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ABSTRACT
Significant research effort has been devoted in the study of ap-
proximation algorithms for NP-hard problems. In this work we
modify a known primal-dual approximation algorithm for facil-
ity location problem. Although we fail to give a performance
guarantee for the new approach but we show that our method
performs better in a tight case.
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1. INTRODUCTION
We will solve NP-hard problem in this work, namely the the
facility location problem. Good approximation algorithms are
known in the literature for this problem. Our objective is to seek
possible improvements in one of the approximation algorithms
for the facility location problem.

1.1 Facility location problem
An oil distribution company plans to set up a oil distributing sta-
tion in some of the chosen locations (potential facility sites). The
company has already figured out the cost of setting up the dis-
tribution station in each of these sites. The cost of supplying the
oil from each site to each city is also known. The objective of
this problem is to select some of the sites to setup the facilities
so that the total cost of setting plus the cost of supplying to all
the cities is minimized.
The above problem is an example of the facility location prob-
lem. Since the early 1960’s location problems have important
place in operation research. Facility location problems are help-
ful in taking decision to setup factories, hospitals, warehouse,
fire station. Some of the significant contributions to this problem.
include Stollsteimer [1], Kuehn and Hamburger [2], Manne [3].
A variant of the problem, called metric uncapacitated facility
location problem is described as follows. L is a set of location
where facilities may potentially be built. For every location in-
formation about the cost of building is given. C is a set of de-
mand points(cities) each of which has to be assigned to a func-
tional facility to receive service. A fixed one-time cost is known
to connect a given city to a given facility location. The objective
is to find a set of locations where facilities should be built and
associate each city to one of the built facilities such that the total
cost, the cost of facility building and the cost of connecting, is
minimized.

Cornuejols, Nemahauser and Wolsey [4] showed that Unca-
pacited facility location problem UFLP is NP-hard. Their results
extends to metric UFLP as well. Guha and Khullar [5] showed
that metric UFLP is APX-complete. Sviridenko [6] proved that
a performance guarantee of less than 1.467 can not be given for
an approximation algorithm for metric UFLP unless P = NP .
The first approximation algorithm for this problem was due to
Hochbaum [7] having O(logn) approximation guarantee. The
first constant factor approximation was due to Shymoys et. al.
[8] with 3.16 approximation guarantee. Subsequently Jain and
Vazirani [9] gave a 3-factor approximation algorithm. Guha and
Khullar [5] obtained 2.47 performance guarantee for this prob-
lem using Lp rounding and greedy augmentation. 1.52 perfor-
mance guarantee was obtained by Mahdin,Yeh, and Zhang [10]
using dual fitting and greedy augmentation in n3 running time,
where n is number of vertex in given graph. An optimal bi factor
approximation algorithm for the metric UFLP with 1.5 perfor-
mance guarantee proposed by Byrka and Aardal [11] is the best
known performance guarantee for this problem.
In this thesis we revisit Jain and Vazirani’s algorithm but we use
a different linear program for the problem in order to see if it
leads to an improved performance.

2. UNCAPACITED FACILITY LOCATION
PROBLEM

Let G be a bipartite graph with bipartition (F,D) where F ver-
tices denote the facility locations andD vertices denote the cities
or demand points. The edge weight cij for the edge (i, j) denote
the cost of setting up a supply route from facility location i to the
city j. We will denote |F | and |D| by nf and nd respectively. fi
denotes the cost of setting up the facility at location i.
The problem is to determine a subset S ⊆ F where the facilities
must be setup and an assignment φ : D → S of demand points
to facilities in S, so that

∑
i∈S fi +

∑
j∈D cφ(j)j is minimum.

3. JAIN AND VAZIRANI’S 3-APPROXIMATION
SOLUTION FOR UNCAPACITATED FACILITY
LOCATION PROBLEM

The problem is expressed as a linear program where yi is an indi-
cator variable denoting whether facility at i is open, and variable
xij to indicate whether demand point j is served by facility i,
integer programming formulation of this problem is as follows.
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minimize
∑

i∈F,j∈D

cijxij +
∑
i∈F

fiyi

subject to
∑
i∈F

xij ≥ 1, j ∈ D,

yi − xij ≥ 0, i ∈ F, j ∈ D,
xij ∈ {0, 1} i ∈ F, j ∈ D,
yi ∈ {0, 1} i ∈ F.

The first set of constraints ensures that each city is connected to
at least one facility, and second ensures that demand points are
served only by open facilities.
Consider the following LP-relaxation of UFLP.

minimize
∑

i∈F,j∈D

cijxij +
∑
i∈F

fiyi

subject to
∑
i∈F

xij ≥ 1, j ∈ D,

yi − xij ≥ 0, i ∈ F, j ∈ D,
xij ≥ 0, i ∈ F, j ∈ D,
yi ≥ 0, i ∈ F.

