
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.11, April 2013

31

Comparative Analysis of Neural Network
Techniques for Estimation

Amrinder Singh Grewal

M.E, CSE
University institute of

Engineering and Technology,
Panjab University, Chandigarh

Vishal Gupta
Assistant Professor, CSE

University Institute of
Engineering and Technology,
Panjab University, Chandigarh

Rohit Kumar
Assistant Professor, CSE

University Institute of
Engineering and Technology,
Panjab University, Chandigarh

ABSTRACT

Software cost estimation is the process of predicting the

effort required to develop a software system. Accurate

cost estimation helps us complete the project within

time and budget. For completing the project in time and

budget, one must have efficient estimation technique for

predicting project efforts. Artificial neural network is a

promising technique to provide efficient and good

results when dealing with problems where there are

complex relationship between inputs and outputs.

Researchers proved better estimation using back

propagation techniques like RBP and Bayesian

regulation. In this paper further discussion will be

about the study and the efficiency of Neural based one

step secant back propagation based cost estimation

model, Powell-Beale conjugate gradient model and

Fletcher-reeves conjugate gradient model. Result is

concluded with the best effort predicting model.

Keywords: software estimation; artificial neural

networks; one step secant BP; Powell-beale conjugate

gradient; Fletcher-powell conjugate gradient.

1. INTRODUCTION
Neural Network consists of large number of highly

interconnected elements called nodes, where each node

produces a non-linear function of its input [11].Each

node is connected to the number of nodes in the other

layer. The main inspiration for the field of Neural

Networks (NN) originated from the desire to produce

artificial systems capable of sophisticated, perhaps

“intelligent”, computations similar to the biological

neurons in brain structures. Although there are a

number of learning algorithms to train a neural network,

the back propagation (back-prop) paradigm has

emerged to be the most popular learning mechanism for

prediction and classification problems. When the

relationship between the input and output variables is

nonlinear, the hidden layer helps in extracting higher

level features and facilitate generalization. Connections

between neurons have numerical weights associated

with them; the weights are adjusted in the training

process by repeatedly feeding examples from the

training set.

 2. BACKGROUND

In the last few years’ research, there are many software

cost estimation methods available including algorithmic

methods, estimating by analogy, expert judgment

method, price to win method, top-down method, and

bottom-up method. No one method is necessarily better

or worse than the other, in fact, their strengths and

weaknesses are often complimentary to each other.[1]

Numerous researchers and scientists are constantly

working on developing new software cost estimation

techniques [2, 3, 4].

These techniques may be grouped into two major

Categories: (1) parametric models, which are derived

from the statistical or numerical analysis of

Historical projects data [5], and (2) non-parametric

models, which are based on a set of artificial

Intelligence techniques such as artificial neural

networks, analogy-based reasoning, regression trees,

Genetic algorithms and rule-based induction

[6][7][8]. More recently, attention has turned to a

variety of machine learning (ML) [9] methods to predict

software development effort. Artificial neural nets

(ANNs)[10][11],genetic algorithms[12], case based

reasoning (CBR)[13] and rule induction

(RI)[15],estimating by analogy[14],clustering

techniques are examples of such methods. Many

researchers have applied the neural networks approach

to estimate software development effort [16][17][18].

3. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Network is a promising techniques to

build predictive models, because they are capable of

modeling non linear relationships ANNs posses’ large

number of highly interconnected processing elements

called neurons, which usually operate in parallel and are

configured in regular architectures. Each neuron

connected with the other by a communication link and

each connection link is associated with weights which

contain information about the input signal. The neuron

computes a weighted sum of its inputs and generates an

output if the sum exceeds a certain threshold.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.11, April 2013

32

 X1 W1 nfvfvv

 X2 W2 N vfvfdverrf Z

 X3 W3

 Figure 1 Neuron Model with 3 Inputs

Each neuron has an activation level, specified by

continuous or discrete values. The internal activation is

modified by a transfer function and becomes an output,

which in turn may become an input to one or more

neurons. For classification problems, a sigmoid transfer

function is typically used to transform the input signals

into output signals. The sigmoid transfer function is

represented by F (I) = 1/ (l+e-l), where I represents the

internal activation. The process continues until one or

more outputs are generated. These are estimation

models that can be “trained” using historical data to

produce ever better results by automatically adjusting

their algorithmic parameter values to reduce the delta

between known actual and model predictions.

