
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.1, April 2013

17

Extended ACO Algorithm for Path Prioritization

Saurabh Srivastava
Computer science & Engineering

Lovely professional university

Himanshi Raperia
Computer science & Engineering

Lovely professional university

Jastej Badwal
Computer science & Engineering

Lovely professional university

ABSTRACT

Software testing is one major part of software development

life cycle (SDLC) and thus tester need to have good testing

algorithms in order to test the software correctly and

efficiently. Ant colony optimization technique is a meta-

heuristic technique which was first proposed by Dr. Marco

Dorigo in his PhD thesis in 1992. He proposed a technique

which was completely based on the behaviour of ants while

taking their food to their colony. In this paper we put forward

an extended approach of ant colony method which can be

helpful in providing a better path sequence from shortest to

longest path, based on the probability calculated using the

extended formula. With the help of results we prove that the

proposed formula fulfil the requirements.

Keywords

Software, software testing, ant colony optimization algorithm,

path sequence, Cyclomatic complexity, probability.

1. INTRODUCTION

Software testing is one of the most important parts of software

life cycle and thus it mostly depends upon the tester and the

organization which is developing the software. One good

thing about software testing is that testers need not to be a

programming connoisseur, i.e. a software tester need not be

specialized in the area and having skill over the software

under test.

There are mainly two types of software testing techniques

namely, black box testing also known as functional testing

and white box testing also known as structural testing. In

functional testing we just give input to the software and verify

the output. If the output is correct then we treat software as

correct else erroneous, but in structural testing we are

concerned about the underlying code which is used.

The popular ways of structural testing includes control-flow

based testing which depends upon the control paths. Another

way is data-flow based software testing and one other is

mutation testing. There can be many paths in a software code

which needs to be tested using test cases, but even in a small

program there can be very large number of test cases that need

to be formed in order to test the program. Thus, an effectual

path selection would be viable for testing.

This paper proposes an algorithm which is an extension to ant

colony optimization algorithm and helps in effective selection

of feasible paths in a graph. There can be N no. of possible

path from start to end node in a CFG, and thus, there can be

2^N no. of path that needs to be tested for complete testing,

which is quite infeasible. So, we need a proficient path

prioritization technique which helps in selecting feasible path

not more than once and order the paths which can make

testing task easier and lighter.

Ant colony optimization (ACO) is a very notorious technique

which was used for several purposes such as path sequencing

or shortest path selection in travelling salesman problem and

many more. There are quite a few extension of this algorithm

given by many researchers which were then used in different

field of computer science and mathematics.

In computer science and engineering, ant colony is termed as

probabilistic technique in order to solve computational

problems. Ant colony algorithm uses graphs for finding the

superior paths. Ant colony algorithm was used to generate test

sequences for state based testing [1]. This algorithm was used

to find the shortest path between the start node and any other

random intermediary or destination node [2], this algorithm

has loom to cover all the nodes in execution state sequence

graph (ESSG) but unsuccessful to do so at higher level or

strong level.

Ant optimization technique was majorly applied to the area of

testing, where one needs path sequencing in a set of paths to

be tested. This algorithm was focused on finding the test data

for control flow based testing. A novel approach of testing

was given for data flow testing via ant colony optimization

algorithm [3].

There are some common extensions of ACO algorithm but, in

this paper, the major prominence is given on the selection of

shortest feasible path which needs to be tested first in order to

get efficient algorithm. As we have discussed earlier, ACO is

based on graph thus, we have nodes and edges collectively

forming a graph which then needs to be traversed in order to

get path sequence which can then be tested after applying test

cases.

In ACO we calculate probability of each path and on the basis

of probability the priority is measured.

There are four parameters on which probability depends.

1) Feasibility of path (fij)

2) Pheromone value (τ)

3) Heuristic value (µ)

4) visited status (Vs).

Feasibility (fij) can be defined as the availability of edge from

node i to j.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.1, April 2013

18

 Fij = 1 if possible path exists from i to j

 Fij = 0 if possible path does not exist from i to j

Pheromone value (τ) pheromone helps ants to make decision

in prospect. It keeps a trace from path i to j. The pheromone

value is updated after each path is traversed.

Heuristic value (µ) it indicates the visibility of a path for an

ant at current vertex i to j.

Visited status (Vs) it shows the status of all nodes traversed

by any ant p for any state i.

 Vs = 0, node is not traversed by ant p.

 Vs = 1, node is already traversed by p.

A node can be simply denoted using N and edges can be

denoted using E.

There can be infinite no of paths in a graph if any loop exist

on any node, for finding out maximum independent paths in

graph we use Cyclomatic complexity, it is a very popular

complexity metric used for limiting or finding out the

maximum number of independent paths in a graph. An

independent path is path which has at least one extra different

node from other paths.

Cyclomatic complexity was proposed by McCabe in 1976

which was broadly accepted and helped in finding out the

independent paths in a control flow graph [11].

Cyclomatic complexity is defined by V(G). There are three

different ways by which Cyclomatic complexity can be

computed.

1. V(G) = no. of closed regions in any graph

2. V(G) = no. of predicate nodes + 1

3. V(G) = E – N + 2

Predicate nodes can also be termed as decision nodes.

