are effective for representing slow 

variations in an image while the basis functions with short 

support can efficiently represent sharp transitions (i.e., 

edges)[19].  

This makes wavelets ideal for representing signals having 

mostly low-frequency content mixed with a relatively small 

number of sharp transitions. The wavelet transform 

decomposes a signal into frequency bands that are equally 

spaced on a logarithmic scale. The low-frequency bands have 

small bandwidths, while the high-frequency bands have large 

bandwidths. This logarithmic behavior of wavelet transforms 

can also be advantageous. Since human visual perception 

behaves logarithmically in many respects, the use of wavelet 

decompositions can sometimes make it easier to exploit  

 

 
Fig.2 Flow-graph for implementation of GenLOT Each 

branch carries M/2 samples and E and O stand for even 

and odd transform coefficients, respectively, of output 

(analysis) and input (synthesis) for both DCT and 

GenLOT. Even and odd coefficients also correspond to 

symmetric and anti-symmetric basis function (which are 

the filters impulse response), respectively.   is scaling 

factor incorporating all (a) Analysis (b) Synthesis(c) Detail 

of the Analysis stages '
iK  for M=8 (d) Details of synthesis 

stages ''
iK for M=8 [18] 

 

characteristics of the human visual system in order to obtain 

improved subjective lossy compression results. Although 

wavelet transforms with many different characteristics are 

possible, orthogonal transforms with symmetric finitely-

supported basis functions are ideally most desirable for image 

compression. 

In Wavelet based coding, advantage of overlapping basis 

function and better energy compaction property of wavelet 

transform is utilized to provide subsequent advancement in 

picture quality at low bit rate. Because of built-in multi 

resolution nature, wavelet based coder facilitates progressive 

transmission of images with grant for variable bit rate [20]. 

In [21], wavelets which are strictly translates and dilates of 

each other but still maintain all the powerful properties of first 

generation wavelets is presented, referring to these wavelet as 

second generation wavelet known as lifting scheme. The 

lifting scheme is a simple yet powerful tool to construct 

second generation wavelets. The lifting scheme is an 

alternative description of the discrete wavelet transform as 

wel as an alternative way to build wavelets. Lifting provides 

several advantages including: 

 

 In-place calculation of the wavelet coefficients 

 

 Inverse wavelet transform is easily obtained 

 

 Ability to perform integer-to-integer wavelet 

transforms 
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 Extension to domains, which are not shift-invariant. 

 Extension to irregularly-sampled data 

Lifting scheme directs to a faster, in-place calculation of the 

wavelet transform [22] 

4. FILTER BANKS FOR IMAGE 

CODING 
Filter banks are used to separate the input signal into multiple 

components, each component carrying a single frequency 

Subband of the original signal [23], [24]. It is also desirable to 

design the filter bank such that these subbands can be 

recombined to recover the original signal.  

Ideal filters, inherently, are not feasible and the issue was first 

addressed using two-channel linear-phase filter banks and a 

design called quadrature mirror filter bank(QMF) was 

introduced to cancel aliasing resulting from the decimation 

and interpolation processes [23], [25]. The so called 

Johnston’s filters are a family of QMF designed for this 

approach [26].  

The QMF solutions do not allow perfect reconstruction (PR) 

of the signal and later Smith and Barnwell [27] developed the 

conjugate quadrature filter bank (CQF) in a formulation which 

does not use linear-phase filters but allows PR of the signal. 

Both QMF and CQF solutions have a two-channel filter bank 

which can be hierarchically associated in a binary-tree path in 

order to create filter banks with more than two channels. 

A uniform filter bank is the one where all, let us say, M filters 

have bandpass width of π/M, thus signals of all Subband are 

decimated and interpolated by a factor of M [23],[24]. Fig. 3 

shows an M-channel critically decimated uniform filter bank. 

In this figure, M is the number of filters (or number of 

channels or Subband), x (n) is the input signal, and x̂  (n) is 

the recovered signal after synthesis. The Subband signals are 

represented by )(myi  (0  iM−1), and the filters with 

impulse responses )(mfi  and )(mgi  (0  iM−1) 

correspond to analysis and synthesis sections, respectively. 

 

Fig 3: Critically decimated uniform filter bank. Analysis 

(left) and synthesis (right) section [24]. 

Filter banks can also be classified into paraunitary or bi-

orthogonal [24]. In paraunitary FIR filter banks, each )(mfi  

has a one-to-one correspondence to )(mgi  [15], [25], [28], 

while in bi-orthogonal filter banks the set )(mfi  is found 

from the entire set of )(mgi or vice versa [24], [28]. This is 

similar to the relation between orthogonal and non-orthogonal 

matrices, and in fact, orthogonal block transforms are a 

special case of paraunitary filter banks, while non-orthogonal 

ones belong to the class of bi-orthogonal filter banks. 

