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ABSTRACT 

Software cost estimation is the process of predicting the 

effort required to develop a software system. Accurate 

cost estimation helps us complete the project within 

time and budget. For completing the project in time and 

budget, one must have efficient estimation technique for 

predicting project efforts. Artificial neural network is a 

promising technique to provide efficient and good 

results when dealing with problems where there are 

complex relationship between inputs and outputs. 

Researchers proved better estimation using back 

propagation techniques like RBP and Bayesian 

regulation.  In this paper further discussion will be 

about the study and the efficiency of Neural based one 

step secant back propagation based cost estimation 

model, Powell-Beale conjugate gradient model and 

Fletcher-reeves conjugate gradient model. Result is 

concluded with the best effort predicting model. 

Keywords: software estimation; artificial neural 

networks; one step secant BP; Powell-beale conjugate 

gradient; Fletcher-powell conjugate gradient. 

1. INTRODUCTION 
Neural Network consists of large number of highly 

interconnected elements called nodes, where each node 

produces a non-linear function of its input [11].Each 

node is connected to the number of nodes in the other 

layer. The main inspiration for the field of Neural 

Networks (NN) originated from the desire to produce 

artificial systems capable of sophisticated, perhaps 

“intelligent”, computations similar to the biological 

neurons in brain structures. Although there are a 

number of learning algorithms to train a neural network, 

the back propagation (back-prop) paradigm has 

emerged to be the most popular learning mechanism for 

prediction and classification problems. When the 

relationship between the input and output variables is 

nonlinear, the hidden layer helps in extracting higher 

level features and facilitate generalization. Connections 

between neurons have numerical weights associated 

with them; the weights are adjusted in the training 

process by repeatedly feeding examples from the 

training set. 

 2. BACKGROUND 

In the last few years’ research, there are many software 

cost estimation methods available including algorithmic 

methods, estimating by analogy, expert judgment 

method, price to win method, top-down method, and 

bottom-up method. No one method is necessarily better 

or worse than the other, in fact, their strengths and 

weaknesses are often complimentary to each other.[1] 

Numerous researchers and scientists are constantly 

working on developing new software cost estimation 

techniques [2, 3, 4]. 

These techniques may be grouped into two major 

Categories: (1) parametric models, which are derived 

from the statistical or numerical analysis of 

Historical projects data [5], and (2) non-parametric 

models, which are based on a set of artificial 

Intelligence techniques such as artificial neural 

networks, analogy-based reasoning, regression trees, 

Genetic algorithms and rule-based induction 

[6][7][8]. More recently, attention has turned to a 

variety of machine learning (ML) [9] methods to predict 

software development effort. Artificial neural nets 

(ANNs)[10][11],genetic algorithms[12], case based 

reasoning (CBR)[13] and rule induction 

(RI)[15],estimating by analogy[14],clustering 

techniques are examples of such methods. Many 

researchers have applied the neural networks approach 

to estimate software development effort [16][17][18]. 

3. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Network is a promising techniques to 

build predictive models, because they are capable of 

modeling non linear relationships  ANNs posses’ large 

number of highly interconnected processing elements 

called neurons, which usually operate in parallel and are 

configured in regular architectures. Each neuron 

connected with the other by a communication link and 

each connection link is associated with weights which 

contain information about the input signal. The neuron 

computes a weighted sum of its inputs and generates an 

output if the sum exceeds a certain threshold. 
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                 Figure 1 Neuron Model with 3 Inputs 

Each neuron has an activation level, specified by 

continuous or discrete values. The internal activation is 

modified by a transfer function and becomes an output, 

which in turn may become an input to one or more 

neurons. For classification problems, a sigmoid transfer 

function is typically used to transform the input signals 

into output signals. The sigmoid transfer function is 

represented by F (I) = 1/ (l+e-l), where I represents the 

internal activation. The process continues until one or 

more outputs are generated. These are estimation 

models that can be “trained” using historical data to 

produce ever better results by automatically adjusting 

their algorithmic parameter values to reduce the delta 

between known actual and model predictions. 

X1                          Bk 

                 w1           

X2      w2  

                                         Vk 

X3      w3                                                                 Yk 

                     Activation           Output 

      K                Function 

               wn       Synaptic weight 

      Xn 

Input 

  Figure 2: An Artificial Neuron with Activation function 

The back-propagation learning algorithm is one of the 

most important developments in neural networks 

(Bryson and Ho, 1969; Werbos, 1974; Lecun, 1985; 

Parker, 1985; Rumelhart, 1986 ;) In back-prop network 

paradigm, all the connection weights are assumed to be 

responsible for the output error. Error is defined to be 

the difference between a network's estimated output or 

predicted value and the corresponding observed output 

value. The error values are calculated at the output layer 

and propagated to previous layers and used for 

adjusting the connection weights. The training process 

consists of repeatedly feeding input and output data 

from empirical observations, propagating the error 

values, and adjusting the connection weights until the 

error values fall below a user-specified tolerance level. 

