
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.15, April 2013

38

Heuristic Algorithm for Balancing Load in Grid

Task Scheduling

V.Vasudevan, PhD.

Department of Information Technology
Kalasalingam University, Krishnankoil

R.Vijayalakshmi
Department of Computer Applications
Kalasalingam University, Krishnankoil

ABSTRACT

Grid Computing is an important field that focuses on resource

sharing. Grid Computing provides a secure, control and

flexible resource access environment in a distributed network.

One of the most critical issues in Grid Computing is efficient

scheduling of the tasks. The main aim of Grid scheduling is to

map the tasks onto the available processors and order their

execution. Due to the dynamism and heterogeneity of the grid,

an efficient scheduling algorithm that minimizes makespan

with maximum resource is necessary. Efficient scheduling of

jobs to the available grid resources makes effective utilization

of the grid environment. Heuristic algorithms can be used for

solving task scheduling problems, since it is shown to be NP-

Complete. Efficiency of scheduling algorithms can be

evaluated using the two important criteria makespan and

resource utilization. A heuristic task scheduling algorithm that

satisfies load balancing of resources on a grid environment is

presented in this paper. This algorithm schedules the tasks

which reduces the makespan of the jobs and increase the

utilization of resources. The new heuristic task scheduling is

compared with other traditional heuristics and the results are

shown to predict that the new algorithm outperforms the

other.

Keywords
Grid Computing, Task Scheduling, Load Balancing,

Heuristics, Makespan, Resource Utilization.

1. INTRODUCTION
Grid computing tries to bring under one definitional umbrella

all the work being done in high-performance, cluster, peer-to-

peer and internet computing. Grid computing has the ability to

form virtual, collaborative organization that share applications

and data in an open heterogeneous server environment in

order to work on common problems. It provides a hardware

and software infrastructure that helps dependable, consistent,

pervasive and inexpensive access to computational resources.

Grid computing is considered as the best solution for solving

most complex, scientific, and engineering and business

problems that need large amount of resources for execution

[1]. Scheduling, performance prediction and resource

management are some of the challenging issues in the Grid

environment [2]. Difficulty in grid scheduling is due to its

diverse operating system, architecture and resources.

Current grid computing scenario considers scheduling as an

important issue [1]. An optimal resource allocation that

minimizes the schedule length of jobs and makes effective

resource utilization is difficult to find [3]. Tasks in a grid

environment can be divided into independent tasks that do not

communicate with the other and dependent tasks that

communicate with other. In this paper, the scheduling of

independent tasks is considered and makespan and resource

utilization are the criterions assumed.

2. RELATED WORKS
Several heuristic algorithms have been proposed to schedule

tasks in grid computing environment. Heuristics task

scheduling strategies are used for optimal task scheduling.

This section reviews the commonly used algorithms

Minimum Completion Time (MCT), Minimum Execution

Time (MET), Min-Min and Max-Min that schedule meta-task

(MT) to a set of resources.

MET regardless of the machine availability time, assigns each

task to the machine with the minimum expected execution

time in arbitrary order. The objective of MET is to allocate

each task to its best resource [4]. This algorithm cause severe

load imbalance across the resources even though it improves

makespan to some extent.

Minimum Completion Time Algorithm assigns a task to the

resource which has minimum completion time for it [4]. The

task assigned to a resource is removed from the set of tasks

and the completion time for all the remaining tasks are

updated by adding the ready time and execution time of the

resource. The process is repeated until all the tasks are

mapped. This algorithm considers only one task at a time.

Some tasks are assigned to the machines that do not have

minimum execution time for them, since it assigns tasks in an

arbitrary order.

Min-Min algorithm uses minimum completion time as a

metric [4]. It starts with a set of all unmapped tasks. The

machine that has the minimum completion time for all jobs is

selected. Then the job with the overall minimum completion

time is selected and mapped to that resource. The task

assigned to the resource is deleted from the set of tasks, and

the ready time of the resource is updated. This process is

repeated until all the unmapped tasks are assigned [5].

