
International Journal of Computer Applications (0975 – 8887)

Volume 66– No.7, March 2013

1

A Hybrid Parallel Multi-Objective Genetic Algorithm:

HybJacIsCone Model

Mahendra Kumar

Gourisaria
School of Computer

Engineering, KIIT University
Bhubaneswar -751024, Odisha,

India

B.S.P.Mishra
School of Computer

Engineering, KIIT University
Bhubaneswar -751024, Odisha,

India

 Satchidananda Dehuri
Ajou University

 San 5 woncheon-dong
Suwon, South Korea

ABSTRACT

In real world most of the optimization problems are multi-

objective in nature. These problems take large amount of time to

congregate to the true Pareto front. So the basic algorithm like

non parallel NSGA II may not able to solve such problem in -

tolerable amount of time. This paper proposes a new hybrid

parallel multi-objective genetic algorithm and solve one of the

real life problem i.e., 0/1 knapsack problem. The proposed

model is designed by combining the characteristics of Island

model, Jakobovic model and Cone Separation model. It is

experimented over a multi-core system and gives

promising result over all the existing basic models in terms

of converging to the true Pareto front.

Keywords

Parallel Multi-Objective Genetic Algorithm, Trigger Model,

NSGA-II, Cone Separation Model, Island Model, 0/1 Knapsack

Problem, HybJacIsCone Model

1. INTRODUCTION

Most of the engineering optimization problems have more

than one objective which is contradictory to each other and

these objectives must be fulfilled at the same time. Hence it is

very difficult to find a single solution of it. We can call these

types of problems as multi-objective optimization problem

(MOP) [1]. Multi-objective problem gives a trade off

solutions known as Pareto optimal solutions rather than giving

only one optimal solution. From the trade off solutions, the

user has to select a particular solution according to his own

choice. In wider sense these solutions are optimal as no other

better solution exists in the search space while considering all

objective at a time. The Pareto optimal solution gives rise a

Pareto Front having ‘n’ dimensional objective space where n

represents the number of objectives in the problem. Genetic

Algorithms (GAs) have the capability of exploring multiple

Pareto optimal solutions in unit run, so it is widely used in this

area.

In multi-objective genetic algorithm (MOGA), large number

of solutions is required to be evaluated before finding out

the promising result. Therefore it takes huge amount of

time to converge in giving the solutions. So parallelization

of MOGA can overcome such type of problem [11].

In parallelization of multi-objective genetic algorithms

(MOGAs), multiple search space are explored by multiple

processors to get different solutions. To parallelize genetic

algorithm (GA), different models are proposed by different

scientist like master slave model, Island model and cone-

separation models [3, 4, 9].

In our paper we are proposing a hybrid model which can be

operated in parallel environment by implementing multi-

objective genetic algorithm (MOGA) for solving real world

problems like 0/1 knapsack problem by considering

convergence, divergence quality and time as the basic

parameter.

The rest of the paper is organized as follows: Section 2 deals

with basics of parallel computing. Section 3 deals with

different parallel architecture and parallel multi-objective

genetic algorithm (PMOGA) models. Section 4 describes the

standard 0/1 knapsack problem. In section 5 we have

presented the proposed hybrid model. The experimental

analysis and conclusion is defined in Section 6 and 7

respectively.

2. BASICS OF PARALLELPROCESSING
Parallel computing solves problems using multiple computers,

or computer with multiple internal processors at a greater

computational speed than is possible with a uni-processor

computer. Usually in case of a conventional computer, there is a

single processor who performs the actions mentioned in a

program. However, such a computer has limitation to tackle

larger problems, i.e., problems with more computational steps

or larger memory requirements. There are many ways of

increasing the computational speed. One approach is that we can

use multiple processors within a single computer

(multiprocessor) or alternatively multiple computers, operating

simultaneously on a single problem. In any one of the case, the

whole problem is divided into different parts, and taken care

by separate processor in parallel. We can write the

programs/algorithms in the same way and this technique is

known as parallel programming/algorithm. A parallel computer

can contain multiple processors or more than one computer

interconnected through an inter-connection networks. This type

of system should also have more amount of total memory in

comparison with single computer system to deal with the

problem of larger memory requirement. But by this way,

performance of the system should be increased. The scheme is

that k processors/computers can offer up to k times the speed

of computation of a single processor/computer, irrespective of

the recent processor or computer speed, with the expectation

that the problem would be finished in (

 th of the time.

