
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

29

Detecting and Scheduling Badsmells using Java Agent

Development (JADE)

S.Ayshwarya Lakshmi
Assistant professor
University college of

Engineering
Panruti.

S.Shanmuga Vadivu
M.E (Computer Science)

University college of
Engineering, Trichirapalli.

A.Ramachandran
Assistant professor
University college of

Engineering
Panruti.

ABSTRACT
For any software developer it is a fact that as source code is

developed, it becomes large and complex .As the code

becomes large and complex it moves from its original design

and reduces the quality of code. These which reduce the code

quality are termed as Bad Smells by experts [1].The methods

of removing these Bad Smells are called as Refactoring.

These Bad smells have so far been detected and removed

manually or semiautomatically.In this paper we say about the

automatic detection and resolution of Bad smell with the help

of JADE (Java Agent Development Environment).JADE is a

middleware developed in Java.

General Terms

 Software Refactoring, Agent Based Software Engineering.

Keywords

 Bad Smells, Refactoring, Detection and Scheduling

1. INTRODUCTION

1.1 What is Refactoring
Refactoring is used to give a good internal structure to the

object oriented Software. The way of reducing the complexity

in the software without affecting its behavior .This cleans up

all the complexity in the source code and makes it easier to

understand[1].Though there are many tools to develop

software they just provide to add new enhancement to the

source code which in turn increases the code size and

complexity. This then reduces the design of the software.

Normally Developers do not concentrate on design in the

early stage of development but during quality analysis and

maintenance this becomes a problem. Hence the technique

developed to reduce this problem of complexity in the source

code of an object oriented system is called as refactoring.

1.2 Sequencing Bad Smells
Bad Smells are terms coined by experts such as Fowler et al

[3]. Let us consider an example for the term badSmells.Long

Method is a bad smell in Object Oriented Systems. These

method make the code to have too many responsibility .This

makes it difficult to understand and maintain. Hence the way

to Refractor this type of Code Smell is to Split the method that

is to extract the method in to smaller methods.

The way to Refactor these bad smells has been done in two

ways [5] [6] XP-Style and Batch Model. XP-style in which

bad smells are found only in few files. Batch model in which

Smells in large system are refactored in one attempt kind.

There are in fact two schemes to detect bad Smells. One is

Kind Level Scheme and the other is Instance Level Scheme. In

Instance level scheme only one kind of Bad Smell is detected.

Where as in kind Level scheme different kind of bad smells

are detected. Our paper focuses to sort different kind of bad

smells and refactor them based on the refactoring rules. These

bad smells are detected and scheduled using agent which

analyses the bad smells in the source code and uses the

algorithm provided to it to sequence the bad smell and then

refactors the source code.

When one type of Bad smell is found the other type of bad

smell could then be detected and resolved. (i.e) if large class

is detected first long method in it could be solved. Similarly

long parameters could then be resolved. Hence we need to

provide the proper sequence for finding the Bad Smell and

then removing it.

1.3 TYPES OF BAD SMELLS

1.3.1 Long Method:
These are code smells where a source code contains large

amount of lines (i.e.) if for rule we say loc>20, then we say it

long method. The logic is also complex and difficult to

understand.

1.3.2 Large class:
In this the class is so large (i.e.) the work done is more and the

line of code is also very high.

1.3.3 Long Parameter List:
The number of parameter for an method might be so large.

Such type of smells are called long parameter list.

1.3.4 Feature Envy:
A method or fragment of method interested in the features of

another class.

1.3.5 Primitive Obsession:
Some may not be interested in using objects and use a number

of primitives. The way of using object in case of primitives.

1.3.6 Useless field, Class Method:
Methods, fields and classes which are defined and not used.

Here we perform a pair wise Analysis of the bad smell. (i.e) if

a useless class is removed useless methods in it could be

removed simultaneously.

Analysis of Bad smells using pair wise analysis is shown in

Figure 2. The vertexes represent the type of bad smells the

resolution sequences are given in as the adjacent vertices of

the edges [5]. This graph in Figure 2 is so complex and

redundant hence there occurs a need to sequence these bad

smells by removing the redundancies.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

30

Figure 1. Pair wise resolution sequences of bad smells

These redundancies are removed using topological sorting

algorithm. The graph of the algorithm shown in Figure 4. The

algorithm is as such if there are two paths from v1 to v2 one of

the redundant path from v1 to v2 could be removed (i.e) if

there is a parallel edge of e(v1,v2). Then, e (v1, v2) could be

removed.