Combining it with the concepts of vector space and basis (a

set of independent paths), we can give that Cyclomatic

complexity is, precisely, the least number of paths that can, in

(linear) amalgamation, generate all feasible paths through the

section [8].

2. RELATED WORKS

There are many applications of ACO algorithm, as we have

discussed earlier ACO is a meta-heuristic approach and is

used in many fuzzy techniques, sorting and shortest path

routing algorithms and many more. In general intellect a

person will constantly like to follow the shortest path [9].

In [10] they extended ACO in order to sequence the selection

of path that need to be executed first. In that paper they

proposed an extended algorithm and calculated strength of the

path. The path with greater strength will be prioritized over

others on index level, in this approach; for the most part the

longer paths will achieve greater strengths which will

automatically prioritize the longer path to be executed first,

disparate the testers demand.

In [3] the author proposed an algorithm using ACO algorithm

which sequence the path on the basis of strength and def-use

pairs, this approach also figure out the longer path first unlike

the author demand.

Ant colony is also used for finding out the shortest distance

between start and end node in a travelling salesman problem.

In TSP it is applied as it is using pheromone value and update

parameters one can find out the shortest distance between the

start and the end node.

Ant colony optimization technique is used for path

prioritization most of the time, in [12] the author proposed

another technique which removes the shortcoming of [9,11]

i.e. selection of larger paths first. In this paper author

proposed a cumulative approach of finding out the paths that

need to be executed first using test cases. This algorithm uses

the path length which can be calculated using the count

parameter which will calculate the path or no. of edges

traversed by an ant from start to end node.

3. EXAMPLE ANALYSIS

We start with program “triangle” from [14] and will be

finding out the CC and infeasible paths in the graph,

void Triangle (int x, int y, int z)

{

bool isTriangle;

1 if ((x<y+z) && (y<x+z) && (z<x+y))

2 ifTriangle=true;

else

3 ifTriangle=false;

5 if (ifTriangle)

{

6 if (x==y && y==z)

7 printf (“triangle is Equilateral\n”);

else

8 if (x!=y && y!=z && x!=z)

9 printf (“triangle is Scalene\n”);

else

10 printf (“triangle is Isosceles\n”);

}

else

13 printf (“it is Not a Triangle\n”);

}

The analysis of the above program “triangle” is as follows:

1) From Fig. 1 we can calculate the Cyclomatic

complexity as

V (G) = e – n + 2 = 17 – 14 + 2 = 5; or

2) V (G) = p + 1 = 4 + 1 = 5.

As the Cyclomatic complexity is 5 there can be a maximum of

5 dissimilar independent paths in the graph shown for

program triangle.

These paths are as follows:

P1: 13451314

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.1, April 2013

19

P2:12451314

P3:1345671214

P4:1345689111214

P5:13456810111214

Now we will make use of these paths and calculate the

probability of each path.

2

 1

1

3

 1

4

 1

5

 1

6

 1

13

 1

7

 1

8

 1

11

 1

10 9

 1

12

 1

14

 1

Fig 1: CFG for program Triangle

4. PROPOSED METHOD

Here we are going to present the proposed method which is an

extension to [12] and the comparison is done with previous

results and the result will show that the proposed approach is

better than the previous one.

Ant colony optimization formula is given by:

Pij denotes the probability of node selection between two

nodes, (τ) tau symbol denotes pheromone value and ‘mu’ (µ)

represents the heuristic value, the alpha and beta parameters

are the controlling parameters of desirability and visibility

respectively. ΣPij denotes the sum of probability of selection

of each node in any given path.

In general,

ΣPij = P12 + P23 + ----- + Pn-1,n

For testing any path we need all path and branch coverage. By

using ACO we can find out probability of selection of any

node from the no. of nodes. The node with highest probability

will be executed first using test cases.

Let us take a path:

P4:1345689111214

In this path P4 we have 10 nodes and 9 directed edges. After

finding out the total sum of probability i.e. Pij we can further

modify the algorithm by dividing the total probability of a

path with the total no. of predicate nodes involved in the

particular path. With the help of this we will find out the

average path probability denoted by Pavg.

Here Nij represents the total no. of predicate nodes in a path.

The application of the extended formula shows the result

helps in improving path sequence.

5. APPROACH OF ALGORITHM

Starting from the first node, here 1, an ant A is placed at node

1. For this program, the algorithm will perform in this manner

Initialize all the values

Pheromone value (τ) = 1

Heuristic value (µ) = 1

Visited status Vs = 0

Set Probability = 0

α = 1 and β = 1 both the value are taken as 1, they represents

desirability and visibility of any ant P at any vertex i (here 1 at

start).

Probability of any path when j to be selected when ant is at

vertex i at present is given by:

Symbols have their respective meaning.

From figure 1 we can easily depict that at vertex “1” there is a

predicate node with 2 nodes in competition thus probability

will be 1/2 as all values in the above formula are taken as 1.

