
International Journal of Computer Applications (0975 – 8887)

Volume 66– No.7, March 2013

32

Pragmatic Approach to Query Optimization

Subhi H. Hamdoon, PhD.
College of Applied Sciences,
Ministry of Higher Education,

Oman

Virendra Gawande, PhD.
College of Applied Sciences,
Ministry of Higher Education,

Oman

Ahmed Al-Barashdi
College of Applied Sciences,
Ministry of Higher Education,

Oman

ABSTRACT

One of the most critical functional requirements of a DBMS is

its ability to process queries in a timely manner. This is

particularly true for very large, applications such as weather

forecasting, banking systems and aeronautical applications,

which can contain millions and even trillions of records. The

need for faster and faster, and immediate results never ceases.

Thus, a great deal of research and resources is required on

creating smarter, highly efficient query optimization

techniques. Some of the basic techniques of query processing

and optimization have been presented in this paper. This paper

highlights the basic concepts of query processing and query

optimization in the relational database domain. The results of

the experiment presented have been verified using Query

Analyzer.

General Terms

DBMS, Query, Optimization, High-level Language, SQL,

Indexes, Stored Procedures, DB Schema, Joins.

Keywords

Optimization, Query Processing, Query Analyzer, Query

Metrics, Tuples, Cardinality.

1. INTRODUCTION
Query processing and optimization is a fundamental part of

any DBMS. To be utilized effectively, the results of queries

must be available in the timeframe needed by the user – be it a

person, robotic, assembly machine or even another distinct

and separate DBMS.

A database query is the vehicle for instructing a DBMS to

update or retrieve specific data to/from the physically stored

medium. The actual updating and retrieval of data is

performed through various “low-level” operations. Examples

of such operations for a relational DBMS can be relational

algebra operations like project, join, select, Cartesian product

etc. While the DBMS is designed to process these low-level

operations efficiently, it can be quite the burden to a user to

submit requests to the DBMS in these formats. Consider the

following request [7]:

“Display all the vehicle ids built in the year 2000.”

While this is easily understandable by a human, a DBMS

must be presented with a format it can understand, such as this

SQL statement:

Select vehicle_id From vehicles Where year = 2000

Note that this SQL statement will still need to be translated

further by the DBMS so that the functions/methods within the

DBMS program cannot only process the request, but do it in a

timely manner.

2. QUERY PROCESSING
There are three phases that a query passes through, during the

DBMS’ processing of that query [2] [7]:

1. Parsing and Translation

2. Optimization

3. Evaluation

2.1 Parsing and Translating the Query
Most queries submitted to a DBMS are in a high-level

language such as SQL. During this stage the human readable

form of the query is translated into forms usable by the

DBMS.

High-level query languages such as SQL represent a query as

a string, or sequence of characters. Some of these represent

various types of tokens such as keywords, operators,

operands, literal strings, etc. Like other languages, there are

rules (syntax and grammar) that govern how the tokens can be

combined into valid statements.

The primary job of the parser is to extract the tokens from the

raw strings and translate them into the corresponding internal

data elements and structures, and then finally to verify the

validity and syntax of the original query string [7].

2.2 Optimizing the Query
In this stage, the query processor applies rules to the internal

data structures of the query to transform these structures into

equivalent, but more efficient representations. The rules can

be based upon mathematical models of the relational algebra

expression and tree (heuristics), upon cost estimates of

different algorithms applied to operations or upon the

semantics within the query and the relations it involves.

Selecting the proper rules to apply, when to apply them and

how they are applied is the function of the query optimization

engine [7].

2.3 Evaluating the Query
The final step in processing a query is the evaluation phase.

The best evaluation plan candidate generated by the

optimization engine is selected and then executed. Note that

there may exist multiple methods of executing a query.

Besides processing a query in a simple sequential manner,

some of a query’s individual operations can be processed in

parallel – either as independent processes or as interdependent

pipelines of processes or threads. Regardless of the method

chosen, the actual results should be same [7].