Compared to MCT, this algorithm considers all jobs at a time

and produces a better makespan. The drawback of this

heuristics is that it chooses smaller tasks first which makes

use of resource with high computational power. Hence, the

schedule produced by Min-Min is not optimal when the

smaller tasks exceed the larger tasks. Though it aims to

minimize makespan, it results in unbalanced load and poor

utilization of resources.

Max-Min heuristic is very similar to Min-Min and its metric is

also minimum completion time [4]. It begins with a set of all

unmapped tasks. It computes the completion time for each

task on every machine. The machine with the minimum

completion time for each task is selected. The task with

maximum completion time is finally mapped to the selected

machine. The task assigned is removed from the set of tasks

and the completion time of all the tasks is updated. This

continues until all the tasks are updated [6]. This heuristics

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.15, April 2013

39

provides better performance than Min-Min when the number

of small tasks is larger than the number of larger tasks.

3. PROBLEM DEFINITION
The most important part of grid resource management system

is task scheduling. The scheduler selects the appropriate

resource to run the task whenever it receives a request from a

task. A unique resource is selected to complete the tasks since

they are independent. This paper proposes a grid task

scheduling algorithm that assumes the following assumptions:

Tasks are independent.

Tasks that have no communication among each other are

considered.

No deadlines or priorities associate with the tasks.

Perform static mapping of process in batch mode.

Number of resources and number of tasks are known.

One task is executed on a machine at a time in FCFS order.

Static heuristics algorithms estimates the expected execution

time for each task on each machine using Expected Time to

Compute matrix [3] where ETC (ti,rj) is the estimated

execution time of task i on resource j. Using ETC matrix

model, the grid task scheduling problem can be defined as

follows:

Let the Group of tasks submitted to the scheduler T = t1, t2,

t3,…….tn and set of resources available at the time of task

arrival R = r1, r2, r3,……rk.

Heuristic Task Scheduling Algorithm is designed to work for

the above stated problem with the aim of minimizing

makespan and balancing resource utilization.

3.1 Performance Metrics
The metrics used for evaluating the performance of the grid

task scheduling algorithm are makespan and resource

utilization.

3.1.1 Makespan
Makespan is defined as the maximum completion time of

resources [3]. Makespan is calculated as follows,

Makespan = max (CT (ti, mj)

CTij = Eij + Rj

Rj – Ready time of resource j after completing the assigned

jobs.

CT – Completion time of machines

Eij – Expected Execution Time of job i on resource j.

3.1.2 Resource Utilization
Resource Utilization is defined as the amount of resources

busy in executing tasks [3]. Resource utilization is calculated

using the following formula.

Resource Utilization = Mi * 100 / TARU

Total Amount of resource Used = ∑ i=1
n CTi

3.2 HTSA
Figure 1 presents the proposed algorithm. This algorithm first

computes the completion time of resources from the given

Expected Execution time of task on a resource. It then

chooses the minimum execution time task and assigns the task

to the resource that produces minimum time for execution.

This process is continued till all the tasks are assigned by

matching the minimum execution time. This algorithm

balances the load by selecting the resource that produces the

nearest makespan provided by the previous cycle. It computes

the minimum execution time of task on the resource. The

makespan produced in the first cycle is compared with the

maximum completion time. If it is less than the makespan,

then the task is rescheduled by selecting the resource that has

the nearest makespan and the ready time of the resource is

updated. The process is repeated till all the tasks are assigned

for a particular resource. Hence HTSA produce a schedule

that balances load optimally on all the resource without

keeping a resource idle or with minimum load.