X1 Bk

 w1

X2 w2

 Vk

X3 w3 Yk

 Activation Output

 K Function

 wn Synaptic weight

 Xn

Input

 Figure 2: An Artificial Neuron with Activation function

The back-propagation learning algorithm is one of the

most important developments in neural networks

(Bryson and Ho, 1969; Werbos, 1974; Lecun, 1985;

Parker, 1985; Rumelhart, 1986 ;) In back-prop network

paradigm, all the connection weights are assumed to be

responsible for the output error. Error is defined to be

the difference between a network's estimated output or

predicted value and the corresponding observed output

value. The error values are calculated at the output layer

and propagated to previous layers and used for

adjusting the connection weights. The training process

consists of repeatedly feeding input and output data

from empirical observations, propagating the error

values, and adjusting the connection weights until the

error values fall below a user-specified tolerance level.

4. NEURAL NETWORK TECHNIQUES

USED

In this paper, Three Neural Network based cost

estimation models for predicting best estimates using

NASA dataset are used. The comparison between these

three models for finding best among them for predicting

cost estimations. Comparison of Neural networks with

traditional Cocomo, Halstead, Walston-Felix, Bailey-

Basili and Doty models has been done by several

authors proving that Neural Network provides much

better results than these models.

Here we compared Neural Network techniques with one

another. These techniques are Neural based One step

secant back propagation based cost estimation model,

Powell-Beale conjugate gradient model and Fletcher-

Reeves conjugate gradient model.

These models can train any network as long as its

weight, net input, and transfer functions have derivative

functions. Back propagation is used to calculate

derivatives of performance perf with respect to the

weight and bias variables X. Each variable is adjusted

according to the following:

 X= X + a*dX;

Where dX is the search direction. The parameter a is

selected to minimize the performance along the search

direction. The line search function searchFcn is used to

locate the minimum point. The first search direction is

the negative of the gradient of performance. In

succeeding iterations the search direction is computed

from the new gradient and the previous steps and

gradients, according to the formula:

For One step secant back propagation:

dx= -gX + Ac*X_step + Bc*dgX;

Where gX is the gradient, X_step is the change in the

weights on the previous iteration, and dgX is the change

in the gradient from the last iteration.

For Conjugate gradient back propagation with Powell-

Beale restarts:

dX= -gX + dX_old*Z;

Where dX is the gradient. The parameter Z can be

computed in several different ways. The Powell-Beale

variation of conjugate gradient is distinguished by two

features. First, the algorithm uses a test to determine

when to reset the search direction to the negative of the

gradient. Second, the search direction is computed from

the negative gradient, the previous search direction, and

the last search direction before the previous reset.

For Conjugate gradient back propagation with Fletcher-

Reeves updates:

dX= -gX + dX_old*Z:

For the Fletcher-Reeves variation of conjugate gradient

it is computed according to

Neuron with

three inputs

 f

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.11, April 2013

33

Z = normnew_sqr/norm_sqr;

Where norm_sqr is the norm square of the previous

gradient and normnew_sqr is the norm square is the

norm square of the current gradient.

Training stops when any of these conditions occurs:

 The maximum number of epochs is reached.

 The maximum amount of time is exceeded.

 Performance is minimized to goal.

 The performance gradient falls below

min_grad.

5. PERFORMANCE CRITERIA

In this paper MATLAB R2012a is used with Neural

Network Toolbox for the development of neural based

models. Perform the comparison of the models on basis

of Mean Magnitude of Relative Error (MMRE).

We considered the MMRE as the main performance

measure. MMRE is computed from the relative error, or

RE, which is the relative size of the difference between

the actual and estimated value.

Given a data set of size "D", a "Training set of size

"(X=|Train|) <= D", and a "test" set of size "T=D-

|Train|", then the mean magnitude of the relative error,

or MMRE, is the percentage of the absolute values of

the relative errors, averaged over the "T" items in the

"Test" set.

Mean magnitude of relative error:

(MMRE)= (1/T)*(MRE1+MRE2+…..MRET)

Where T is total number of projects.MRE is the

magnitude of the relative error.

The objective of the study is deducing conclusions at

the end that which one is better on the basis of MMRE.

