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In this paper, we have investigate existance, uniqueness and 

error bound of quintic spline interpolation. 
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1. INTRODUCTION 

Piecewise Quartic, Quintic and higher degree spline are 

popular for smooth and best approximation see Deboor [1].  

Interpolation by lower degree spline are widely used in the 

method of Piecewise Polynomial approximation to represent a 

non analytic funciton.  Interpolation by Quintic and higher 

degree spline, the maximum error between a function and its 

interpolant can be controlled by mesh spacing and such 

function have no corner at the joint of two pieces and 

therefore no more data are required than lower order method 

to get desire accuracy.  Therefore, quintic and higher degree 

spline are useful than lower degree spline for best 

approximation See [1].  In the direction of more higher degree 

spline Jianzhone and Hung [9] have obtained optimal error 

bounds for quartic and quintic interpolatory splines (see also 

Howell and Verma) [2] Wong and Agrawal [5], Gmelling 

Meling [6] have obtained explicit error bounds for quintic and 

biquintic interpolatory spline Dubey [10] has obtained 

existence, uniqueness and error bound for higher degree spline 

(See also Rana and Dubey) [8].  In the present paper we shall 

obtain precise error estimate of deficient quintic spline 

interpolation matching the given function values at mesh 

points and its derivative at two interior points of the interval. 

2.  EXISTENCE AND UNIQUENESS 

Consider a mesh P of [0, 1] given by 0 = xo <x1,..., < xn = 1 

such that xi+1 - xi = hi, i = 0, 1,. . . , n - 1. For a positive integer 

m, let 5 [0, 1] denote the set of all real algebraic polynomials 

of degree less than or equal to m5. For a function s defined 

over P. we denote the restriction of s over [xi, xi+1] by s. The 

class R(5, 2, P) of deficient quintic splines defined over P is 

given by 

 R(5,2,P)={s:s  C2[0,1], si 5, i=0,1,2 n—1}, 

wherein R*(5, 2, P) denotes the class of all deficient quintic 

splines R(5, 2, P) which satisfy the boundary conditions 

 s’(x0) =f ’ (x0), s’ (xn) =f ’ (xn).   

  (2.1) 

We introduce the following interpolatory conditions: 

 s(xi) =f(xi,), i = 0, 1, ...., n  (2.2) 

 s' (i) = f '(i),  i = 1, 2, ...., n 

 s'(i) = f' (i),  i = 1, 2, ...., n    (2.3) 

where  i = xi-1 + (1/3)hi-1 

 i = xi-1 + (2/3)hi-1 

 In fact, we shall prove the following: 

THEOREM 2.1.  Let f’ exist, then there exists a unique 

deficient quintic spline s in R*(5, 2, P) which satisfies the 

interpolatory conditions (2.1) - (2.3). 

Proof : Considering a quintic polynomial P(z) on [0, 1], it 

can be easily verified that 

E(z) = E (0) Q1(z) + E '(1) . Q2(z) + E'(1/3) . Q3(z) + E '(2/3) . 

Q4(z) + E’(O) Q5(z) + E’(1). Q6(z)    (2.4) 

where 
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Now writing t = (x - xi)/hi, o < t < 1, (2.4) may be expressed 

in terms of the restriction si of s on [xi, xi+1] as follows : 

si(x) = f(xi) . Q1(t) + f' (xi+1) . Q2(t) + f' (i+1) . Q3(t)+f(i+1) . 

Q4(t) + his'(xi) . Q5(t) + his' (xi+1) . Q6 (t) (2.5) 

which clearly satisfies the conditions (2.1) - (2.3) and si(x) is 

quintic in [xi, xi+1] for i = 0, ...., n-1. Now observing the fact 

that s  C2 [0, 1], therefore, applying continuity condition of 

second derivative of s in (2.5), we get the following system of 

equations : 
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It may be seen easily that the coefficient matrix of the system 

of equations (2.6) is diagonally dominant and hence 

invertible.  This completes the proof of Theorem 2.1. 

3. ERROR BOUNDS 

In this section of the paper, we shall estimate the bounds of 

error function by using method of Hall and Meyer [2] and of 

its derivatives, i.e. e(r)(x) = s(r)(x) - f(r)(x), r =0, 1 for the spline 

interpolant of Theorem 2.1 which are best possible.  Let s(x) 

be the twice continuously  differentiable quintic spline 

function satisfying the conditions of Theorem 2.1. Now 

considering f  C(6) [0,1] and denoting the unique quintic 

polynomial by Li[f, x] which agrees with given functional 

values and derivatives f' (i+1), f' (i+1), f 
(r)(xi) and f(r) (xi+1), 

for r= 0, 1, we have for x [xi, xi+1], 

|s(x) - f(x)|  |si(x) -f(x)| < |si(x) - Li[f, x]| + |Li[f, x] - f(x)|  

              .....(3.1) 

We now proceed to get pointwise bounds of both the terms on 

the right hand side of (3.1).  The estimate of the second term 

can be obtained by following a well known remainder 

theorem for polynomial interpolation of Davis [4]. 

|Li[f, x] - f(x)| < 
!6

6

ih
|t2(1-t) 2 (1-3t)(2-3t)|F/9    …..(3.2)  

Where  t = (x-xi)/hi  

and  F = 
10
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|f 6 (x)| 

We next turn over attention to get a similar bounds for |si(x)-Li 

[f,x]|. From (2.4), we have 
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Thus, applying (3.5) in (3.4), we have 
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Let the max |e’(xi)| exist for i=j, therefore (3.6) may be written 

as  

0 < i < n 
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Where h=max hi, we now next proceed to find the upper 

bound for |e’(xi)| needed in eq. (3.7). Replacing s’(xj) by e’(xj) 

in (2.6), we have 
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In view of the fact that B(f) is a linear functional which is zero 

for polynomial of degree 5 or less, we can apply the Peano 

Theorem Davis [4] to obtain 







1

1

.])[(
!5

)(
)( 5

)6(
j

j

x

x
dyyxB

yf
fB    …..(3.9) 

Thus from (3.9), we get, 







1

1

.|])[(|
!5

|)(| 5j

j

x

f
dyyxB

F
fB  …..(3.10) 

Further, it can be observed from (3.9) that for 
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In order to estimate the integral of r.h.s. of (3.10), we rewrite 

the above expression in the following symmetric form about xj 

to get. 
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From the above expression, it follows that 
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Combining (3.10) with (3.11), we have 
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Thus from (3.8) and (3.12), it follows that 
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Now using (3.2), (3.7) along with (3.13) in (3.1), we have 
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Where
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THEOREM 3.1. Let s(x) be the quintic spline interpolant 

of Theorem 2.1 interpolating a given function f(x) and 

]1,0[6Cf  then, 
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Also, we have  
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Where K1 = 412/15 

Furthermore, it can be seen easily that K in (3.16) be 

improved for an equally spaced partition.  Inequality (3.17) is 

also best possible.  Also, we have  
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where K2 is positive constant.  Equation (3.14) proves (3.16) 

whereas inequality (3.17) is a direct consequence of (3.13). 
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Now, we turn to see that the inequality (3.16) is best possible 

in the limit. Considering f(x) = x6/6! and using the Cauchy 

formula Davis [4], we have  
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From (3.23), it is clearly observed that (3.16) is best possible, 

provided we could prove that 
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In fact (3.24) is attained only in the limit.  The difficulty will 
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for some j L.H.S. positive and r.h.s. is negative. Thus we have 
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Now again using (3.25) in (3.20), we have 
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Now, it can be seen easily that the right hand side of (3.26) 
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equally spaced knots. This completes the proof of Theorem 
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