Normally we cannot divide problems exactly into autonomous

parts. Communication is also essential between the parts for

synchronization of computations and data transfer. Though,

we can achieve some improvement according to the problem and

degree of concurrency inherent in the problem, by writing suitable

parallel program. Today’s parallel computer are much faster

because of the frequent improvements in the processors

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.7, March 2013

2

execution speed but still, present days computer cannot give any

guarantee that they can solve any problem in a fair time period.

The cost benefits of parallelism coupled with the performance

requirements of applications areas such as numerical simulation,

stock index prediction, and grand challenge problem like global

weather forecasting, data mining present compelling arguments in

favor of parallel computing. In order to obtain a valid result,

these problems often required huge quantities of repetitive

calculations on large amounts of data. Deadline is also an

important factor in these kinds of problems i.e. computations

work must be completed within a fair amount of time. We can

take an example of weather forecasting. It is useless if our

system is taking more than one day to predict the local weather

for the subsequent day in an accurate manner. For the problem

that require huge amount of main memory, multiple

computers/processors are highly advisable which can also give

increased speed. Sometimes, this situation also arises that a

single problem has to be evaluated more than one time with

different-different input values irrespective of the fact that the

same problem can be solved in a fair time period. In case of

parallel computer, this situation is especially applicable because

different processors/computers can execute several instances of

the same program simultaneously without any alteration to the

program. Notwithstanding the continuous improvement in the

speed of single computer, it is wrote by Flynn and Rudd that "the

continued drive for higher and higher-performance systems ...

leads us to one simple conclusion: the future is parallel" [7].

Algorithm development is a critical component of problem

solving using computers. A sequential algorithm is nothing but

a chain of fundamental steps for solving a given problem using

a serial computer. Similarly, solving a given problem using

more than one processor is told by parallel algorithm.

However, specifying a parallel algorithm involves more than just

specifying the steps. At the very least, a parallel algorithm has

the additional height of concurrency and it is the duty of the

person who designs the algorithm to specify all the set of steps

that can be executed simultaneously. This is essential for

obtaining any performance benefit from the use of a parallel

computer. In practice, a nontrivial parallel algorithm may include

a few or all of the following:

• Identifying that section of the work that can be

performed in parallel.

• Mapping those sections of work which are concurrent in

nature onto various processes which runs in parallel.

• Distribution of the input data, output data and in-

between data related with the program.

• Data those are shared by more than one processor should

be access in a managing way.

• The processors should be synchronized at different

stages of the parallel program execution typically, there

are several choices for each of the above steps, but

usually, relatively few combinations of choices lead to a

parallel data associated with the program.

• Managing accesses to data shared by multiple processors.

• Synchronizing the processors at various stages of the

parallel program execution.

Typically, there are several choices for each of the above steps,

but usually, relatively few combinations of choices lead to a

parallel algorithm.

2.1 Speedup
Speedup can be described as the ratio between time taken to

complete the job in a single processor and time taken to complete

the job in a parallel processing environment. The speedup is

a measure of relative performance, which is thus defined as

We use as the execution time of sequential algorithm running

on a uni-processor and is the execution time of the parallel

algorithm for solving the equivalent problem with p

multiprocessor.

2.2 Communication cost
We can define the communication cost as the total time taken

for communication between two processor and the computation

time, this can be defined as :

where is the communication time and is the

computation time.

2.3 Efficiency
The cost of an ideal parallel system containing ‘p’ processing

elements can deliver a speedup equivalent to ‘p’. In practice,

maximum speedup p is not achieved due to the process

overhead. Efficiency can be defined as a measurement of the

fraction of time for which a processing element is usefully

employed. It is calculated as the ratio of speedup (Sp) to the

number of processing elements (p) and denoted efficiency (E)

by

3. RELATED WORKS

3.1 Parallel architecture
There are several schemes to categorize parallel computers

[10, 8] have been suggested until now but not any of them

can be treated as standard in the focused literature. These

schemes differ on the basis of the characteristics of the

parallel systems that are taken into consideration, namely: how

the address space is organized, the interconnection network, or

the granularity of the processors.

