
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.17, April 2013

1

High Quality FPGA Optimized Random Number

Generator

V. Navya Deepthi
Department of ECE

SRM University
Chennai, India

Ruhan Bevi
Department of ECE

SRM University
Chennai, India

V. Sai Keerthi
Department of ECE

SRM University
Chennai, India

ABSTRACT
In this paper we designed a new type of Random number

generator by using shift registers and LUT with D-FF as input

to it. The algorithm used to generate random numbers is

realized using simple xor circuit and implemented on a Virtex

II FPGA from Xilinx. This designed block indicate a good

sequence of random numbers which is used in high-speed data

processor, Testing Instruments, Finding Laser Range, Time-

of-flight mass spectrometry experiments etc. The randomness

of this type of RNG is tested using NIST statistical test and

this method has produced good results.

Keywords: Random Number Generator, Field

programmable gate array.

1. INTRODUCTION

The fast generation of random numbers is essential for many

tasks. One of the major fields of application are Monte Carlo

simulation, for example widely used in the areas of financial

mathematics and communication technology. Monte Carlo

applications are ideally suited to field programmable gate

arrays (FPGAs) because of the highly parallel nature of the

applications, and because it is possible to take advantage of

hardware features to create very efficient random number

generators (RNGs). In particular, uniform random bits are

extremely cheap to generate in an FPGA, as large numbers of

bits can be generated per cycle at high clock rates using

lookup tables [1], or first-in-first out (FIFO) queues [2]. Many

applications are reliant on uniform random numbers, such as

monte-carlo integration, simulated annealing, and financial

simulations. Such applications require huge amounts of

processing power, while offering plenty of scope to exploit

fine-grain and coarse-grain parallelism, and so are often

ideally suited to implementation in FPGAs. In order to

function correctly, these applications require many parallel

streams of high quality, large period, uncorrelated random

number generators, and efficient hardware implementations

offer an attractive solution. However, existing methods such

as LFSR [3], Tausworthe generators [11] and Cellular

Automata based generators cannot provide all of these

features at once.

In this paper we introduce a new class of random number

generators where every bit of the state is equally random,

allowing large numbers of parallel number streams to be

produced from one large period generator. The new The new

RNGs introduced here are part of a large family of RNGs, all

of which are based on binary linear recurrences. This family

includes many of the most popular contemporary software

generators, such as the Mersenne Twister (MT19937) [4], the

Combined Tausworthe (Taus113) [11], and TT800 [5]. Many

of these software generators have been adapted for use in

FPGAs [6]–[8], but the convenience of mapping an algorithm

designed for word-level software comes at the cost of reduced

efficiency, flexibility and low precision.

The rest of the paper is organized as follows. In Section II, we

give an overview of previous work. Section III shows

proposed method and description of block diagram of

proposed method. Section IV shows synthesis results of the

original and the improved implementation and elaborates on

the excessive quality tests that we have applied. Finally,

Section V concludes the paper.

2. PREVIOUS WORK

Existing technology proposed the two most common types of

hardware random number generators which are Linear

Feedback Shift Registers (LFSRs) and Tausworthe generators,

both based on binary linear recurrences modulo 2 with

primitive characteristic polynomials [7], and Cellular

Automata (CA) generators. Other algorithms are used for

Specialized tasks, such as the Blum Blum Shub algorithm [10]

for cryptographic random numbers, but are not considered

here. Binary linear recurrence based generators work by

forming each new bit in the state from a linear combination of

the bits in the previous state. The advantage of this type of

generator is that the state-transition function is easily and

efficiently implemented in LUTs, state xi+n can be

determined from state xi in O(log2(n)) steps, and that the

period length is only one less than the theoretical maximum.

However, current generators from this family suffer from poor

statistical quality and other drawback are:

 Implementations on FPGA limited by minimal

delay.

 Limited to the operation frequency.

 Input clock is made half the time delay to pass

through the delay line.