In numerous applications, especially image processing, it is 

crucial that all analysis and synthesis filters have linear phase. 

Such system is called a linear phase filter bank (LPFB). 

Besides the elimination of the phase distortion which is often 

disastrous in many image processing applications [30], LP 

filters preserve the locality of the edges, the key to success of 

hierarchy image coding algorithms [28], [29], [31], [32]. 

The latter Polyphase representation in Figure 4(b) proves to 

be very useful, both theoretically and practically, in filter bank 

design and application. 

 

Fig 4: M-channel filter bank a) regular structure b) 

Polyphase structure 

Not only does it allow the processing of signals at lower rates, 

but it also simplifies filter bank theory dramatically. 

4.1. Paraunitary filter banks (PUFBs) 

The design and implementation of orthogonal systems are 

based on multi-input and multi-output systems, of which the 

Polyphase transfer matrices are paraunitary. A Polyphase 

transfer function matrix E(z) is paraunitary if IzEzEH )()(   

, where the superscript H stands for the conjugated transpose, 

and I is the identity matrix [23]. A perfect factorization of the 

paraunitary matrix with or without constraints often gives an 
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effective structure which provides optimal design and fast 

implementation.  

In [32], factorization of paraunitary matrices in the framework 

of M-channel maximally decimated FIR filter banks is 

investigated. The results can be applied to M-band wavelets as 

well as multi wavelet systems. Based on the singular value 

decomposition of the coefficient matrices, any constrained 

paraunitary matrix of order k-1 can be expressed as the 

product of k-1 order-one paraunitary building blocks and an 

additional unitary matrix. These factorizations provide 

efficient structures for implementing linear-phase and mirror 

image paraunitary filter banks with length constraint. More 

recently, Rault and Guillemot proved that an M   M 

paraunitary matrix of order K-1 can be factorized into K-1 –

stage order-one form if the ranks of the first and last 

coefficient matrices are not less than 2M  for even or 

2)1( M  for odd M. 

 However its structure is still redundant, thus a simpler 

structure is developed in [33] which Presents a novel lattice 

structure of the generalized M-channel paraunitary filter 

banks. By removing the redundancy of the lattice structure, 

the minimal and complete structure for which the number of 

multiplication and addition is less than the conventional 

method is derived. 

Though PUFBs present good coding results for Lossy image 

coding, they are not applied to lossless one. In [35], by 

reducing the redundant parameters in Householder matrix, a 

novel lifting structure for PUFBs which has less 

implementation costs similar to [34] are not only applied to 

lossless image coding but also lossy image coding. 

The Polyphase matrix E(z) of the PUFB is represented as  

011 )()()()( XzzXzXzE LL                 (11)   
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












 



k

k

Iz

I
z

M

k




1

)(

0

0
)(  

And kX s are M   M arbitrary orthogonal matrices. 

Although k  is arbitrary integer Mk  1 .For MM   

orthogonal matrix X Givens Rotation Factorization results 

into a product of 2)1( MM  rotation angles ji, [24] 
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A lattice structure presented in [34] has less implementation 

cost than that in [33]. The lattice structure in [34] is 

represented as 

0

1
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The above equation corresponds to separate 2M  paths with 

delay and 2M  paths without delay and construct the Givens 

rotation matrix from each path with delay to each path without 

delay. Also the matrix 0X  is an arbitrary MM   orthogonal 

matrix and includes 2)1( MM  free parameters. On the 

other hand, the matrix kX  except for 0X  includes 2)2/(M  

free parameters. Therefore the number of free parameters of 

[34] is 2)1(4)1( 2  MMMK  and the same as [33]. 

However the number of addition and multiplication is less 

than [33]. 

In [35], A Householder matrix is represented as 

 

H[p] = I−2pp† where || p ||=1                        (15) 

 

Where T
Mpppp ][ 110    and ][])[( 1 pHpH  . 

Any orthogonal matrices can be always factorized into 

cascading Householder matrices. In addition, ][ 0pH  which 

satisfies following equation is exists 
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Where )1( MX  is )1( M  × (M−1) orthogonal matrix . By 

calculating recursively like (16), author derived the 

relationship 

 

IMXpHpHpH M  )(][][][ 012                    (17) 

 
Hence, )(MX  can be factorized into 

 

][][][)( 210  MpHpHpHMX                   (18) 

A relationship between Givens rotation and Householder 

matrix factorization is obtained, redundant Givens rotation 

can be removed, and thus simpler Householder matrices can 

be calculated. For M-channel case, generalized structure is 
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Since the number of free parameters is same as [33] a 

Householder matrix is also factorized into a lifting structure as 
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Where kk  ,  and k  are rkk pp , rkk PP2  and 

kk     
The Householder factorization is a minimal structure of an 

orthogonal matrix, since the position of the Householder 

matrices and merge rounding operators is changed. It is 

obvious that Lifting Based PUFBs (LPPUFBs) based on 

Householder matrices always have less number of rounding 

operators than Givens rotation matrix ones.  