 Figure 1: NMMH Algorithm

Please use a 9-point Times Roman font, or other Roman font

Figure 1. HTSA

Figure 1. HTSA

4. ILLUSTRATIVE EXAMPLE
Consider a grid environment with two resources R1, R2 and a

meta-task group M with four tasks T1, T2, T3 and T4.All the

tasks are supposed to be scheduled to the machines R1 and

R2.The ETC matrix for the problem statement is illustrated in

Table 1.

Table 1. Expected Execution Time of Tasks

Tasks Resources

R1 R2

T1 2 3

T2 4 8

T3 5 7

T4 4 3

Figure 2 shows the performance of the heuristic algorithms.

Min-Min and Max-Min achieves a makespan of 10. Similarly

the makespan achieved is 11 and 10 for MET and MCT

For all tasks in the set T

 For all resources

 Compute Cij = Eij+Rj

Do until all tasks in the set are mapped

Find the earliest completion time for each task and the

resource that obtains it

Find the task Ti with the minimum earliest completion

time

Assign task Ti to the resource that gives the earliest

completion time

 Delete task from the set Ti

 Update ready time of resource Rj

 Update Cij for all i

End do

Arrange the resources in the order of completion time

For all resources R

 Compute makespan = max(CT(R))

 End for

 For all resources

 For all tasks

 Find the task Ti that has minimum ET in Rj

 Find the Maximum Completion Time of task Ti

 If Maximum Completion Time < makespan

 Select the resource that has the nearest makespan

 Reschedule task Ti to the resource that produces it

 Update the ready time of both resources

 End if

 End for

End for

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.15, April 2013

40

respectively. The results are shown in Figure 2. HTSA

achieves a minimum makespan of 9 when compared to other

heuristics.

Figure 4 shows the comparison of traditional heuristics and

our proposed algorithm. It shows that the makespan obtained

by HTSA is less compared to other heuristic algorithms Min-

Min, Max-Min, MCT and MET.

Figure 2. Comparison of Makespan among heuristics

In this example, since, Min-Min prefers minimum completion

time, the resource utilization for R1 is 60% and R2 is 100.

While using Max-Min scheduling, 100% resource utilization

is made on R1 and 70% in R2. MET uses 100% of R1 and

27.27% of R2 and creates a more unbalanced utilization.

MCT uses 60% of R1 and 100% of R2 whereas HTSA

produces better load balancing with 100% of R1 and 88.88%

of R2. Figure 3 shows the resource utilization chart.

Figure 3. Comparative Analysis of Resource Utilization

5. RESULTS AND DISCUSSION
Different problem sets from various literatures are taken and

executed using coding developed in C++ for HTSA and other

heuristic algorithms. The results obtained are tabulated in

Table 2.

Table 2. Comparison of heuristics – Makespan in Seconds

Problem Set Min-Min Max-Min MET MCT HTSA

P1 8 6 8 8 6

P2 11 10 16 13 9

P3 30 30 45 30 20

Figure 4. Comparative Analysis of heuristics (Makespan)

HTSA also balances load by using all the resources optimally.

Resource utilization for all the problems is calculated and is

shown in Table 3. It can be observed that HTSA uses all the

available resources to the optimum and balances load among

the resources. Figure 5 represent the resource utilization rate

for all the problems.

Table 3. Resource Utilization in Percentage

Problem Set Algorithm Used R1 R2 R3

P1

Min-Min 100 0

Max-Min 100 66

MET 100 0

MCT 100 0

HTSA 83.3 100

P2

Min-Min 54.54 100

Max-Min 100 80

MET 100 0

MCT 38.46 100

HTSA 100 100

P3

Min-Min 66.67 0 100

Max-Min 66.67 0 100

MET 0 0 100

MCT 66.67 0 100

HTSA 100 100 75

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.15, April 2013

41

Figure 5. Analysis of Resource Utilization for problem sets

6. CONCLUSION AND FUTURE WORK
Task scheduling in grid computing environment is difficult for

achieving high performance. Efficient task scheduling

algorithm is needed to utilize the resource effectively and

reduce overall completion time. In this paper, four scheduling

algorithms are compared and a new scheduling algorithm that

overcomes the drawbacks of the other entire algorithm is

presented. This algorithm schedules the tasks with the aim of

reducing makespan and balancing load. Experimental result

shows that this algorithm minimizes makespan than other

scheduling algorithms and uses resources effectively.
Applying the proposed algorithm on actual grid environment
and considering low and high machine heterogeneity can be

the open problem in this area.

