
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

41

 Unit Testing Concurrent Java Programs

Suma Shivaprasad

Staff Engineer,
Inmobi India, Bangalore

Nanditha Prasad
Assistant Professor, Department of Computer

Science
Government Science College, Bangalore

ABSTRACT

Conventional unit-testing practices focus on testing small units of

programs sequentially and are very likely to miss concurrent

bugs such as race conditions, deadlocks and memory

inconsistencies even when done extensively. They are not

suitable for unit testing multithreaded programs.

This paper outlines guidelines for writing effective unit tests for

concurrent Java programs. It also explores and compares the

frameworks available currently for writing such tests. The most

widely used unit testing frameworks for Java - TestNG and JUnit

- do not provide good support for testing concurrent issues. Other

frameworks such as MultiThreadedTC and Concurrency

Analyzer allow the coordination of unit test’s threads to produce

a specific scheduling. However, it is the responsibility of the

developer to test for all possible interleavings and scheduling of

threads to unearth existing bugs and hence they are a

deterministic way of approaching the problem.

This paper presents an alternate approach to the problem by

integrating TestNG with the Java Path Finder(JPF) software

model checker. JPF can be used to identify all possible

interleavings of threads across execution paths to non

deterministically detect concurrent bugs. In addition to this, it

detects deadlocks by checking if all the threads have reached a

blocked state at any point of execution. Adoption of such

practices have helped in reducing concurrency related issues in

our platforms to a great extent. It has helped in identifying issues

early on in the development cycle and better reliability. Many

open source platforms such as Ehcache run concurrent unit tests

as part of their development process to maintain code quality.

This, augmented with stress testing concurrency tools greatly

help in improving the quality of code.

GENERAL TERMS

Software Engineering, Unit Testing, Concurrent Unit Testing

KEYWORDS

Concurrent Programming, TestNG, Java Path Finder, JUnit,

Model checking, Thread scheduling, Deadlocks, Concurrent Unit

Testing, ConAN, MultithreadedTC, ConTest.

1. INTRODUCTION

With usage of multi-core processors, concurrent programming is

getting prominence. Writing good concurrent unit tests is as hard

as writing good concurrent programs. Multithreaded programs

are prone to concurrency bugs that depend on timing and

scheduling of the program’s threads. Common concurrency

issues encountered such as deadlocks, livelocks, memory

inconsistencies, race conditions are found only in system tests,

functional tests, or by the user. Conventional unit testing is

unsuitable for detecting concurrency bugs in multi-threaded

programs due to their non-deterministic nature. They run

sequentially with only one thread executing the code. The

probability of uncovering a concurrency bug by running the test

once is low. Other approach is to run these test cases many times.

However running a unit test repeatedly without enforcing

different scheduling is not efficient enough to reveal concurrency

bugs. Unit tests are also free from I/O causing the scheduler to

produce the same scheduling during repeated test runs.

For multithreaded programs, test inputs need to be varied and

various code execution paths/state space to be explored

considering temporal ordering of events. Tailoring thread count

so that the number of runnable threads at any time is a small

multiple of the processor count will often result in a more

interesting variety of interleavings/schedulings. A concurrent

unit test succeeds if all possible interleavings have been

examined and all of them have produced the expected results.

Otherwise, the test fails, either because of an “ordinary” bug or a

“concurrency” bug. Although the number of possible

schedulings of a program grows exponentially with the

program’s length, unit tests in general are very short. Therefore,

the number of possible schedulings of a concurrent unit test is

small enough to explore all of them.

Compared to concurrency bug detection tools, concurrent unit

testing offers some advantages [1, 2]. Most of these tools define

certain correctness criteria about the program’s synchronization.

Eg., A potential data-race if not all accesses to a shared variable

are protected by a common lock. These correctness criteria are

often limited to specific kinds of concurrency bugs. Based on the

run-time observations or the source code analysis, the tools Eg.,

FindBugs decide whether these correctness criteria are violated

or not. Depending on the correctness criteria, concurrency bug

detection tools may report false positives and leave concurrency

bugs undetected. As opposed to that, concurrent unit testing does

not use any pre-defined correctness criteria. Correctness criteria

are specified by the developer of concurrent unit tests explicitly

as assertions. Concurrent unit tests must fulfill these assertions in

all possible schedulings. If a scheduling is found in which the

developer’s assertions are violated, and the result depends on the

actual scheduling, then the test found a concurrency bug [3, 4].