Now let one node “3” get selected after the applying the

formula and now here at 3 we can see there is no predicate

node thus we will get value of Pij as 1 and so on. At “1” we

have a predicate node, thus probability can be computed as:

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.1, April 2013

20

In the similar way we can proceed and find out the probability

for each node in a any path.

For each path having feasible set from start node “1” to end

node “14” we compute average probability using the formula:

The table below will show how average probability will help

in choosing the path out of several paths in the CFG

We show the probability calculation for three nodes P1, P3,

and P5 of graph triangle.

TABLE I. PROBABILITY USING ACO

path nodes traversed ΣPij priority

P1 13451314 4.0 3

P3 1345671214 5.0 2

P5 134568101112

14

6.5 1

The above table shows the normal prioritization of paths on

the basis of probability calculation using ACO.

GRAPH 1: RESULT USING ACO

In the graph above it shows priority for path P1 is 3 which is

the shortest path in the graph which needs to be sorted out.

A tester would like to execute shortest feasible path first [16].

Thus, we calculate average probability for the above graph

after calculating the probability for individual nodes. Results

are displayed in table 2.

Taking Pij value from Table 1 and as we have no. of nodes in

each path we can, by using the proposed formula, make the

following table.

pat

h

nodes traversed Σ(Pij/Nij) priorit

y

P1 13451314 0.67 1

P3 1345671214 0.625 3

P5 1345681011

1214

0.65 2

TABLE II. PROBABILITY USING EXTENDED ACO

In the TABLE II now we can easily figure out that the P1,

which is the shortest path in the graph, has the highest

probability and now it will be executed first by applying test

cases. Length of P3 is less than P5 but probability is lesser for

P3 thus P5 will be executed after P1.

GRAPH 2: RESULT USING EXTENDED ACO

Graph 2 shows the bar chart for table 2, now we can depict

that the smallest path P1 has the priority 1 so it would be

executed first before other longer paths.

6. CONCLUSION

Path prioritization is major necessity to efficiently test all the

paths involved in CFG so we can prioritize the paths for

testing using ant colony optimization algorithm by prioritizing

the paths by calculating probability of selection of each node.

In path testing we start from the shortest path first. Thus, the

proposed approach allows tester to find out the probability for

each path and priority of the shortest path comes out to be

maximum i.e 1(first).

7. ACKNOWLEDGEMENT

First of all I would like to thank my parents for supporting me

through all phases of my life, then I would like to thank my

mentor for being a great motivator and helping me in all

aspects, finally I will thank my friends to motivate me for

writing the paper.

8. REFERENCES

[1] C. Peng LAM and Huaizhong LI, “An Ant Colony

Optimization Approach to Test Sequence Generation for

State based Software Testing”, Proceedings of the Fifth

International Conference on Quality Software

(QSIC’05), pp 255 – 264,2005.

[2] Mohan V and Jeya Mala, “intelligent tester–Test

Sequence Optimization framework using Multi-Agents”,

0 5 10

1->3->4->5-

>13->14

1->3->4->5-

>6->7-…

1->3->4->5-

>6->8-…

P
1

P
3

P
5

ΣPij

priority

0 2 4

1->3->4->5-

>13->14

1->3->4->5-

>6->7-…

1->3->4->5-

>6->8-…

P
1

P
3

P
5

Σ(Pij/Nij)

priority

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.1, April 2013

21

journal of computers, VOL. 3, NO. 6, Academy

Publishers, 2008.

[3] A new data flow testing technique via ACO by Ahmed S.

Ghiduk, Universal Journal of Computer Science and

Engineering Technology 1 (1), 64-72, Oct. 2010. © 2010

UniCSE.

[4] wiki/ant_colony_optimization

[5] T. Stützle et H.H. Hoos, MAX MIN Ant System, Future

Generation Computer Systems, volume 16, pages 889-

914, 2000

[6] ACO based on ASRank and MMAS for VRPSPD, T

zhang 2007.

[7] Arthur H. Watson and Thomas J. McCabe, “Structured

testing: a testing methodology using the cyclomatic

complexity metric,” NIST Special Publication,

September 1996.

[8] “An Improved Algorithm for Basis Path Testing” Du

Qingfeng Dong Xiao ©2011 IEEE

[9] P. R. Srivastava “An Approach of Optimal Path

Generation using Ant Colony Optimization” IEEE

TENCON 2009, india 2009.

[10] Thomas J. McCabe “A Complexity Measure” IEEE

Transactions on Software Engineering, Volume SE-2,

No. 4, 1976.

[11] S.Sriavstava “basis path testing using ant colony

optimization algorithm” ICRITO’2013 ISBN: 978-93-

81583-85-2

[12] Aditya P. Mathur “Foundation of Software Testing” First

Edition Pearson Education 2007.

[13] An Improved Method of Acquiring Basis Path for

Software Testing Zhang Zhonglin, Mei Lingxia IEEE-

ICCSE 2010

[14] Marco Dorigo “The Ant Colony Optimization Meta-

heuristic: algorithms, Applications, and Advances,

International Series in Operations Research &

Management Science”, vol. 57, Springer NY, 2003.

[15] Marnie L.Hutcheson, “Software Testing Fundamentals

Methods and Metrics” Posts & Telecom Press, 2007-09