3. QUERY METRICS
The execution time of a query depends on the resources

needed to perform the needed operations: disk accesses, CPU

cycles, RAM and, in the case of parallel and distributed

systems, thread and process communication. Since the data

transfer to/from disks is substantially slower than the memory

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.7, March 2013

33

based transfers, the disk accesses usually represent an

overwhelming majority of the total cost, particularly for very

large databases that cannot be pre-loaded into memory. The

cost to access a disk is usually measured in terms of the

number of blocks transferred from and to disk, which will be

the unit of measure used in this paper [7].

In order to estimate the various costs of query operations, the

query optimizer utilizes a fairly extensive amount of metadata

associated with the relations and their corresponding file

structures. These data are collected during and after various

database operations (such as queries) and stored in the DBMS

catalog. These data include [9] [2]:

nr Number of records (tuples) in a relation r. Knowing

the number of records in a relation is a critical piece

of data utilized in nearly all cost estimations of

operations.

fr Blocking factor (number of records per block) for

relation r. This data is used in calculating the

blocking factor, and is also useful in determining

the proper size and number of memory buffers.

br Number of blocks in relation r’s data-file. Also a

critical and commonly used datum, br is calculated

value equal to nr/br.

lr Length of a record, in bytes, in relation r. The

record size is another important data item used in

many operations, particularly when the values differ

significantly for two relations involved in an

operation.

dAr Number of distinct values of attribute A in relation

r. This value is important in calculating the number

of resulting records for a projection operation and

for aggregate functions like sum, count and average.

x Number of levels in a multi-level index (B+-tree,

cluster index, etc.). This data item is used in

estimating the number of block accesses needed in

various search algorithms. Note that for a B+-tree, x

will be equal to the height of the tree.

sA Selection cardinality of an attribute. This is a

calculated value equal to nr / dAr. When A is a key

attribute, sA = 1. The selection cardinality allows

the query optimizer to determine the “average

number of records that will satisfy an equality

selection condition on that attribute”.

The query optimizer also depends on other important data

such as the ordering of the data file, the type of index

structures available and the attributes involved in these file

organization structures. Knowing whether certain access

structures exist allows the query optimizer to select the

appropriate algorithm(s) to use for particular operations.

4. OPTIMIZATION PRINCIPLES

4.1 Optimizing Queries
Queries are very fast. Generally, many records can be

retrieved in less than a second, even with joins, sorting and

calculations. As a rule of thumb, if a query is taking longer

than a second, it needs to be optimized. Start with the Queries

that are most often used and also that take the more time to

execute [8].

4.2 Better DB Schema
Most often, databases have poor designs and are not

normalized. This can greatly affect the speed of database. In

general all the database designs need to be normalized using

the three normal forms. The normal forms above 3rd Normal

Form are often called de-normalization forms, but what this

really means is that they break some rules to make the

Database faster. Normalization after the 3NF is often done at

a later time, not during design, by DBA [8].

4.3 Filtering Query
Filter a query as much as possible. ‘Where’ clause is the most

important part for optimization. Select only the fields that are

required, and avoiding the use of "Select *". It will make the

queries faster and will use less bandwidth.

Join clause needs to be used very carefully; it is expensive in

terms of time. It is better to use it on indexed fields [8].

4.4 Add, remove or modify Indexes
All primary keys need indexes because they make joins faster.

This also means that all tables need a primary key. Indexes

may also be added on fields that are often used for filtering in

the Where clauses.

Adding indexes is a careful process, because they need to be

maintained by the database. If many updates are done, on that

field, maintaining indexes might take more time than it saves

[8].

4.5 Moving Queries to Stored Procedures
Stored Procedures (SP), are usually better and faster than

queries for the following reasons:

Stored Procedures are compiled (SQL Code is not), making

them faster than SQL code.