Fig 1: Schematic of master slave parallel GAs

Master

Slave2 Slave 1 Slave3 Slave n’

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.7, March 2013

3

The four classifications defined by Flynn are based upon the

number of concurrent instruction (or control) and data streams

available:

Single Instruction Stream and Single Data stream (SISD): A

sequential computer comes under this category. These

computers use no parallelism both in instruction and data

stream.

Single Instruction and Multiple Data stream (SIMD): The

computer which comes under this category uses single

instruction stream and multiple data stream.

Multiple Instruction and Single Data stream (MISD): Multiple

instructions work on a single data stream.

Multiple Instructions and Multiple Data stream (MIMD): Under

this sachem, several independent processors concurrently

execute on different data.

3.2 Parallelization models of MOEAs
The proposed parallelization schemes for MOEAs are resultant

from the famous models designed for single-objective

optimization [11]: the master-slave model, the diffusion model,

the island model, and the hybrid model.

3.2.1 Master-Slave model
Under this model, we can parallelize MOEA in a very simple

way and this model is also very popular. In this model, the job

of the master processor is to execute the MOEA, and all the

slave processors are busy in evaluating the objective function.

The slave processors return the values of the objective function

to the master after completion of their evaluation and remain

inactive until the next generation. The master processors do the

job of selection, crossover and mutation and also execute some

tasks like Pareto ranking, and archiving. This model is shown in

Figure 1. A master-slave parallel (pMOEA) explores the search

exactly as a serial MOEA does. Thus, it locates the similar

result found by its serial counterpart. Though, there is a

substantial reduction in the execution timed.

3.2.2 Diffusion model
This model distributes the population between the

neighborhood deme. For every grid point (as shown in Figure

2) there is one individual. This model is also called as fine

grained model because there is one processor for every

individual. Each deme has a processor and work on individual

population. The selection and mating is restricted to a small

area near by all individual. In this model the good character

are spread or diffused all over the whole population because

the neighborhoods are overlapped (as represented by the

dotted lines in Figure 2). After standard interval the best

populations are migrated between the demes. In this case the

communication cost is very high. Due to this

Fig 2: Diffusion model

diffusion model is suitable for Multiple Instruction Multiple

Data computer.

3.2.3 Island model
In this model, using a separate sub-population every processor

runs an in-dependent GA. The processors co-operate by

exchanging the migrants (good individuals) on a regular basis.

As the inter process communication is very limited, this model

is mainly appropriate for computer clusters or grid computing

system. Here in this model, we divide the population into a

number of tiny sub-populations, which can be called as islands

or demes which develop autonomously of each other. Every

island run a serial MOEA for more than one generation called

an epoch. After completion of every epoch, individuals migrate

between nearby islands. Neighbors can be defined by the

migration topology, which determines the path of migration

along which individuals can shift to other islands. This model

normally adopts a ring topology but other different topologies

are also possible. Figure 3, shows a typical island model with a

ring topology. As island pMOEA are generally implemented

on distributed memory MIMD computers, that’s why they are

also known as distributed pMOEA.

 Fig 3: Island model

This model is extremely admired between researchers, but a

lot of parameters and design decisions are required. The major

issues in model are the migration topology, the frequency of

migration, how many individuals to migrate, and the choice

about the individuals who will migrate and those which will be

changed by the immigrants.

3.2.4 Hybrid model
In this model, several basic models are combined together to

give rise a hybrid model. Few of the hybrid models are shown

in Figure 4

Migra

tion

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.7, March 2013

4

(a) (b)

 (c) (d)

 (e)

Fig 4: Different Hybrid models of PGA (a) coarse grain

and global parallelization, (b) coarse grain and coarse

grain, (c) coarse grain and fine grain, (d) peer-to-peer, (e)

coarse grain, fine grain and global parallelization.

3.2.5 Cone-Separated NSGA-II

Branke et al. [3] implemented the concept of "divide-and-

conquer" method to make all processors more efficient. Deb et

al. [6] used the above technique by considering the guided

dominance principle [2]. The above technique gave rise

excellent result in the aspect of concurrency to the true Pareto

front without guidance scheme. The major limitation of the

above approach is to define suitable search direction before the

shape of the Pareto front is known. In the above approach, the

search spaces are divided in to several regions which are

explored by multiple processors. The actual shape of the

original Pareto front is unknown at the beginning of the

optimization. So the portioning of the search space has to be

done in a regular interval by normalizing the fitness value. After

the normalization the partition of the cone is started from the

reference point (1, 1). Each processor is assigned to the

respective search space to explore the solution. Figure 5

illustrates the concept. In this, the border of the specified region

are treated as constraints and taken care by using constraint

dominance principle [5].