7. REFERENCES
[1] George Amalarethinam, D.I, Vaaheeda Kfatheen.S,

“Max-Min Average Algorithm for Scheduling Tasks in

Grid Computing Systems”, International Journal of

Computer Science and Information Technologies, Vol 3

(2), 2012, 3659-3663.

[2] T.Kokilavani, Dr.D.I.George Amalarethinam. “Load

Balanced Min-Min Algorithm for static Meta – Task

Scheduling in Grid Computing”. International Journal

of Computer Applications, Volume 20 – No.2. 2011.

[3] Geoffrey Falzon, Maozhen Li, “Enhancing list

scheduling heuristics for dependent job scheduling

in grid computing environments”, Journal of

Supercomputing, Springer, March 2010.

[4] Kamalam.G.K and Muralibhaskaran.V, , A New

Heuristic Approach:Min-Mean Algorithm For

Scheduling Meta-Tasks On Heterogenous Computing

Systems, IJCSNS International Journal of Computer

Science and Network Security, VOL.10 No.1, January

2010.

[5] Zhan Gao, Siwei Luo and Ding Ding, “ A Scheduling

Approach Considering Local Tasks in the

Computational Grid” , International Journal of

Multimedia and Ubiquitous Engineering, Vol 2, No. 4,

October 2007.

[6] Siriluck Lorpunmanee, Mohd Noor Sap, Abdul

Hanan Abdullah, and Chai Chompoo-inwai, “An

Ant Colony Optimization for Dynamic Job

Scheduling in Grid Environment”, World Academy

of Science, Engineering and Technology 29, pp. 314-

321, 2007.

[7] Etminani .K, and Naghibzadeh. M, "A Min-min

Max-min Selective Algorithm for Grid Task

Scheduling," The Third IEEE/IFIP International

Conference on Internet, Uzbekistan, 2007.

[8] F.Dong and S.G.Akl, “Scheduling Algorithms for Grid

Computing: State of the art and open problems”,

Technical Report of the Open Issues in Grid Scheduling

Workshop, School of Computing, University Kingston,

Ontario, January 2006.

[9] Dantong Yu and Thomas G. Robertazzi “Divisible Load

Scheduling for Grid Computing”, PDCS’2003, 15th Int’l

Conf. Parallel and Distributed Computing and Systems.

IASTED, pp.1 – 9, 2003.

[10] Braun, T.D., Siegel, H.J., Beck, N., Boloni, L.L.,

Maheswaran, M., Reuther, A.I., Robertson, J.P “A

comparison of eleven static heuristics for mapping a

class of independent tasks onto heterogeneous

distributed computing systems”. Journal of Parallel

and Distributed Computing, Vol. 61, No. 6, pp.810–

837. 2001.

[11] M.Maheswaran, S. Ali, H.J.Siegel, D.Hensgen, and

R.F.Freund, “Dynamic mapping of a class of

independent tasks onto heterogeneous computing

systems, J.Parallel Distribute Computing 59, 2 (Nov

1999), 107 – 121.

[12] R.F.Freund, and M.Gherrity, “Scheduling Resource in

Multi-user Heterogeneous Computing Environment

with Smartnet”, In Proceedings of the 7th IEEE HCW

1998.

[13] Fahd Alharbi, “Simple Scheduling Algorithm with

Load Balancing for Grid Computing” Asian

Transactions on Computers (ATC ISSN: 2221-4275)

Vol 02, Issue 2.