SPs don't use as much bandwidth, as a single SP may include

or perform many queries. SPs also remains on the server until

the final results are returned.

Stored Procedures are run on the server, which is typically

faster.

Calculations in code (VB, Java, C++, ...) are not as fast as SP

in most cases.

It keeps DB access code separate from presentation layer,

which makes it easier to maintain (3 tiers model) [8].

4.6 Removing redundant Views
Views are a special type of Query, they are not tables. They

are logical and not physical. When a view is called, it runs a

query that generates a view and then performs query on the

view.

If the same information is needed again and again views could

be good. But if a view requires a filter, it’s like running a

query on a query, which will make it slower [8].

4.7 Tuning DB settings
DB can be tuned in many ways. Update statistics used by the

optimizer, run optimization options, make the DB read-only,

etc. It is mostly under the control of DBA [8].

4.8 Using Query Analyzers
In many Databases, there is a tool for running and optimizing

queries. SQL Server has a tool called the Query Analyzer,

which is very useful for optimizing. User can write queries,

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.7, March 2013

34

execute and, more importantly, see the execution plan and

analyze what SQL Server does with the query [8].

5. OPTIMIZATION IN PRACTICE

5.1 Using relational operators
Relational operators such as >, <, =, != etc. are very helpful in

query. Some of the queries may be optimized by using

relational operators, provided the column is indexed. For

example [4],

SELECT * FROM TABLE WHERE COLUMN>16

Now, the above query is not optimized due to the fact that the

DBMS will have to look for the value 16 and then scan

forward to value 16 and below. However, an optimized value

will be,

SELECT * FROM TABLE WHERE COLUMN >= 15

This way the DBMS might jump straight to value 15 instead.

5.2 Avoiding NOT operator
It is much faster to search for an exact match (positive

operator) such as using the LIKE, IN, EXIST or ‘=’ symbol

operator instead of a negative operator such as NOT LIKE,

NOT IN, NOT EXIST or ‘!=’ symbol. Using a negative

operator will cause the search to find every single row to

identify that they are ALL not belong or exist within the table.

On the other hand, using a positive operator just stop

immediately, once the result has been found [4].

5.3 Wildcard Vs. Substr
Most developer practiced Indexing. Hence, if a particular

COLUMN has been indexed, it is best to use wildcard instead

of using Substr [4].

#Poor Query

SELECT * FROM TABLE

WHERE substr (COLUMN,1,1) = 'value'.

The above will substr every single row in order to seek for the

single character ‘value’. On the other hand,

#Better Query

SELECT * FROM TABLE WHERE COLUMN = 'value%'.

Wildcard query will run faster if the above query is searching

for all rows that contain ‘value’ as the first character.

5.4 Appropriate data types
Use the most efficient (concise) data types possible. It is

unnecessary and sometimes dangerous to provide a huge data

type when a smaller one will be more than sufficient to

optimize a structure. Example, using the smaller integer types

if possible to get smaller tables. MEDIUMINT is often a

better choice than INT because a MEDIUMINT column uses

25% less space. On the other hand, VARCHAR will be better

than longtext to store an email or small details.

5.5 Primary indexing
The primary column that is used for indexing should be made

as concise as possible. This makes identification of each row

easy and efficient by the DBMS [4].

5.6 String indexing
It is unnecessary to index the whole string when a prefix or

postfix of the string can be indexed instead. Especially if the

prefix or postfix of the string provides a unique identifier for

the string, it is advisable to perform such indexing. Shorter

indexes are faster, not only because they require less disk

space, but because they also give you more hits in the index

cache, and thus fewer disk seeks [4].

5.7 Limiting the result
Another common way of optimizing query is to minimize the

number of rows it returns. If a table has a few billion records

and a search query without limitation will just break the

database with a simple SQL query such as this [4].

5.8 Using default value
In MySQL, take advantage of the fact that columns have

default values. Insert values explicitly only when the value to

be inserted differs from the default. This reduces the parsing

that MySQL must do and improves the insert speed [4].