This approach is more general, as it is not limited to a certain

kinds of concurrency bugs, but can detect data races, atomicity

violations, and order as well. Furthermore, concurrency bug

detection tools usually require a running program for their run-

time analysis, while concurrent unit testing requires only

working units. Therefore, concurrent unit testing can be used

earlier in the development process and can be integrated with

Continuous Integration during commit builds.

2. GUIDELINES FOR DESIGNING

CONCURRENT UNIT TESTS

Since testing concurrent code is difficult, designers are expected

to spend more time designing and executing concurrent tests than

spent for sequential ones. The guidelines to be considered when

designing and running tests for concurrent programs are:

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

42

 Tests are Probabilistic: Finding concurrent bugs is

probablistic given that the test cases are probabilistic as

well. Run Tests for longer duration to increase the

probability of finding concurrent bugs.

 Explore more of the State Space: Explore all the code

paths with temporal considerations which includes relative

orderings of events. For example, in a Bounded Queue test,

explore all the relative timings of insertion and removal.

 Explore more Interleavings: Run multiple threads with

preemptions introduced in synchronized blocks to increase

the likelihood of finding race conditions and deadlocks.

 Match Thread Count to the Platform: Tailoring thread

count so that the number of runnable threads at any time is a

small multiple of the processor count will often result in a

more interesting variety of interleavings.

 Avoid introducing Timing or Synchronization artifacts:

Concurrent data structures Eg. A shared queue requires

synchronization when shared across threads. If unit test

framework introduces its own synchronization, it might

disturb the timing and scheduling of the tested component.

3. EXISTING CONCURRENT TESTING

FRAMEWORKS

The most widely used unit testing frameworks for Java in

companies worldwide are TestNG and JUnit. Although TestNG

provides some features that JUnit doesn’t, such as dependent and

data driven tests, neither of the frameworks includes adequate

support for addressing the problems posed by concurrency. They

only facilitate parallel execution of the tests which does not add

any benefit; they do not actively attempt to vary or influence the

scheduling of threads. Hence, none of these tools are reliable

enough to detect concurrency bugs, and cannot show that a

concurrent test produces the expected results independently from

the scheduling.

3.1 MultithreadedTC

MultithreadedTC is an opensource framework that allows a test

designer to exercise a specific interleaving of threads framework

in an application. It features a clock that allows test designers to

coordinate threads even in the presence of blocking and timing

issues. It can also detect deadlocks and livelocks. The main

drawback is that the developer has to write a specific sequence of

interleaving threads to test the system for concurrency

conditions. The responsibility of determining the scheduling and

interleaving of the threads totally rests on the developer. So,

some of these combinations might get missed out [5].

3.2 ConAn

Concurrency Analyzer is a script-based test framework that, like

MultithreadedTC, uses a clock to synchronize the actions in

multiple threads. Again, the responsibility rests with the

developer to determine the scheduling and interleaving of the

threads while writing test cases and there are chances of them

getting missed out [6].

3.3 ConTest

ConTest is an internal IBM Framework that works with existing

tests and no code change is required. Basically it records and

replays thread interleavings that lead to faults by manipulating

bytecode. It uses sleep() and yield() to test different interleavings

each time a test is run. It also detects deadlocks and provides

synchronization coverage. Synchronization coverages measures

how much contention exists among synchronized blocks and

allows the developers to visualize whether they have covered

interesting interleavings. Main disadvantages are that its

algorithm also modifies the original program to add

synchronization and it is proprietary [7, 8].

4. PROPOSED APPROACH

4.1 JPF and TestNG Integration

This approach proposes a concurrent unit testing framework

which combines unit testing of TestNG and model checking of a

framework called Java Path Finder(JPF) to detect concurrency

bugs by exploring reachable code state space including all thread

interleavings.