Figure 2. Algorithm for removing redundancies

Figure 3. Graph of Redundancy removing Algorithm

In this paper these Bad Smells are detected automatically and

then resolved. This is done with the help of JADE, an Agent

development environment. The rest of the paper is depicted as

follows: Section 2 says about the way the bad smells are

removed.Section 3 presents a short view of related work.

Section 4 talks about agents and JADE. Section 5 about the

Analysis and Section 6 about conclusion.

Figure 4. Resulting sequence of bad smells

2. REFACTORING TECHNIQUES
 Once a Bad smell has been detected we then can apply

refactoring techniques to remove these bad smells. Some of

the bad smells and refactoring techniques are given below.

Long Method

Useless Field Duplicate code

Useless Class

Useless Method

Simple Primitive

Obsession

Feature Envy Complex

Type Code

Large Class

Long Parameter List

Long Method

Useless Field Duplicate code

Useless Class

Useless Method

Simple Primitive

Obsession
Feature Envy

Complex

Type Code

Large Class

Long Parameter List

1

2

3

4

5

6
7

8

9
10

11

12
13

14

15
16

17

18

19

/* Input: Directed graph with redundancies
 Output: Directed graph without redundancies */

for each vertex v in the graph

 {
 for every edge e(v,d) in vertex v

 {

 if present some other path p1(v,d) besides e1(v,d)
 {

 // the length of p1(v,d) must be longer than

 // that of e1(v,d) because there are no
 // parallel edges in the graph

 remove e1(v,d)

 //Topological orders are as such without any
effect on removal of e1(v,d)

 }

 }
 }

V1

V2

V4 V5

V3

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

31

Table 1. Refactoring Techniques for Bad Smells

S.

No.

Bad Smell Refactoring Technique

1. Long

Method
 Extract Method

 Replace Temp with Query

 Preserve Whole Object

 Replace Method with

Method Object

2. Large Class Extract Class

 Extract Subclass

3. Long

Parameter

List

 Replace Parameter Method

 Preserve Whole Object

 Introduce Parameter Object

4. Duplicate

Code
 Extract Method

 Pull Up Field

 Extract Class

5. Primitive

Obsession
 Replace Type code with

class

 Replace Data value with

object

 Replace type code with

subclass

6. Feature

Envy
 Move Method

 Extract Method

2.1 Extract Method
This is a technique used in long method where there are too

many logic available in the method. The number of lines of

code is also increased. Hence certain lines of code are

removed and replaced as separate method [2].

Example:

Bad Code
void printOwing1(double amount)

 {

 printBan ();

 //print details

 System.out.println ("name:" + _name1);

 System.out.println ("amount" + amount1);

 }

Refactored Code

void printOwing1 (double amount)

{

 printBan();

 printDetails(amount);

}

 void printDetails (double amount)

 {

 System.out.println ("name:" + _name1);

 System.out.println ("amount" + amount1);

 }

Rules to be followed

 Identify the function of the method and name the

method

 Take the code from the source method and copy

them to the destination method.

 Go through the extracted method to capture the

references to variables that are local in scope of the

source method. Treat these as local variables and

parameters to the method.

 Look for any temporary variables that are used only

within the extracted code. If any, retain them as

temporary variables in the target method.

 Check if any modifications have been made to the

local variables that need to be returned. If the

number of such variables is limited to one, return

it.If it’s two or more, split the method again or make

them final.

 Make a call to the target method in place of the

extracted code.

 Compile and test. (Fowler et al., 2000)

2.2 Replace Method with Method object
In case when there are large numbers of local variables in

long Method we could use Replace method with Method

Object instead of Extract method. To do this make the local

variables become fields on that object by making the method

into its own object. You can then decompose the method into

other methods on the same object.