The dual program of UFLP is formulated as follows.

minimize
∑
j∈D

zj

subject to zj − pij ≤ cij , i ∈ F, j ∈ D,∑
j∈D

pij ≤ fi, i ∈ F,

zj ≥ 0, j ∈ D,
pij ≥ 0, i ∈ F, j ∈ D.

Let (x, y) and (z, p) be an optimal primal and dual solution re-
spectively.
The primal and dual complementary slackness conditions are as
follows.
Primal complementary slackness conditions:

∀i ∈ F, j ∈ D : xi > 0⇒ zj − pij = cij (1)

∀i ∈ F : yi > 0⇒
∑
j∈D

pij = fi (2)

Dual complementary slackness conditions:

∀j ∈ D : zj > 0⇒
∑
i∈F

xij = 1 (3)

∀i ∈ F, j ∈ D : pij > 0⇒ yi = xij (4)

Let i be a facility for which yi ≥ 0. Then
∑
j∈D pij = fi by

equation 2. Thus we can interpret that demand point j is willing
to pay amount pij to setup the facility at i. To open the facility at
i, the demand points have to pay cost fi. This interpretation can
also be seen as follows. Let j be a demand point that is not served
by i i.e., xij = 0. Since xij 6= yi from equation 4 implies that
pij = 0, hence dj does not contribute in setting up the facility at
fi, which it is not assigned to it.
To interpret equation 1 we define zj to be the cost paid by the
demand point dj towards its share of setting up of the facility
assigned to it and the cost of connecting dj with that facility.

3.1 Primal-dual schema based algorithm
Their algorithm consists of two phases. In the first phase a pri-
mal/dual solution is computed using the complementary condi-
tions. In the second phase the primal solution is refined.

3.1.1 Phase 1. In first phase they defined a notion of time so
that each event can be associated with time. This phase starts
with time t = 0 and each demand point is declared as uncon-
nected at the beginning. Following process is performed after
each unit of time. Dual variable zj is raised by a unit after each
unit of time elapses. For every j if there exists an i such that
zj = cij , the pair (i, j) is declared a tight edge. From now pij is
also incremented by one unit after every unit of time so the first
constraint of the dual program is never violated. Declare edge
(i, j) as special edge which has pij ≥ 0.
A facility i is said to be fully paid for if

∑
j∈D pij ≥ fi and de-

clare this facility temporarily open. All the demand points j are
said to be tight which are connected to the facility i and declare
i as connecting witness for those j. In future if any unconnected
demand point j gets connected with i declare (i, j) a edge but not
special because of pij = 0 and declare i as connecting witness
for this demand point j. When all demand points get connected
with some temporarily open facility, first phase terminates.

3.1.2 Phase 2. In phase-1 a demand point may get attached
to more than one facility. Since each such point only needs to
be attached to only one facility, we select one facility for each
demand point in the second phase.
Let Ft denotes the set of temporarily open facilities and T de-
notes the subgraph of G comprising all special edges. Graph T 2

is defined on the same vertices but (u, v) is defined an edge iff
there is a path between u and v in T having length at most 2. Let
H be the subgraph of T 2 induced on Ft.
Compute a maximal independent set I in H . Declare the facil-
ities in I to be permanently open. Each city will have at most
one neighbor in I in H . If a city j has a neighbor i in I , then
define φ(j) = i. Otherwise select any vertex i′ in Ft which is
its connecting witness (which is ensured in the first phase). If
i′ ∈ I , then set φ(j) = i′. Otherwise due to maximality of I as
an independent set, there must be a neighbor of i′ in I , say i′′.
Set φ(j) = i′′.

3.2 Analysis of the Algorithm
Dual variable zj comprises the primal costs of connecting cities
to facilities and the cost of opening the facilities. If j is connected
in H to φ(j) = i, then define zmj = pij and znj = cij . If j is not
connected to φ(j) = i, then zmj = 0 and znj = zj .

LEMMA 1. Let i ∈ I then,∑
φ(j)=i z

m
j = fi.

PROOF. In phase-1 facility i was temporarily open and only
special edges contributed to open it, i.e.,∑

(i,j)is special edge
pij = fi

COROLLARY 1.
∑
i∈I fi =

∑
j∈D z

m
j

Note that only the directed connected demand points contributed
to open facilities. Also if a city j was connected to the facility
i = φ(j) in H , then znj = cij . The only case that needs to be
addressed is when j was not connected to i in H . In this case it
was connected to some i′ which was a neighbor of i. So we need
to relate ci′j which is accounted for in zj and ci′j which actually
occurs in this solution.

LEMMA 2. cij ≤ 3zmj , for all indirectly connecting witness,
where φ(j) = i.