TestNG was chosen since it is recommended and used by the

various companies throughout the world and provides better

features than JUnit. This framework is an extension to TestNG

and supports all existing functionality of TestNG [9, 10].

Figure 1 : Testing Vs Model Checking

Model checking is a formal method that exhaustively explores all

possible system under test behaviours. For example, if we have a

program that uses a sequence of random values: testing always

processes just one set of values at a time, and we have little

control over which ones. But Model checking does not stop until

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

43

it has checked all data combinations or has found an error as

illustrated in Figure 1.

Mapping it to a concurrent programming example, all we know

is that different scheduling sequences can lead to different

program behavior (e.g. if there are data races), but there is little

that can be done in conventional tests to force scheduling

variation. There are program/test spec combinations which are

"untestable".

JPF is an explicit state software model checker for Java bytecode

which implements a backtrackable state tracking JVM and runs

on top of a host JVM. Being a virtual machine, JPF model

checker has complete control over all threads of our program,

and can execute all scheduling combinations. It explores all

possible execution paths of a java program without recompiling

[11].

Figure 2:

JPF works only for < 10 KLOC programs. The formula below in

Fig 2 illustrates the possible number of states given the number

of threads(P1, P2, …Pn) , each thread having ni atomic

instruction sequences. For 2 threads with 2 atomic sections each

this gives us 6 different scheduling combinations. For 8 sections

the result is 12870, 16 sections yield 601080390 interleavings.

Figure 3 : Thread Interleavings

Since unit tests are small units of code, state explosion is not a

concern. Moreover, JPF uses partial order reduction to limit state

space explosion which helps in reducing the execution time for

unit tests. JPF also detects deadlocks by checking the state of all

threads. If all the threads reach a blocked state, then they are

presumed to be deadlocked.

Since JPF itself acts as a special JVM, it can only operate with

Java applications i.e it requires a main() method. Unit tests

generally do not have this and hence to bring JPF and unit tests

together, a small wrapper program was developed which wraps

the unit tests with a main() method. For each concurrent unit test,

the framework invokes JPF to run the wrapper program with

configurable options. The wrapper instantiates the test case class

and invokes the test methods. The wrapper program is also

responsible for starting up the threads and initializing the barrier

with the given number of threads. JPF Output can be analyzed

through its listener interfaces. Using this interface, the

framework observes execution of concurrent unit tests and their

failures. If an exception is thrown by the test, the wrapper checks

if it is an unexpected exception or an appropriate one.

4.2 Architecture

The integrated concurrent unit testing framework ConTestNG

Framework is provided as Java library to facilitate reuse in other

Java Applications. The integrated framework invokes JPF for

each concurrent unit test and observes the JPF output for

exceptions, which indicate potential bugs. Inside the core

framework, ConTestNGListener depends on two interfaces:

JPFListener and TestNGListener. The JPFListener notifies about

thread scheduling, violations such as deadlocks and complete

execution history. TestNGListenerAdapter notifies about

assertion violations and other uncaught exceptions thrown by

TestNG. ConTestNGListener processes results from both

interfaces and provides uniform interface to Eclipse plug-in.

Since JPF executes in its VM, exceptions thrown by

TestNGListenerAdapter are accessible in host VM through the

JPF Model Java Interface(MJI). It allows execution of classes

under host VM instead of JPF VM through a Peer counterpart

class for TestReportListener.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

44

Figure 4 : JPF and TestNG Integration

4.3 Sample Concurrent Unit Test

4.3.1Tested Class:

public class RaceConditionWorkQueue {

private LinkedList<String> queue = new LinkedList<String>();

 public void enqueue(String str) {

 synchronized (queue) {

 queue.addLast(str);

 lock.notifyAll();

 } }

 public int getCurrentWorkPoolSize() {

 return queue.size(); }

 public void work() {

 String current;

 synchronized(queue) {

 if (queue.isEmpty()) {

 try {

 lock.wait();

 } catch (InterruptedException e) {

 assert(true);

 } }

 current = queue.removeFirst();