Example:

Bad Code
class Account

{.....

 int gamma (int iVal, int quantity, int yearTodDate)

 {

 int IValue1= (iVal * quant) + delta ();

 int IValue2= (iVal * yearToDate) + 100;

 if ((yearToDate - IValue1) > 100)

 IValue2 -= 20;

 int IValue3=IValue2 * 7;

 // and so on..

 return important Value3-2 * importantValue1;

 }

}

Refactored Code

class Gamma

{...

 private final Account_account;

 private int iVal;

 private int quant;

 private int yToD;

 private int IValue1;

 private int IValue2;

 private int IValue3;

 Gamma (Account source, int iValArg, int quantArg, int

yToDArg)

 {

 _account = source;

 iVal = iValArg;

 quant = quantArg;

 yToD = yToDArg;

 }

 int calculate()

 {

 IValue1= (iVal * quant) +_account.delta();

 IValue2= (iVal*yToD) +100;

 IThing();

 int IValue3=IValue2 * 7;

 // and so on...

 return IValue3 - 2 * IValue1;

 }

 void IThing()

 {

 if ((yToD - IValue1) > 100)

 IValue2 -=20;

 }

 Class Account {...

 int gamma(int iVal,int quant, int YToD){

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

32

 return new Gamma(this, iVal, quant, YToD).compute();

 }

}

Rules to Refactor

 Create a new class with the name of the method.

 Create a final field in the new class of the source

object. Also, create a field for each temporary

variable and parameter in the method.

 Create a constructor of the new class that takes the

source object and each parameter.

 Create a method named compute in the new class.

 Copy the body of the original method into calculate.

Use the object field of the source for any method

invocation on the original object.

 Compile

 Replace the old method call with the new one and

call compute (Fowler et al., 2000)

2.3 Replace temp with Query
The long method smell is because of temporary variables

declaration which assigns value only once. Hence we assign

the methods to the variables which make it easy to apply

extract method. This type of refactor is called Replace Temp

with Query.

Example:

Bad Code
double getPrice()

{

 int basePrice = _quant*_itemPrice;

 double discountFactr;

 if(basePrice>1000)

 discountFactor =0.95;

 else

 discountFactr=0.98;

 return Price*discountFactr;

}

Refactored Code

double getPrice()

{

 return basePrice()*discountFactr();

}

private double discountFactor()

{

 if(BPrice()>1000)

 return 0.95;

 else

 return 0.98;

}

private int BPrice()

{

 return_quant*_itemPrice;

}

Rules to Refactor

 Search for an assigned temporary variable.

 Let it be final.

 Make the right hand assignment as body of the new

method.

 Compile and test (Fowler et al., 2000).

3. RELATED WORK
There are many agent applications being developed in today's

research and Organization [18]. Some the Agent

Programming Languages, IDÉ, Platforms and Frameworks

have been discussed here. There are many Agent Oriented

Programming Languages divisible as imperative, declarative

and Hybrid Approaches. Many Developed Languages have

Integrated Development Environment which helps

programmers to ease their work. CLAIM (Computational

Language for Autonomous Intelligent and Mobile

Agents)[20] is Declarative .It is Declarative because it is

formal and is Grounded to Logic.

An example of an imperative Language is JACK Agent

Language(JAL)[22].A purely imperative Language is very

less common due to abstraction related to Agent Oriented

design. Some Languages combine both imperative and

declarative languages (Hybrid approach).3APL programming

Language (An Abstract Agent Programming Language triple

a-p-l) [21].This implements cognitive Agents. JASON [19] is

also a Language that uses a Hybrid Approach. All the

languages and their features have been Listed Below.

Table 2. Multi Agent System Programming languages

There are also many IDE that tend to provide functionalities

that can be classified into five categories: Project

Management, Creating and Editing source files, Refactoring

and Testing. 3APL, JASON, Agent Factory offer IDE

Support.

Table 3. Platforms and Framework

TuCSoN JADE DESIRE

MAS

coordination

and

communication

Distributed MAS

coordination and

communication

Compositional

development of

MAS

Open source Open source

Treur et al. Vrije

University

Amsterdam.

Object Oriented Object Oriented Component based

Distributed

workflow-

learning

applications

e-learning,

Tutorial research

Load balancing of

electricity

Open

Framework
Open Framework

Closed

Framework

Other than these IDE there are many Agent Platforms and

frameworks such as TuCSoN, JADE, and DESIRE. TuCSoN

(Tuple Centre Spread over Network) Provide General purpose

programming service. Its Model is based on Tuple Center.