PROOF. Since j is indirectly connected to i so there must be
a tight edge (i′, j) and an edge (i, i′) in H . Since H = T 2, there
must be a city j ′ such that (ij ′) and (i′j ′) are both edges in T ,
i.e., both are special edges. Thus zj′ ≥ cij′ and zj′ ≥ ci′j′ . Since
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both edges are special, they must have gone tight before i and i′
both were declared temporarily open. Let t1, t2 be times at which
i and i′ were declares temporarily open. So zj′ ≤ min{t1, t2}.
On the other hand i′ is the connecting witness of j so zj ≥ t2 ≥
zj′ . Putting these inequalities together we have zj ≥ cij′ and
zj ≥ ci′j′ . From triangular inequality cij ≤ 3zj = 3zmj .

We have the following result which establishes that this algo-
rithm gives a 3 approximation.

THEOREM 1. The primal and dual solutions constructed by
the algorithm hold following inequality∑
i∈F,j∈D cijxij + 3

∑
i∈F Fiyi ≤ 3

∑
j∈D zj

This analysis is tight and it can be seen by the following example
1.

3.3 A Tight Example

Fig. 1. Graph of Tight Example

The graph in figure1 has n cities d1, . . . dn and two facilities f1
and f2. Cost c11 = 2, c1j = 3 for all j > 1, and c2j = 1
for all j ≥ 1. The opening cost of f1 and f2 are ε and (n +
1)ε, respectively, for a small positive ε ≤≤ 1. The Jain-Vazirani
algorithm computes a solution in which f1 is open and all cities
are served by it. This leads to a total cost of 3n− 2 + ε. It about
three times the optimal cost n+ (n+1)ε in which only f2 must
be open and all cities must be associated with it.

4. MOTIVATION
It is easy to see that in the above example the optimal solution
opens the facility only at f2. But the above algorithm fails to
achieve the optimal solution even for such a simple situation.
This shows that the algorithm needs to be improved.
In the following section we modify the algorithm by describing
the conditions of the problem using an alternative linear program
and again try to devise an algorithm using primal-dual technique.

5. PRIMAL-DUAL METHOD TO SOLVE UFLP
WITH ALTERNATE LINEAR PROGRAM

We again attempt to solve this problem using primal-dual method
but we will consider an alternative linear program. We will for-
mulate linear program for uncapacitated facility location prob-
lem by first writing the LP for the capacitated facility location
program and then take its restriction to uncapacitated case.

5.1 Capacitated Facility Location Problem (CFLP)
Let G be a bipartite graph with bipartition (F,D) where number
of facility locations nf = |F |, the number of demand points
nd = |D|, the costs of opening facilities fi,1 ≤ i ≤ nf , the
demands dj , 1 ≤ j ≤ nd and the connecting costs cij , 1 ≤ i ≤
nf , 1 ≤ j ≤ nd. A city j requires rj supply and it may procure it
from one or more locations. The supply from facility i to the city
j is charged at the rate of cij per unit. Furthermore, if a facility
is built at fi, then it will have a capacity of si. It will be able to
supply at most si units.
The solution includes a subset S ⊆ F and an assignment
α : S × D → R where facilities will be open at all locations
in S and α(i, j) (equivalently, αij) denotes the amount of prod-
uct being supplied by facility i to the city j. The objective is
to minimize

∑
i∈S(fi +

∑
j∈D cijαij) subject to the conditions

that
∑
j α(i, j) ≤ si for all i ∈ S and

∑
i∈S αij ≥ rj for all

j ∈ D.
Consider the following integer program for this problem. In this
program, yi is an indicator variable denoting whether facility i is
selected for opening.

minimize
∑

i∈F,j∈D

cijαij +
∑
i∈F

fiyi

subject to
∑
i∈F

αij ≥ rj , j ∈ D,

siyi +
∑
j∈D

−αij ≥ 0, i ∈ F,

αij ≥ 0, i ∈ F, j ∈ D,
yi ∈ {0, 1}, i ∈ F.

LP-relaxation of CFLP is as follows.

minimize
∑

i∈F,j∈D

cijαij +
∑
i∈F

fiyi

subject to
∑
i∈F

αij ≥ rj , j ∈ D,

siyi +
∑
j∈D

−αij ≥ 0, i ∈ F,

αij ≥ 0, i ∈ F, j ∈ D,
yi ≥ 0, i ∈ F.

The dual program for CFLP is as follows.

minimize
∑
j∈D

zj

subject to zj − pi ≤ cij , i ∈ F, j ∈ D,
sipi ≤ fi, i ∈ F,
zj ≥ 0, j ∈ D,
pi ≥ 0, i ∈ F.