3. PROPOSED METHOD

The proposed architecture relies on multiple parallel

programmable delay lines implemented as a series of

programmable interconnection points and these delay lines are

connected to shift register and LUT. The realization of these

delay lines is presented in a precise adjustment of each delay

can be made using dynamic reconfiguration by modifying the

routing of each interconnection. As this sort of fine-grain

adjustment is subject to process variations, a calibration

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.17, April 2013

2

process that takes into account programmable interconnection

points delay variations and clock skew within the global

distribution tree is also proposed. Specifically, it shows how

to create a family of generators using shift registers and LUT

with delay flip flop as input, which is used to achieve to

achieve high quality and high precision random values. The

architecture of proposed method is shown in fig 1.

 d0 d1 d2 d3

D-FF

clk

 Shift k

regis-

-ters

 out0 out1 out2 out3

 xor

 ckt

 a0 a1 a2 a3

 q0 q1 q2 q3

Fig 1: Architecture of proposed method

 The architecture explains the ability to adjust the delay

deference between each line compare with high resolution

delay line architecture with in the FPGA. On the other hand,

the dynamic range of a set of parallel lines is limited by the

adjustment range of each delay line. Because it is unrealistic

to aim for a dynamic range that Spans over the entire clock

period, multiple parallel line sets can be used given that their

inputs are also regularly delayed. The ouput of D-FF is given

to shift registers where shifting of bits done and this values

are given to xor circuit to get the random values.

The main benefits of the proposed hardware architecture

are the following:

 Fast development process.

 Flexible Clock frequency.

 Greater design flexibility and reduced minimal

delays.

 These proposed works achieve delay lines with a 1-

ps resolution.

4. RESULT

The simulation of given random number generator

is done in Xilinx and fig 2 shows the graphical representation

of different resources versus registers of proposed RNG

design.

Fig 2: Graphical representation of different resources Vs

registers of proposed design

A comparison of different parameters like quality,

speed etc of proposed design with prior design is summarized

in Table 1.

Table 1. Summary of Comparison of different parameters

of proposed design with prior design

RNG

LFSR

LUT-SR

LUT-SR

WITH D-

FF

Period 64 64 64

FFs 291 68 66

LUTs 321 65 65

Frequency(MHz) 272 310 319

Throughput(GB/s) 9.0 20.4 19.8

Average Power (mw) 10 5.59 4.49

 D

rst

 Q

 D

rst

 Q

 D

rst

 Q

 D

rst

 Q

in3

in2

in1

in0

in3

in2

in1

in0

in2

in1

in0

in1

in0

 memory

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.17, April 2013

3

The design and testing of this random number

generator is done on a FPGA system. There are several

substantial test suites for testing RNGs [13]. We present

results from the US National Institute of Standards and

Technology (NIST) Statistical Test Suite for Random and

Psuedo Random Number Generators for cryptography

applications [12]. The NIST test suite produces a summary

report for each file of random bits it tests. The table that

follows is a result of running the NIST suite over the set of

data produced by our RNG. The table consists of ten columns

labeled c1 through c10 and a column containing, a Proportion

column, and a column containing the name of test for that

row.

Each test in the NIST suite is run over a large

number of sets of bits from the file to be tested. The statistic

that is generated from each of these runs is called a P-value

and it represents the probability that a perfect random number

generator would have produced a sequence less random than

the sequence that was tested [12]. For example, if you got a P-

value of 0.95 this would mean that 95% of the sequences

produced by an ideal RNG would look less random than your

sequence. Thus very small P-values are bad. Table 2 shows

the NIST Statistical Test Results.

With these kind of tests one expects to get a range

of P-value. The range from 0 to 1 is divided into ten bits,

labeled in this report C1 through C10. The number in each of

these columns represents the number of tests that had a P-

value in the corresponding range. We would expect that a

perfect RNG would have P-values evenly spread over the

range 0 to 1. The column labeled P-Value is a chi-square test

on the preceding spread of P-values over the range of 0 to 1. It

is a P-values. The documentation that accompanies the suite

indicates that: “If P-Value [the number in the column labeled

P-Value]>=0.001, then the sequences can be considered to be

uniformly distributed”.

The Proportion column indicates the number of P-

values that were above the 0.01 confidence interval. It is

acceptable for a few individual tests to fail. The test suite will

indicate a problem by flagging the Proportion number with an

“*”. In our case, none of the tests indicate failure.