It is shown that, method proposed in [35] gives better results 

on the PSNR against 9/7-tap WT and the high frequency 

region of the reconstructed image using the LBPUFB is well 

approximated. LBPUFBs presented in [35] shows superior 

coding results on the entropy and the PSNR against 9/7- and 

5/3-tap Wavelets to both Lossy/lossless images coding, 

respectively. 

 

4.2 Bi-orthogonal Filter Banks (BOFBs) 
 

Although PUFBs can be designed easily and also the number 

of design parameters is smaller than that of BOFBs, the 

frequency responses of PUFBs are usually worse. Also 

PUFB’s have many restrictions compared to BOFBs.To apply 

FBs to lossless image coding, the lattice structure should be 

represented by lifting structures which has unity diagonal 

scaling coefficients to avoid quantization errors. Factorization 

of BOFBs involves non-unity diagonal scaling coefficients. 

Hence, they have not been applied to lossless coding directly. 

 In [36], degree-1 BOFBs which have unity diagonal scaling 

coefficients throughout the lifting structure have been 

proposed. In [37], order-1 building blocks in BOFBs are took 

forward. Though this lifting structure has more design 

parameters than those of the conventional order-1 PUFBs 

And degree-1 BOFBs, structure shown in [37] provide 

reduction in the number of rounding operations since a 

rounding operation can be regarded as quantization noise; the 

number of rounding operations affects the subband energy 

compaction. Therefore, the number of rounding operations 

should be minimized as much as possible. 

The structure shown in [37] has taken into account not only 

restriction such as paraunitary but also has rounding operation 

less compared to [30] and [40]. 

 

But still the structure in [37] did not consider the restrictions 

such as number of channels and McMillan degree. The block- 

lifting structure proposed in [38] covers broader family which 

gives best solution compared to the conventional methods. 

This structure is free from the restriction such as Paraunitary, 

number of channels and McMillan degree while maintaining 

less rounding operations than [39] and [40]. Compared to 

conventional FBs, the designed BOFBs give better Lossy-to-

lossless image coding performance in both PSNRs and 

perceptual visual quality for the images containing a lot of 

high frequency components [38]. 

 

5. DISCUSSION AND CONCLUSION 
In many applications, image coding is playing vital role in 

every aspect. This review presents that advances in lossy 

coding is growing faster. Still ongoing research has been 

made this as a center of attraction. Authors tried to figure out 

a comprehensive and recent progress in this review. 

 

While dealing with lossless compression one cannot enjoy the 

benefit of high compression rate and when one going for lossy 

image coding they need to pay for high compression rate at 

the cost of perceptual quality of an image. The research 

achievement with the advancement as to utilize filter bank 

structure as a lifting scheme with integer-to-integer transform, 

advantage of reduced number of rounding operation and 

design structure that is free from restriction is enjoyed, but 

certainly even superior structure are needed. 

 

Here, superior means a structure that has negligible number of 

rounding operations. A number of rounding operations shows 

some amount of quantization error which degrades the image 

quality. The filter coefficient or factorized coefficient which 

nearly approximates to inter value can prove to be efficient in 

terms of rounding operations that are performed while lifting. 

 

Similarly, the filter bank structure needs to show best 

performance for the image which contains a lot of low 

frequency regions. At the same time, “superior” also means 

faster computation algorithm with the simpler structure.  

 

Since the Demand from the multimedia user is growing at a 

faster rate the algorithm which overtook that demand finding 

a huge need. 
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Table 1 Coding Gain in DB of 8-channel Filter Banks 

Method DCT(8 

x 8) 

LOT(8 x 

16) [10] 

PUFB(8 

X 16) 

[38] 

BOFB(8 

x 16 ) 

[38] 

Coding gain 8.83 9.22 9.35 9.62 

 

Table 2 PSNR Results in DB for Barbara using Various 

Transforms. 

Method 0.25 bpp 0.5 bpp 1.0 bpp 

DCT( 8 x 8)[18] 27.28 31.08 36.25 

LOT (8 x 16) [10] 32.91 36.13 39.28 

GenLOT (8 x24) 

[18] 

33.25 36.54 39.82 

DWT 9/7-tap [38] 33.71 36.83 40.03 

PUFB (8 x 16) [38] 32.79 36.27 39.58 

BOFB (8 x 16) 

[38] 

32.98 36.33 39.51 
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