Fig 5: Example for the portioning of the (normalized)

search space

Fig 6: A HybJacisCone model

4. 0/1 KNAPSACK PROBLEM
One of the major NP hard problem is the 0/1 knapsack problem

which is a maximization problem. The basic idea is finding out

a set of items by considering the weight and profit associated

with them, while the upper bound of the knapsack is the

capacity of the knapsack. The main job is to find a subset of

items which maximizes the total of profits in the subset, yet all

the selected items fit into the knapsack, i.e. the total weight does

not exceed the given capacity [12].

Let us assume that there are b number of item and d number of

knapsack.

A single objective knapsack problem can be extended to a

multi-objective problem by using two number of knapsack.

Formally, the multi-objective 0/1 knapsack problem is defined

through Equation 1 and Equation 2.

Given a set of b items and a set of d knapsacks, with

 SLAVES

MASTE

R

 SLAVES

MASTE

R

 SLAVES

MASTE

R

 SLAVES

MASTE

R

Island 1

Island 2

Island 4

Island 3

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.7, March 2013

5

Find a vector …,
 such that,

 i {1, 2, ..., d}:

 (1)

and for which

 is maximum, where

 (2)

and iff item j is selected.

5. PROPOSED MODEL
We can quickly converge to a set of good solutions in master-

slave and island model when we apply parallel MOGA on it.

but we can get better output if we combine both of them where

each one is parallel in themselves. In our propose model, we

have used island model at the upper level with Jakobovic

master slave model at the lower level. In the lower level the

Cone separation model is incorporated with the Jakobovic

model. Figure 6 presents the pictographic representation of the

algorithm.

5.1 HybJacIsCone Model
HybJacIsCone is a hybridization of Jakobovic, Island, and Cone

separation model. In this, Jakobovic model takes care of

population of each deme and all the demes communicate with

each other at a standard interval by using ring topology.

HybJacIsCone is hierarchal in nature with two levels, lower and

higher level.

Lower level is hybridization of Jakobovic model and Cone

separation model. Lower level is an independent island with

more than one processor. Initially a Master is selected for each

island and the remaining processors become Slaves for the

respective islands. Each processor initialize different population

and then Cone separation model is executed independently in

every island as described in Algorithm 1. While executing for

every mig_within’ all slaves transfer its best n’ individuals to

respective master. Higher level is Island model. The master sort

m′ best individuals from the received population from the

Slaves. The best m′ individuals are propagate to the master of

the right neighboring Island as shown in Algorithm 2. The

receiving Master distributes the individuals equally to its

Slaves.

6. EXPERIMENTAL STUDY
Experimental setup is presented in this section and this section

also discusses the observed results of each experiment in detail.

6.1 Experimental Setup
We have implemented the algorithm in C language on a multi-

core system core i7 with 8 cores under Linux operating system.

Each core is of 1.6 GHz. The RAM is 4GB. We have used

MPICH (Message Passing Interface) library for communication

between the processors. Table 1 shows the parameters of the

parallel MOGA in which the first row explains the population

size per deme. Crossover and mutation probability are shown

in second and third row respectively. Row four shows the

migration rate for the Cone separation model. The other

parameters for HybJacIsCone model is in row fifth and sixth.

6.2 Experimental Results
We have conducted the experiment with multi-objective 0/1

knapsack problem with 8 processors, 2 knapsacks, and 200 data

items. The problem is solved by proposed hybrid model. We

Algorithm 1 Lower level algorithm for each island

Choose any one processer as a MASTER and others as

SLAVE.