The dual variables may be interpreted as follows. zj represents
the total cost incurred by city j and pi denotes the setup cost per
unit supply.
Primal complementary slackness conditions:

∀i ∈ F : yi > 0⇒ pisi = fi (5)
∀i ∈ F, j ∈ D : αij > 0⇒ zj − pi = cij (6)

Dual complementary slackness conditions:

∀i ∈ F : pi > 0⇒ siyi −
∑
j∈D

αij = 0 (7)

∀j ∈ D : zj > 0⇒
∑
i∈F

αij = rj (8)
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For a k-approximation we relax these conditions as follows:
Relaxed primal complementary slackness conditions:

∀i ∈ F : yi > 0⇒ fi/(ksi) ≤ pi ≤ fi/si (9)
∀i ∈ F, j ∈ D : αij > 0⇒ cij/k ≤ zj − pi ≤ cij (10)

Relaxed dual complementary slackness conditions:

∀i ∈ F : pi > 0⇒ siyi −
∑
j∈D

αij ≥ 0 (11)

∀j ∈ D : zj > 0⇒
∑
i∈F

αij = rj (12)

Algorithm 1 is the heuristic algorithm for capacitated case.

Algorithm 1 Primal-Dual Algorithm for a given k
1. Initialize all dual variables to zero;
2. Initialize an empty graph H over vertices D ∪ F ;
3. Unlock all zj’s and lock all pi’s;
4. repeat
5. Raise all unlocked dual variables with time till one of the

following events occur (i) cij/k = zj for some i, j or
(ii) zj = cij − pi for some i or (iii) pi = fi/si;

6. if for each i, j such that cij/k = zj is just realized then
7. Set pi = fi/(ksi);
8. end if
9. if For each i, j such that cij = zj − pi is just realized

then
10. Add the edge (i, j) in H;
11. end if
12. if pi < fi/si then
13. Unlock pi;
14. end if
15. if pi = fi/si is just realized then
16. Lock pi;
17. end if
18. if cij = zj − pi then
19. Lock zj ;
20. end if
21. if Graph changes from the previous iteration then
22. Solve the following LP:siyi−

∑
j αij ≥ 0 for all iwith

degree greater than zero,
∑
i αij = rj for feasibility;

23. end if
24. if Feasible then
25. Report solution;
26. else if H is a complete bipartite graph then
27. Report no solution and stop.
28. end if
29. until A solution is realized or no solution is found feasible

Due to the demand and supply parameters rj and si, we find it
difficult to determine a value of k for which a solution can be
guaranteed. Hence we propose this solution as a heuristic ap-
proach. For an instance of a problem one can run this algorithm
for increasing values of k till a solution is found.

5.2 Adopting the algorithm to uncapacitated case
In order to specialize the algorithm for capacitated case to un-
capacitated case we need to reinterpret si’s and rj’s. Since in
the latter case only one connection from each city to a facility is
required, we may define rj = δ ≤≤ 1.
To define si recall the primal condition siyi ≥

∑
j αij . To en-

able the case when all cities choose to connect to the same facil-
ity, we define each si equal to |D| = nd.
The LP in the above algorithm is no longer required in the un-
capacitatted case. In stead, it is sufficient to check if each city is
connected to at least one facility. It is possible that a city may

get connected to more than one facility. Hence we need to prune
out unnecessary connections. Hence we randomly remove edges
until the degrees all cities reduce to one.
Algorithm 2 is the heuristic algorithm for uncapacitated case.

Algorithm 2 Primal-Dual Algorithm for a given k
1. Initialize all dual variables to zero;
2. Initialize an empty graph H over vertices D ∪ F ;
3. Unlock all zj’s and lock all pi’s;
4. repeat
5. Raise all unlocked dual variables with time till one of the

following events occur (i) cij/k = zj for some i, j or
(ii) zj = cij − pi for some i or (iii) pi = fi/nd;

6. if for each i, j such that cij/k = zj is just realized then
7. Set pi = fi/(knd);
8. end if
9. if For each i, j such that cij = zj − pi is just realized

then
10. Add the edge (i, j) in H;
11. end if
12. if pi < fi/nd then
13. Unlock pi;
14. end if
15. if pi = fi/nd is just realized then
16. Lock pi;
17. end if
18. if cij = zj − pi then
19. Lock zj ;
20. end if
21. if All cities are connected to at least one facility then
22. repeat
23. Randomly prune edges;
24. until The degree of all cities reduce to one
25. end if
26. Return H and stop.
27. until A solution is realized

In order to test this algorithm we ran it on the tight example. It
resulted into a graph in which each city was connected to f2. We
further ran the algorithm on the same example but took ε to very
very large. In that case all cities were connected to f1. In each
case, the solutions were optimal.

6. CONCLUSION
We revisited the uncapacitated facility location problem and its
algorithm given by Jain and Vazirani. We gave a heuristic algo-
rithm derived from primal-dual schema which perform better on
a tight example compare to performance of Jain and Vazirani.
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