 CLAIM JAL 3APL JASON

Language

Declarativ

e

Imperative Hybrid Hybrid

Supported

/Developed

SyMPA

std

Agent

Oriented

Software

University

of

trecht,Nethe

rland

Open

Source

Semantics Formal NotFormal

Dual Operation

al

Applicatio

ns

Load

Balancing,

Resource

sharing

Commercial Application

requiring

mental

attitudes

Testing

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

33

DESIRE (DEsign and Specification of Interacting REasoning

Components) [23] is compositional development method for

multi agent systems. A table view of all these frameworks

have been given above.

Among all the Frameworks available the most popular

solution is JADE. Because JADE is flexible, interoperable and

this strictly adheres to FIPA Specifications. JADE due to its

Decentralized messaging architecture, the cooperating agents

continue to work even in the presence of AMS failure. Since

JADE is efficient, many researchers are using JADE and it's

been upgraded for each software release. The recent release of

JADE is 4.3.0, released on 29th march 2013.This available on

official website of JADE [4]. A graph representing its

downloads after each software release has been given below

Figure 5. JADE Downloads after each software release

4. USING JADE

4.1 Agent
 The term agent is very broad and has different meanings to

different people. The Methodology defines agent as

Agents reside on a platform that, consistent with the presented

vision, provides the agents with a proper mechanism to

communicate by names, regardless of the complexity and

nature of the underlying environment [12].

4.2 Agent Properties
The Agent has some properties [15] and they are specified

below:

 Autonomy: This states that an agent could operate

directly without any help from Human or others.

There is a sought of control to their actions and their

internal state.

 Social ability: Agent use ACL (Agent

Communication Language) to communicate within

them.

 Reactivity: Agents respond to environment in a

timely manner based on what they perceive in their

environment.

 Pro-activeness: they not only respond to the

environment, they also take the initiative by exhibit

their goal oriented behavior to the environment.

4.3Agent Architecture
Agents in the multi-agent system are organized in a hierarchy

structure, called Agent Hierarchy. Low level agents are

coordinated by high level agents. These agents are working

together to achieve the goals in the system.

Multi-agent system is derived by using the agent identification

policies. These policies [8] are affected by the following

factors:

 Modularity: split the agents which are working to

solve a sub-problem.

 Reusability: split the agents in the system which are

all can be reused to solve a new problem.

 Location: split the agents for a distributed

environment.

 Load-balancing: split the agents with balanced

work load.

 Organizational role: make a group of agents

assigned for particular role in an organization.

4.4 Artificial Agent
An agent is one that acts on the environment through effectors

by observing it with the help of sensor [13].

Figure 6. Agents interact with environments through

sensors and detectors

The job of AI is to design the agent program: a function that

implements the agent mapping from percepts to actions. The

architecture makes the percepts from the sensors available to

the program, runs the program, and feeds the program’s action

choices to the effectors as they are generated. Thus

architecture and a program sum up to form an agent:

 Agent = architecture + program

4.5 Agent Development Using JADE
There are many Multi agent Languages and Platforms which

are being used in many active projects. Few Languages and

their features have been discussed in the above section. But

the most important features of JADE in comparision to the

others are

1. JADE is completely based on FIPA specifications.

2. JADE provides a proper set of functionalities which helps

in the development of mulit-agent systems.Users could use

and write the Java code without to know anything new.

3. JADE could be deployed on many places which use JEE,

JSE JME devices.

4.5.1JADE
JADE is a software framework to facilitate the development

of interoperable intelligent multi agent system that is used by

a heterogeneous community of users as a tool for both

supporting research activities and building real applications

[16].

JADE was developed by Telecom Italia Lab in compliance

FIPA (Foundation for Intelligent Physical Agent)

specification. This FIPA is a non-profit organization which

develops standards for the interoperation of heterogeneous

Environment Agent

Percepts

Actions

Sensors

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

34

Agents [14]. We here develop Agents using the following

steps.

Figure 7. Analysis Phase of Methodology

JADE is an open source distributed by TIL Lab

(www.TiLab.com) under LGPL license [20 g direct].

JADE is middleware written using JAVA. In JADE we make

agents to be interoperable. These agents are supposed to

follow the same standard. JADE uses a set of APIs. This

could be deployed both in many environments such as JEE,

JSE and JME. This is easy to use because the complexity of

the middleware is not seen behind the APIs. It is also not

necessary to use all features of the middleware [17].