4. NEURAL NETWORK TECHNIQUES 

USED 

In this paper, Three Neural Network based cost 

estimation models for predicting best estimates using 

NASA dataset are used. The comparison between these 

three models for finding best among them for predicting 

cost estimations. Comparison of Neural networks with 

traditional Cocomo, Halstead, Walston-Felix, Bailey-

Basili and Doty models has been done by several 

authors proving that Neural Network provides much 

better results than these models. 

Here we compared Neural Network techniques with one 

another. These techniques are Neural based One step 

secant back propagation based cost estimation model, 

Powell-Beale conjugate gradient model and Fletcher-

Reeves conjugate gradient model. 

These models can train any network as long as its 

weight, net input, and transfer functions have derivative 

functions. Back propagation is used to calculate 

derivatives of performance perf with respect to the 

weight and bias variables X. Each variable is adjusted 

according to the following: 

                                X= X + a*dX; 

Where dX is the search direction. The parameter a is 

selected to minimize the performance along the search 

direction. The line search function searchFcn is used to 

locate the minimum point. The first search direction is 

the negative of the gradient of performance. In 

succeeding iterations the search direction is computed 

from the new gradient and the previous steps and 

gradients, according to the formula: 

For One step secant back propagation: 

dx= -gX + Ac*X_step + Bc*dgX; 

Where gX is the gradient, X_step is the change in the 

weights on the previous iteration, and dgX is the change 

in the gradient from the last iteration. 

For Conjugate gradient back propagation with Powell-

Beale restarts: 

dX= -gX + dX_old*Z; 

Where dX is the gradient. The parameter Z can be 

computed in several different ways. The Powell-Beale 

variation of conjugate gradient is distinguished by two 

features. First, the algorithm uses a test to determine 

when to reset the search direction to the negative of the 

gradient. Second, the search direction is computed from 

the negative gradient, the previous search direction, and 

the last search direction before the previous reset. 

For Conjugate gradient back propagation with Fletcher-

Reeves updates: 

dX= -gX + dX_old*Z: 

For the Fletcher-Reeves variation of conjugate gradient 

it is computed according to 

Neuron with      

three inputs 
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Z = normnew_sqr/norm_sqr; 

Where norm_sqr is the norm square of the previous 

gradient and normnew_sqr is the norm square is the 

norm square of the current gradient. 

Training stops when any of these conditions occurs: 

 The maximum number of epochs is reached. 

 The maximum amount of time is exceeded. 

 Performance is minimized to goal. 

 The performance gradient falls below 

min_grad. 

 

5. PERFORMANCE CRITERIA 

In this paper MATLAB R2012a is used with Neural 

Network Toolbox for the development of neural based 

models. Perform the comparison of the models on basis 

of Mean Magnitude of Relative Error (MMRE). 

We considered the MMRE as the main performance 

measure. MMRE is computed from the relative error, or 

RE, which is the relative size of the difference between 

the actual and estimated value. 

Given a data set of size "D", a "Training set of size 

"(X=|Train|) <= D", and a "test" set of size "T=D-

|Train|", then the mean magnitude of the relative error, 

or MMRE, is the percentage of the absolute values of 

the relative errors, averaged over the "T" items in the 

"Test" set. 

Mean magnitude of relative error: 

(MMRE)= (1/T)*(MRE1+MRE2+…..MRET)  

Where T is total number of projects.MRE is the 

magnitude of the relative error. 

The objective of the study is deducing conclusions at 

the end that which one is better on the basis of MMRE. 

6. RESULTS AND CONCLUSIONS 

Table1. Data of Actual cost comparison with others 

Project Efforts 

of 

OSSBP 

Efforts  

of 

CGBPBR 

Efforts  

of 

CGBFRU 

Actual 

Efforts 

1 124.22 122.18 125.45 117.6 

2 112.40 113.81 116.28 117.6 

3 31.98 25.57 25.92 31.2 

4 32.89 27.55 27.73 36 

5 35.98 33.73 33.48 25.2 

6 24.79 6.28 9.05 8.4 

7 26.09 10.44 12.55 10.8 

8 358.60 351.49 338.74 352.8 

9 81.68 71.04 65.91 72 

10 35.29 128.75 158.73 72 

11 19.82 29.61 42.70 24 

12 354.41 359.64 358.90 360 

13 19.26 27.99 34.27 36 

14 214.39 215.30 199.10 215 

15 20.63 44.37 58.49 48 

 

Table2. Comparison On the basis of MMRE 

 

Model 

Used 

 

OSSBP 

 

CGBPBR 

 

CGBFRU 

 

Actual 

MMRE 0.393 0.163 0.233 0 

 

The performances of the Neural Network based effort 

estimation system are compared for effort dataset 

available with NASA. The results show that Neural 

Network based conjugate gradient back propagation 

Powell-Beale restarts has the lowest MMRE to Actual 

i.e. 0.163 and second best performance is shown by 

conjugate gradient back propagation Fletcher-Reeves 

updates i.e. 0.233. Hence, the proposed Neuro based 

system is able to provide good estimation capabilities. 

By using Neural Network techniques most accurate 

estimates can be made in future which are used in 

formulating complex relationship between the variables. 

It is suggested to use Neuro based techniques for 

estimating the all types of projects. 
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