5.9 Avoiding IN subquery
Using a subquery within the IN operator like;

SELECT * FROM TABLE WHERE COLUMN IN

(SELECT COLUMN FROM TABLE)

Doing this is very expensive because SQL query will evaluate

the outer query first before proceed with the inner query.

Instead a better form could be;

SELECT * FROM TABLE, (SELECT COLUMN FROM

TABLE) as dummytable WHERE dummytable.COLUMN =

TABLE.COLUMN;

Using dummy table is better than using an IN operator to do a

subquery [4].

5.10 Utilizing Union instead of OR
Indexes lose their speed advantage when using them in OR

situations in MySQL at least. Hence, this will not be useful

although indexes are being applied [4].

SELECT * FROM TABLE WHERE COLUMN_A

= 'value' OR COLUMN_B ='value'

On the other hand, using Union such as this will utilize

Indexes.

SELECT * FROM TABLE WHERE COLUMN_A = 'value'

UNION

SELECT * FROM TABLE WHERE COLUMN_B = 'value'

6. EXPERIMENTAL RESULTS

6.1 Result1
To retrieve name and salary of employees from R&D

department.

Original query:

Select * From Employees

Analysis

Optimized query:

Select Name, Salary From Employees

Where Department_id = 10

Analysis

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.7, March 2013

35

Comparative Analysis:

 Bytes CPU Cost I/O Cost

Original 7276 73057 3

Optimized 14 14793 2

In the optimized version, the DB filters data because it filters

faster than the program. The data that travels on the network

will be much smaller, and therefore the performances will

improve.

6.2 Result2
Original query:

Select salary From Employees Where EmpID >= 1 and

EmpID <= 2000

Analysis

The original Query involves a lot of network bandwidth and

will make whole system slow. Sometimes, Stored Procedure

will be better off creating a temporary table, inserting data in

it and returning it than going back and forth 10,000 times.

Optimized query:

SELECT salary FROM employees

WHERE employee_id >= NVL (1, UID)

AND employee_id <= 2000

Analysis

Comparative Analysis:

 Bytes CPU Cost I/O Cost

Corrected 854 73794 3

Optimized 40 14733 2

6.3 Result3 (Weak Joins)
From the two tables, Orders and Customers. Customers can

have many orders.

Original query:

Select e.first_name, d.department_name

From employees e, departments d;

Analysis

Optimized query1:

Select e.first_name, d.department_name from employees e,

departments d where e.department_id = d.department_id;

Analysis

In that case, the join was not there at all or was not there on all

keys. That would return so many records that your query

might take hours. It's a common mistake for beginners.

Optimized query2:

Depending on the DB, the user will need to specify the Join

type that is required in different ways.

In SQL Server, the query would need to be corrected to:

Select e.first_name, d.department_name

from employees e inner join departments d

on e.department_id = d.department_id;

Analysis

Note that in SQL Server, Microsoft suggests to use the joins

like in the second optimized form instead of the joins in the

Where Clause because it will be more optimized.

Comparative Analysis:

 Bytes CPU Cost I/O Cost

Original 54891 579156 11

Optimized1 2756 965591 4

Optimized2 2756 (same) 965591 (same) 4 (same)

6.4 Result4 (Weak Filters)
This is a more complicated example, but it illustrates filtering

at its best.

It is based on two tables – Products (ProductID, DescID,

Price) and Description (DescID, LanguageID, Text). There

are 100,000 Products and unfortunately all of them are

required.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.7, March 2013

36

There are 100 languages (LangID = 1 = English). Product

descriptions are required only in English language. Expected

number of products is 100000 (ProductName, Price).

Original query:

Select d.department_name, e.first_name from employees e

inner join departments d on d.department_id =

d.department_id where d.location_id = 1700;

Analysis

That works but it will be really slow because the DB needs to

match 100,000 records with 10,000,000 records and then filter

that Where LangID = 1. The solution is to filter On LangID=1

before joining the tables.