JADE includes libraries for developing application agents and

the runtime environments.

These runtime environments need to be active even before

agents are executed. JADE container contains all the agents.

The containers form the platform. These help to mask the

complexity of the H/W, OS, JVM and type of network from

the agents.

For every platform a Directory Facilitator (DF) is provided

which gives the timely list of agents. These DF gives the most

updated information of the agents in its directory on a non-

discriminates basis to all authorized agents. Hence is said to

provide a yellow pages directory services to agents. It is

required to have a minimum of one DF in a platform. But an

AP(Agent Platform) could support any number of DFs. Every

agent wishing to publish its service should find a DF and

request for its registration. An agent searches the DF for the

request information. Thus a DF has to perform

 register

 deregister

 modify

 search

JADE has an AMS for each platform. all the agents activities

like creation, deletion, registration with DF are managed by

the AMS. The AMS in addition to performing register,

deregister modify, search and agent-description it also say the

AP to suspend, terminate, execute, invoke agents. It also

instructs AP to does many other operations.

All the Agents communicate with each other using an ACL

(Agent communication Language) as defined by FIPA. The

format for the messages comprise of number of fields such as

sender of message, receiver (list) of the messages,

performative (what the sender intends) it could be REQEST

message, PROPOSE message, ACCEPT_PROPOSAL etc. It

also provides the content included in the message the general

format to express the content, the words and synonyms used

in the content (ontology). It is also responsible for controlling

the several concurrent conversations. This is implementing

from the jade.lang.acl.ACLMessage class.

Example:

ACLMessage m = new ACLMessage(ACLMessage

.REQUEST);

m.addReceiver(new AID (“magesh”,AID.ISLOCALNAME));

m.setLanguage (“English”);

m.setOntology (“Large Class”);

m.setContent (“is a large class”);

send (m);

4.5.2Behaviours:

JADE Agent Concurrency Model:
As said Agents are autonomous (i.e.) they require each agent

to be an active object with at least a thread, to positively start

a new communication make plans and pursue goals. The

social ability allows agents to have concurrent conversations

they are pro active by specifying their goal oriented behaviour

and allowing a way of exchanging information between two

agents and as its autonomous both the sender and receiver

have equal rights.

Agent duties are carried out based on the behaviours being

scheduled and executed. When a Jade behaviour runs until it

returns from the main cannot be preempted by other

behaviours. Here is how java method needs to be converted to

JADE behaviours: [7]

1. Turn the method body into an object whose class

inherits from Behaviour.

2. Turn method local variables into behaviour instance

variables.

3. Add the behaviour object to agent behaviour list

during agent start up.

Using Behaviours to build complex Agents
For implementing an Agent such as file Agent, etc. we need to

extend the Agent class. User Agents are inherited from the

super class Agent. We have two methods addBehaviour

(Behaviour) and removeBehaviour(Behaviour), which

manage the behaviour list of the agent.

Behaviour is an abstract class, which helps to perform some

tasks. The methods of the Behaviour class are

1. action () : task to be performed by the particular

behaviour class.

Use Case

Initial Agent Type Identification

Responsibilities Identification

Acquaintances Identification

Agent Refinement

Agent Deployment Information

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

35

2. done () : used by agent scheduler, returns true if

behaviour has been executed successfully, false if

action() is not executed successfully and must be

executed again.

3. restart (): start the behaviour again.

JADE also allows application developer to build their own

behaviours [11]. There are Behaviours such as complex

Behaviour and simple Behaviour, where complex behaviour

has some sub-behaviour with two methods such as

addSubBehaviour (Behaviour) and removeSub-Behaviour

(Behaviour). This allows agent writers to develop a tree with

behaviours of different kinds. A simple Behaviour helps to

implement small slips of the agent work. This simple

Behaviour is executed by JADE scheduler. To send and

receive messages are done using sender Behaviour and

Receiver Behaviour. This way we implement more work.

5. ANALYSIS
From the methodology given in the Figure 7, an idea of what

agents are required for detecting and scheduling bad smells

have been developed. Along with it the responsibilities of

each agent are also defined.

5.1 Agent Identification
The major agents required for scheduling and refactoring bad

smells have been given below.

Figure 8. File Agent

Figure 9. Smell detector Agent

Figure 10. Sequencing Agent

Figure 11. Refactoring Agent.