TABLE 2. NIST RESULTS

STATISTICAL

TEST

P-VALUE PROPORTION

OF P-VALUES

Frequency

0.657544

0.9868

Block-frequency

0.452066

0.9878

Cusum

0.278924

0.9911

Cusum

0.178883

0.9925

Runs

0.198952

0.9940

Long-Run

0.789169

0.9915

Rank

0.381589

0.9944

FFT

0.008760

0.9922

Aperiodic-

Template

0.906420

0.9955

Periodic Template

0.183515

0.9923

Universal

0.917459

0.9864

Apen

0.236357

0.9868

Random-

Excursions

0.890464

0.9843

Random-

Excursions-V

0.666836

0.9924

Serial

0.773060

0.9888

Lempel-ziv

0.000107

0.9917

Linear-complexity

0.984963

0.9840

5. CONCLUSION AND FUTURE WORK

This paper presents a new type of FPGA Random Number

Generator, using shift registers and LUT with delay flip-flop

as input to it. These RNGs takes advantage of the ability to

configure LUTs as independent shift-registers, allowing high-

precision and high-quality long period generators to be

implemented using only a small amount of logic. In addition

the period and quality scale with the number of output bits,

unlike generators adapted from software. A key advantage of

the proposed method over previous FPGA optimised uniform

random number generators is that they can be reconstructed

using a simple algorithm. This RNG design passes the NIST

statistical tests and has been proved to generate extremely

high quality random sequence.

6. REFERENCES
[1] D. B. Thomas and W. Luk, “High quality uniform

random number generation using LUT optimised state-

transition matrices,” J. VLSI Signal Process., vol. 47, no.

1, pp. 77–92, 2007.

[2] D. B. Thomas and W. Luk, “FPGA-optimised high-

quality uniform random number generators,” in Proc.

Field Program. Logic Appl. Int. Conf., 2008, pp. 235–

244.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.17, April 2013

4

[3] P. L’Ecuyer, “Tables of maximally equidistributed

combined LFSR generators,” Math. Comput., vol. 68, no.

225, pp. 261–269, 1999.

[4] D. B. Thomas and W. Luk, “FPGA-optimised uniform

random number generators using luts and shift registers,”

in Proc. Int. Conf. Field Program. Logic Appl., 2010, pp.

77–82.

[5] M. Matsumoto and T. Nishimura, “Mersenne twister: A

623-dimensionally equidistributed uniform pseudo-

random number generator,”ACM Trans. Modeling

Comput. Simulat., vol. 8, no. 1, pp. 3–30,Jan. 1998.

[6] M. Saito and M. Matsumoto, “SIMD-oriented fast

mersenne twister: A 128-bit pseudorandom number

generator,” in Monte-Carlo and Quasi-Monte Carlo

Methods. New York: Springer-Verlag, 2006, pp. 607–

622.

[7] F. Panneton, P. L’Ecuyer, and M. Matsumoto, “Improved

long-period generators based on linear recurrence

modulo 2,” ACM Trans. Math.Software, vol. 32, no. 1,

pp. 1–16, 2006.

[8] M. Matsumoto and Y. Kurita, “Twisted GFSR generators

II,” ACM Trans.Modeling Comput. Simulat., vol. 4, no.

3, pp. 254–266, 1994.

[9] Marc-Andre Daigneault and Jean Pierre David, “A High-

Resolution Time-to-Digital Converter on FPGA Using

Dynamic Reconfiguration,” IEEE transactions on

instrumentation and measurement,vol.60,no.6,2011.

[10] S. Konuma and S. Ichikawa, “Design and evaluation of

hardware pseudorandom number generator mt19937,”

IEICE Trans. Inf. Syst.,vol. 88, no. 12, pp. 2876–2879,

2005.

[11] Pierre L’Ecuyer “Maximally Equidistributed combined

tausworthe generators”. Mathematics of

Computation,65(213):203–213, 1996.

[12] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S.

Leigh, M.Levenson, M. Vangel, D. Banks, A. Heckert, J.

Dray, S. Vo, “A Statistical Test Suite for Random and

Pseudorandom Number Generators for Cryptographic

Applications,” National Institute of Standard and

Technology Special Publication 800-22 Revision 1,

August 2008.

[13] Marsaglia, G.,Diehard: A battery of tests for RNG, 1985,

http://stat.fsu.edu/~geo/diehard.html.