Optimized query:

Select d.department_name, e.first_name from (select

department_id, department_name from departments where

location_id=1700) d inner join employees e on

d.department_id = e.department_id;

Analysis

Now, that will be much faster. Also make that query a Stored

Procedure to make it faster.

Comparative Analysis:

 Bytes CPU Cost I/O Cost

Original 58422 1802736 2

Optimized 3074 975221 4

6.5 Result5 (Views)
Create View v_Employees AS

Select * From Employees

Select * From v_Employees

Analysis

This is just like running Select * From Employees twice.

If the intended data is always for employees of R&D and

would not like to give the rights to everyone on that table

because of salaries being confidential, the following view may

be used:

Create view v_adminEmployees as select first_name, salary

from employees where department_id=10;

select * from v_adminEmployees; (Dept 1 is R&D).

Analysis

Comparative Analysis:

 Bytes CPU Cost I/O Cost

Original 7276 73057 3

Corrected 14 14793 2

*Example 5 result as same as example 1.

Then rights may be assigned to the View v_R&DEmployees

to some people and would restrict the rights to Employees

table to the DBA only.

7. CONCLUSION
In this study we analyzed the fundamental pragmatic aspects

of query optimization that underlies all optimization

algorithms known in the research literature. Results of the

experiments conducted have been verified using Optimization

Analyzer tool, and presented as analysis. Query optimization

is essential for large information retrieval systems.

8. REFERENCES
[1] Andrew Eisenberg and Jim Melton, June 2004. An Early

Look at XQuery API for Java™ (XQJ). ACM SIGMOD

Record, Vol. 33.

[2] Avi Silbershatz, Hank Korth and S. Sudarshan, 2002.

Database System Concepts, 4th Edition. McGraw-Hill.

[3] Chiang Lee, Chi-Sheng Shih and Yaw-Huei Chen, 2001.

A Graph-theoritic model for optimizing queries

involving methods. The VLDB Journal — The

International Journal on Very Large Data Bases, Vol. 9,

Issue 4, Pages 327-343.

[4] Clay Lua, 15 ways to Optimize your Queries,

[hungred.com/useful-information/ways-optimize-sql-

queries].

[5] Hsiao-Fei Liu, Ya-Hui Chang and Kun-Mao Chao, June

2004. An Optimal Algorithm for Querying Tree

Structures and its Applications in Bioinformatics. ACM

SIGMOD Record Vol. 33.

[6] Jingren Zhou and Kenneth A. Ross, June 2004. Buffering

Database Operations for Enhanced Instruction Cache

Performance. Proceedings of the 2004 ACM SIGMOD

international conference on Management of data, Pages

191-202.

[7] Michael L. Rupley, 2008. Jr. Introduction to Query

Processing and Optimization. Indiana University at South

Bend.

[8] Olivier Perron, 2001. How to Optimize Queries [Theory

and Practice], [serverwatch.com/tutorials/article.php/

2175621].

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.7, March 2013

37

[9] Ramez Elmasri and Shamkant B. Navathe. 1994.

Fundamentals of Database Systems, second edition.

Addison-Wesley Publishing Company.

[10] Reza Sadri, Carlo Zaniolo, Amir Zarkesh and Jafar

Adibi. June 2004. Expressing and Optimizing Sequence

Queries in Database Systems. ACM Transactions on

Database Systems, Vol. 29, Issue 2, Pages 282-318.

[11] Reza Sadri, Carlo Zaniolo, Amir Zarkesh and Jafar

Adibi. May 2001. Optimization of Sequence Queries in

Database Systems. In Proceedings of the twentieth ACM

SIGMOD-SIGACTSIGART symposium on Principles of

database systems, Pages 71-81.

[12] Thomas Schwentick. March 2004. XPath Query

Containment. ACM SIGMOD Record, Vol. 33.