5.2 Responsibility Identification:
Responsibilities of all agents are identified. This says what an

agent should perform during the time it is activated. We have

already said there are four agents required for the Detection

and sequencing such as File Agent., Bad Smell Detector

Agent, Bad Smell Sequencing Agent and Refactoring agent.

The Responsibilities of each and every Agent are listed below.

File Agent
 Receives the input(source code) From the user

 Validates the input. (i.e.)Checks whether it's a

proper code to be refactored.

 Valid input is sent as a notification message to

Detector agent.

 Display an error message for invalid file.

Bad Smell Detector Agent:
 Receives the notification message from the File

agent.

 Reads the input and parses it for Bad smell

Detection.

 Checks for the tool availability.

 Detects the bad smell.

 Initiates the Bad smell Sequencer to Sequence the

Bad Smell.

Bad Smell Sequencer:
 Group’s similar kind of Bad Smells.

 Performs a Pair Wise Analysis

 Removes Redundancies using Topological sorting

 Outputs the Sequenced Bad Smells to Refactor

Agent.

Refactoring Agent:
 Receives the Sequenced Bad Smell.

 Checks for the Refactoring Rules for it

 Output the Refactored Source Code.

5.3 Acquaintances Identification:
This Acquaintance identifies the environment of how agents

interact with each other along with its own responsibilities are

given below.

Source Code

File Agent

Bad Smell

Detector

Agnt

Tool detection system

Bad Smell

Sequencer

Agnt

Topological

sorting algorithm

Refactor

Agnt

Apply Refactoring

Rules

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

36

Input from user

(Source code)

 Topological sorting Output

Figure 12. An Agent Diagram for Bad Smell Detection and Sequencing.

Here according to our identification of Agents, the File Agent

needs to get the proper input from the user. It needs to check

whether the input given by the user is available in the system

he specified. If it is available it needs to check whether the

input is valid input for Refactoring (i.e.) is it an source code.

Once this has been done it then sees to check whether the Bad

Smell Detector agent is free if so sends the input to it for

processing.

As Soon a it gets the input the detector has to check its data

base for the tool availability. It then needs to check which tool

could be available for which Bad Smell. Once this has been

done this interacts with the Bad smell sequencer for analysis

and sequencing the Bad smells. It has to apply the

Topological sorting Algorithm as said in Figure 3 for ordering

the Bad Smells.

These ordered Bad Smells are then sent to the Refactoring

Agent for Refactoring. It checks the Bad Smells and thus sees

the Refactoring Rules applied for each Bad smell and

Refactors them as said.

5.4 Agent Refinement and Deployment:
In this the agents that have been identified are then refined by

analyzing the supporting information it requires for

accomplishing its work. This also discovers by their

acquaintance relationship. And a system to take care of what

is happening before starting and stopping agents are

performed. According to our work the supporting information

required for the Bad smell detector is a Tool Database .It has

to be maintained for the set of available tools. Then proper

Refactoring rules have to be given to the Refactoring agent

when at the right place it is required.

Deployment says the way we are going to deploy this

detection and sequence process. A Deployment diagram is

given in Figure 12.

This paper says that an Agent could find and sequence the bad

smells. Many Tools such as PMDmetric, JDeodarant and

more are available.PMD is a source analyzer .It finds unused

variables empty catch block, unnecessary object creation etc.

JDeodarant executes in Batch Processing mode. Likewise

many Tools are there which could be embedded. Few of the

Refactoring rules have been said for each of the Bad smells.

The order the Agent takes it into account depends on the

nature of the Bad smells in source code.

6. Conclusion
Software is about to be developed day by day, this

development of the software makes it difficult and too big.

There are ways for removing these bad smells .But here we

have focused of scheduling and detecting bad smells by

developing Agents. This paper here focuses only on the idea

of saying that Bad smells could be Detected and Scheduled

using a JADE platform and the agents have been identified for

its purpose.

These bad smells which have been detected could be then

refactored using agents. There are many bad smells available

only few of the bad smells have been used here where as other

type of bad smells like middle man, data class etc. could be

tested for future work. Here the recommended resolution

though is good but it is only for reference, when other kind of

bad smells involved sequence might be changed. Moreover

we have specified tools for detecting bad smells, the tools

support for detecting bad smells are under investigation.