 } System.out.println(current); }

4.3.2 Unit Test Class:

public class RaceConditionWorkQueueTest {

private RaceConditionWorkQueue tested;

@BeforeMethod

public void init() {

tested=new RaceConditionWorkQueue(); }

@Test()

public void testSequentialEnqueue() {

UUID jobUUID = UUID.randomUUID();

String jobName = jobUUID.toString();

tested.enqueue(jobName);

try {

assertEquals(tested.getCurrentWorkPoolSize(), 1);

} catch (InterruptedException ie) {

 ie.printStackTrace(); } }

@ConcurrentTest()

@Test(threadPoolSize = 6)

public void testConcurrentEnqueue1() {

UUID jobUUID = UUID.randomUUID();

String jobName = jobUUID.toString();

tested.enqueue(jobName);

try {

ConUnitTestBarrier.waitForAllThreads();

assertEquals(tested.getCurrentWorkPoolSize(), 6);

} catch (InterruptedException ie) {

 ie.printStackTrace();

} }

@ConcurrentTest

@Test(threadPoolSize = 6, dependsOnMethods = {

"testConcurrentEnqueue1" })

public void testConcurrentWork1() {

 tested.work();

try {

 ConUnitTestBarrier.waitForAllThreads();

assertEquals(tested.getCurrentWorkPoolSize(), 0);

} catch (InterruptedException ie) {

 ie.printStackTrace();

} }

@ConcurrentTest(threadGroup = "concurrent")

@Test(threadPoolSize = 6)

public void testConcurrentEnqueue2() {

 UUID jobUUID = UUID.randomUUID();

 String jobName = jobUUID.toString();

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

45

tested.enqueue(jobName);

try {

 ConUnitTestBarrier.waitForAllThreads();

} catch (InterruptedException ie) {

 ie.printStackTrace();

} }

@ConcurrentTest(threadGroup = "concurrent")

@Test(threadPoolSize = 6)

public void testConcurrentWork2()

 {

tested.work();

try {

 ConUnitTestBarrier.waitForAllThreads();

} catch (InterruptedException ie) {

 ie.printStackTrace(); } } }

4.3.3 Annotations/Helper Classes provided by

Framework

 ConcurrentUnitTest – to distinguish a concurrent unit test.

 threadGroup – can be used to group two similar test cases

to be run concurrently.

 threadPoolSize – no of threads

 ConTestNGBarrier – provides a construct to await for all

threads to terminate

Only the tests which are annotated as “ConcurrentUnitTest” are

run through JPF and all other tests are run through the sequential

TestNG flow. This also allows the developer to retain the

existing tests as it is and no code change is required to run them

through the framework.

In section 4.3.1, the source code for the

RaceConditionWorkQueue class under test is depicted. It is a

typical producer/consumer based work queue. It has two

methods enqueue and work to submit and assign work

accordingly. Conflicting access to the queue are avoided through

the use of a synchronized block in enqueue and work functions.

And also in section 4.3.1 unit test class for the

RaceConditionWorkQueue class is shown.

RaceConditionWorkQueue class is instatianiated before each unit

test through the Init method() since it is annotated with

@BeforeMethod. The first unit test cases

testSequentialEnqueue() checks whether enqueue method works

fine in a sequential case. The next testcase

testConcurrentEnqueue1() checks whether the same method

executes correctly if called from multiple threads concurrently.

The unit test uses the thread pool size annotation threadPoolSize

to specify the number of threads executing the test. The

concurrent unit testing frameworks starts the specified number of

threads.

The static helper class ConUnitTestBarrier.waitForAllThreads()

provides a synchronization construct. It implements a barrier

which can be used to ensure that the threads finish executing the

concurrent block before verifying the assertions. The barrier is

initialized with the number of threads specified in thread pool

annotation. An assert is done to check if the current work pool

size matches the expected size.

The next testcase testConcurrentWork1(): verifies the work

method of RaceConditionWorkQueue in concurrent

environment. The dependsOnMethod annotation is used to

ensure that the workqueue is initialized with the required number

of work items before the current testcase is executed.