Sub-populations initializations

Fitness value normalization

Defining the region constrains

Non-dominated sorting

While (stopping-condition does not satisfy) do

if (Number of generation is divisible by mig_within') then

 if SLAVE then

Transfer the best n' individuals to the MASTER

 end if

 if (MASTER) then

 Receive the n' individuals from each SLAVE

 Do as in Algorithm 2

 end if

 end if

Generate Offspring

if (migration) then

Fitness value normalization

Defining the region constraints

Migrate individuals which contravene constraints

 end if

 Non-dominated sorting

 Pruning of population size

 end while

Algorithm 2 Higher Level algorithm for an island

Find m′ number of best individuals

send m′ individuals to the MASTER of the right

neighboring island

Receive m′ individuals from the MASTER of the left

neighbor

Equally distribute the m′ individuals among themselves i.e.,

MASTER and SLAVES

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.7, March 2013

6

TABLE 1. Parameter set

Population size / Deme 200

Crossover probability 0.8

Mutation probability 0.016/bit

Migration rate for

Cone Separation

After every 10 generation

mig-within! 10 generations

m′, n′ 20 individuals

No of Processors 8

Termination condition Average knapsack profit greater than

10000 or the migration of non-

dominated solution remain dormant

for 20 generations

Figure 7: Comparison of divergence and convergence with

different PMOGA models with 200 data items and 8

processors.

have compared the result with the jakobovic, Island and Cone

separation model. Figure 7 explains the divergence result with

different models. From the Figure 7 it can be seen that

HybJacIsCone model diverges better than any of the

independent models.

7. CONCLUSION
Multi-objective genetic algorithm (MOGA) parallelization is an

important issue due to its large computation time with several

solutions. Our paper presents a hybrid model in the direction of

parallelizing multi-objective genetic algorithm (MOGA) and it

is verified over 0/1 knapsack problem. In addition to this, the

result is compared with the basic model. Once more the

efficiency of the proposed model is verify over the divergence

parameter and found out that it gives better result in comparison

with existing models by varying the number of processors.

8. REFERENCES
[1] T. Al-Somani and K. Qureshi. Reliability Optimization

Using Genetics Algorithms. Msc thesis, Saudi Arabia,

King Abdul Aziz University.2000

[2] J. Branke, T. Kaubler, and H. Schmeck. Guidance in

evolutionary multiobjective optimization., Advances in

Engineering Software, volume 32(6), pages 499-

508,2001

[3] J. Branke, H. Schmeck, K. Deb, and R. S. Maheshwar.

Parallelizing multi-objective evolutionary algorithms:

Cone separation. In Congress on Evolutionary

Computation (CEC 2004), pages 1952-1957, Portland,

Oregon, USA, 2004. IEEE Press

[4] E. Cantu-Paz. A survey of parallel genetic algorithms.

Calculateurs Paralleles, volume 10(2), pages 141-171,

1998

[5]] K. Deb, S. Agarwal, A. Pratap, and T. Meyarivan. A

fast elitist non-dominated sorting genetic algorithm for

multi-objective optimization: NSGA-II. In Proceedings of

the 6th International Conference on Parallel Problem

Solving from Nature, pages 849-858. Springer-Verlag,

2000.

[6] K. Deb, P. Zope, and A. Jain. Distributed computing of

pareto-optimal solutions with evolutionary algorithm. In

C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L.

Thiele, editors, Evolutionary Multi-Criterion

Optimization, LNCS, volume 2632, pages 534-549.

Springer, 2003

[7] M. J. Flynn and Kevin W. Rudd. Parallel architectures.

ACM Comput. Survey ,volume 28, pages 67-70, March

1996.

[8] E. E. Johnson. Completing an mimd multiprocessor

taxonomy. SIGARCH Computer Architecture News,

volume 16(3), pages 47-44, 1988.

[9]] F. Streichert, H. Ulmer, and A. Zell. Parallelization

of multi-objective evolutionary algorithms using clustering

algorithms. Evolutionary Multi-Criterion Optimization,

volume 3410, pages 92-107, 2005

[10]] A. S. Tanenbaum and M. van Steen. Distributed

Systems: Principals and Paradigms. Prentice Hall,

Upper Saddle River, 2002

[11] D. A. van Veldhuizen. Considerations in engineering

parallel multiobjective evolutionary algorithms. IEEE

Transactions on Evolutionary Computation, volume 7(2),

pages 144-173, 2003

[12] E. Zitzler, K. Deb, and L. Thiele. Comparison of

multi-objective evolutionary algorithms: Empirical

results. Technical report, INSTITUTION Swiss

Federal Institute of Technology (ETH), Zurich, 1999