7. References
[1] T.Mens and T.Touwe" A Survey of Software

Refactoring", IEEE Trans. Software Eng., vol. 30, no. 2

pp. 126-139, Feb. 2004.

[2] M.Fowler, K.Beck, J.Brant, W.Opdyke, and D.Roberts,

Refactoring: Improving the Design of Existing Code.

Additional Wesley Professional, 1999.

[3] W.C.Wake, Refactoring Workbook. Addison Wesley,

Aug. 2003.

[4] JADE Website available from <http://jade.tillab.com/>

[5] H.Liu, L.Yang, Z.Niu, Z.Ma, and Shao, "Facilitating

software refactoring with Appropriate Resolution Order

of Bad Smells," Proc. Seventh Joint Meeting of the

European Software Eng. Conf and the ACM SIGSOFT

Symp. the Foundation of Software Eng., pp.265-

268,2009.

Bad Smell

detection

Refactor

Agent

Bad Smell

Sequencer
Refactored

source

code

Tool Database Apply Refactoring rules

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.10, April 2013

37

[6] H.Liu, L.Yang, Z.Niu, Z.Ma, and W.Shao, "Schedule of

Bad Smell Detection and Resolution: A New Way to

Save Effort," ", IEEE Trans. Software Eng., vol. 38, no.

1, Feb. 2012.

[7] F. Bellifemine, A. Poggi and G. Rimassa, "Developing

Multi-agent Systems with JADE".

 [8] Z. Shen, C. Miao, R. Gay and D. Li "Goal-Oriented

Methodology for Agent System Development", IEICE

Trans. INF. & SYST., Vol. E89-D, No.4 April 2006.

[9] M. Wooldridge and N.R.Jennings, "Intellignent agents:

theory and practice," The Knowledge Engineering

Review, vol. 10(2), pp.115-152, 1995.

[10] M.Nikraz, G.Caire and Parisa A.Bahri "A Methodology

for the Analysis and Design of Multi-Agent System

using JADE”

[11] G.Caire (TILAB, formerly CSELT) "JADE

PROGRAMMING FOR BEGINNERS"

[12] M.R.Genesereth and S.p and Ketchpel,"Software

Agents", "Communication of the Acm, Vol.37 (7), 1994.

[13] A Modern Approach by Stuart Russell and Peter Norvig,

Prentice-Hall, 1995.

[14] Foundation for Intelligent Physical Agents (FIPA), see

http://www.fipa.org/.

[15] M.Woolridge "An Introduction to MultiAgent Systems"

JohnWiley & sons 2002.

[16] Antonio Barella, Soledad Valero and Carlos Carrus Cosa

"JGOMAS: A New Approach to AI Teaching" IEEE

Trans on Education, Volume 52, No: 2, May 2009.

[17] Fabia Bellifemine, G.Caire, AgostinoPoggi, G.Rimassa

"JADE: A Software Framework for developing

MultiAgent Application”. Lessons Learned. Information

and Software Technology. 50(2008) 10-21

Elsevier.www.ScienceDirect.com

[18] Rafael H.Bordini et al A Survey of Programming

Languages and Platforms for Multi-Agent Systems

"Informatica 30 (2006) 33-44.

[19] R.H.Bordini, J.F.Hubner and R.Viera. ”Jason and the

Golden Fleece of agent oriented programming”. In

Bordini et al[5], chapter 1, pages 3-37.

[20] L.Cardelli and A.D.Gordan. ”Mobile Ambients”. In

M.Nivat, editor, Foundation of Software science and

computational structures, volume 1378 of LNCS,pages

140-155.springer,1998.

[21] M. Dastani, M. B. Van, Riemsdijk and J.J.C.Meyer.

”Programming multi-agent systems in 3APl”. In Bordini

et al[5], chapter 2, pages 39-67.

[22] R.Evertsz, M.Fletcher, R.Jones, J.Jarvis, J.Brusey and

S.Dance.”Implementing industrial multi-agent system

using JACK”. In Programming multi-agent systems, First

International workshop (ProMAS’03), volume 3067 of

LNAI, pages 18-48.SpringerVerlag, 2004.

[23] F. Brazier, C. Jonker and J. Treur. ”Principles of

compositional multi-agent system development.”. In

Proceedings of conference on Information technology

and Knowledge systems, pages 347-360.Austrian

Computer Society, 1998.