The thirds set of test cases: testConcurrentEnqueue2

and testConcurrentWork2 use a thread group annotation that can

be used to test two or more test methods that can be called

concurrently from separate threads. These two tests checks for

concurrent issues during parallel execution of enqueue and work

through all possible thread interleavings. this simulates real time

usage of this class.

4.4.4 Differentiating between Sequential and

Concurrent Bugs

The results of the concurrent unit test with different schedulings

are compared to each other. There are three basic cases. If the

test fulfills the developer’s expectation in all possible

schedulings, then the test succeeds. If there are schedulings

fulfilling the developer’s expectations while there are others

violating the assertions or triggering run-time errors, then it is

obviously a concurrency bug. Finally, if the test does not fulfill

the expectations in any of the possible schedulings, then further

analysis is needed to determine whether it’s a sequential or

concurrency bug. The exception thrown during fault-triggering

schedulings holds enough information to tell concurrency and

ordinary bugs apart in most cases. The exception’s type gives

details about the type of the failure, its stack trace about the place

where the failure has occurred, its message and the causing

exception(in case of a chained exception).

5. RESULTS & EVALUATION

The proposed framework reliably detects deadlocks, race

condition, atomicity violations and order violations. Out of a

total of 258 unit tests for one of the platforms, 47 were written as

concurrent unit tests. As observed in the results shown in Figure

5, concurrency issues were identified in 15 of the tests.

Figure 5 : Results

The existing unit tests do not require code change except for

adding annotations. The developer doesn’t need to specify a

specific sequence of interleaving threads to test the system for

0 50 100 150 200 250 300

Failed

Passed

Total no of tests

Sequential Concurrent

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

46

concurrency conditions. All possible thread schedulings and

interleavings are automatically explored by JPF. The framework

does not modify the original code to add synchronization. Hence

it does not interfere with the timing and scheduling of the tested

component. This framework helped in identifying issues early

and reduced investigation time and effort required for such issues

in production.

6. LIMITATIONS

JPF cannot work on native code. JPF configuration is not that

extensible and flexible.

7. CONCLUSION

JPF requires a running application and can be run only in later

stages of development or testing. The proposed framework

solves this issue by integrating JPF with TestNG for concurrent

unit testing Adoption of such practices have helped in reducing

concurrency related issues in our platforms to a great extent.

Issues are being identified early in the development process and

this has led to better reliability. Time and effort required for

testing and debugging such issues in production has also been

reduced dramatically.

The proposed framework can not only be used for concurrent

unit testing but also for other unit test cases like boundary

condition violations etc, for which JPF already provides

extensions. JPF has very active contributions from open source

community and the framework can be extended to use such

extensions in future.

8. REFERENCES

[1] W.Pugh and N.Ayewah. Unit testing concurrent software. In

ASE’)7: Proceedings of the twenty-second IEEEE/ACM

International Conference on automated software

engineering, ACM, pages 513-516, NY,USA, 2007.

[2] B.Long, D.Hoffman, P.Strooper. Tool Support for testing

concurrent Java components, IEEE Transactions on

Software Engineering,29(6):555-566, 2003.

[3] Brain Goetz, Joshua Bloch, Tim Peierls, Java Concurrency

in Practice, Addison Wesley, July 2009.

[4] Doug Lea. Concurrent Programming in Java, Second

Edition. Addison –Wesley 2000.

[5] MultithreadedTC.http:/code.google/p//multithreadedTc.com

[6] B. Long. Testing Concurrent Java Components. PhD thesis,

The University of Queensland, July 2005.

[7] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir,

Gil Ratsaby, Shmuel Ur: Framework for testing multi-

threaded Java programs. Concurrency and Computation:

Practice and Experience 15(3-5): 485-499, 2003 .

[8] Orit Edelstein, Eitan Farchi, Yarden Nir, Gil Ratsaby, and

Shmuel Ur Multithreaded java program test generation. IBM

Systems Journal, 41(1):111–125, 2002.

[9] C. Beust and A. Popescu. Testng: Testing, the next

generation. http://www.testng.org, 2007.

[10] TestNG unit testing framework http://testng.org The JPF

Testing Framework http://JPF.sourceforge.net

http://testng.org/