6. RESULTS AND CONCLUSIONS

Table1. Data of Actual cost comparison with others

Project Efforts

of

OSSBP

Efforts

of

CGBPBR

Efforts

of

CGBFRU

Actual

Efforts

1 124.22 122.18 125.45 117.6

2 112.40 113.81 116.28 117.6

3 31.98 25.57 25.92 31.2

4 32.89 27.55 27.73 36

5 35.98 33.73 33.48 25.2

6 24.79 6.28 9.05 8.4

7 26.09 10.44 12.55 10.8

8 358.60 351.49 338.74 352.8

9 81.68 71.04 65.91 72

10 35.29 128.75 158.73 72

11 19.82 29.61 42.70 24

12 354.41 359.64 358.90 360

13 19.26 27.99 34.27 36

14 214.39 215.30 199.10 215

15 20.63 44.37 58.49 48

Table2. Comparison On the basis of MMRE

Model

Used

OSSBP

CGBPBR

CGBFRU

Actual

MMRE 0.393 0.163 0.233 0

The performances of the Neural Network based effort

estimation system are compared for effort dataset

available with NASA. The results show that Neural

Network based conjugate gradient back propagation

Powell-Beale restarts has the lowest MMRE to Actual

i.e. 0.163 and second best performance is shown by

conjugate gradient back propagation Fletcher-Reeves

updates i.e. 0.233. Hence, the proposed Neuro based

system is able to provide good estimation capabilities.

By using Neural Network techniques most accurate

estimates can be made in future which are used in

formulating complex relationship between the variables.

It is suggested to use Neuro based techniques for

estimating the all types of projects.

7. ACKNOWLEDGEMENT

Many thanks to Mr. Vishal Gupta Assistant Professor

and Rohit kumar Assistant Professor in UIET, Pan jab

University Chandigarh, for their efforts.

8. REFERENCES

[1] Murali Chemuturi “Analogy based Software

Estimation” Chemuturi Consultants

[2] J .P. Lewis, “Large Limits to Software Estimation,”

Software Engineering Notes, Vol. 26, No. 4, July

2001

[3] Stamelos, etal, "Estimating the development cost

of Custom software", Information and

Management, 2003

[4] R. W. Jensen, "Extreme Software Cost Estimating",

Crosstalk, Journal of defense software Eng, Jan

2004

[5] 0 W Boehm, Software Engineering Economics

Prentice-Hall, 1981

 [6] A.Idri, A.Abran and T.M. Khoshgoftaar,

“Estimating Software Project Effort by Analogy

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.11, April 2013

34

based on Linguistic values,” 8th IEEE International

Software Metrics Symposium, Ottawa, Canada

[7] K. Srinivasan and D. Fisher “Machine Learning

Approaches to Estimating Software Development

Effort,” IEEE Transactions on Software

Engineering, vol. 21, no. 2, February, 1995

[8] S. Vicinanza, and M.J. Prictolla, “Case-Based

Reasoning in Software Effort Estimation,”

Proceedings of the 11
th

 Int. Conf. on Information

Systems, 1990

[9] Jianfeng, Wen, Shixian, Li, Changqin Huang,”

Systematic literature review of machine learning

based software development effort estimation

models,” Information and Software Technology

(2012)

[10] Jaswinder Kaur, Satwinder Singh, Dr. Karanjeet

Singh Kahlon, Pourush Bassi,” Neural Network-A

Novel Technique for Software Effort Estimation,”

International Journal of Computer Theory and

Engineering 2010

[11] Manpreet Kaur, Sushil Garg,” Analysis of Neural

Network based Approaches for Software effort

Estimation and Comparison with Intermediate

COCOMO,” International Journal of Engineering

and Innovative Technology June 2012

[12] Collin j. burgess and martin lefly,” Can genetic

programming improve software estimation. A

review,” Information and software tech. 2001

[13] Aarmodt and Plaza (1994),” Case-Based

Reasoning: Foundational issues, Methodical

Variations and System Approaches.” AI

Communications

[14] Stephen G. MacDonell, Martin J. Shepherd,”

Combining techniques to optimize effort

predictions in software project management,” The

Journal of Systems and Software (2003)

 [15] Carolyn Mair, Gada Kadoda, Martin Lefley,” An

Investigation of Machine Learning Based

Prediction Systems.”

[16] Ali idri, taghi, M. khoshgoftaar, Alain abran,”can

neural network be easily interpreted in software

cost estimation?

[17] Ch.Satyananda Reddy and KVSVN Raju,” An

Optimal Neural Network Model for Software Effort

Estimation,” DENSE Research Group

[18] Jagannath Singh and Bibhudatta Sahoo,” Software

Effort Estimation with Different Artificial Neural

network,” 2nd National Conference- Computing,

Communication and Sensor Network,”2011

