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ABSTRACT 

 Martin (I-continuity in topological spaces, Acta Mathematica, 

Faculty of Natural Sciences Constantine the Philosopher 

University Nitra, 6 (2003), 115-122.) has introduced an 

interesting concept of I-continuity of a function f . In this 

paper, a counter example to the assertion of Martin has been 

discussed which he has established in his result (Theorem 

2.2), stating that continuity implies I-continuity. It has been 

noticed that only the homeomorphism of f implies I-continuity 

of f. 

 AMS Mathematics Subject Classification (2000) : 54A10, 

54A05,  54820.        
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1. INTRODUCTION 
 The notion of I-convergence was introduced by Kostyrko et 

al. in [7] (see also [3], [5]) for sequences in metric spaces. 

This concept of I-convergence was used in [1] (see also [2], 

[4], [6]) for introducing I-convergence in case of real 

functions. These ideas have been further studied by Martin 

[10] for verifying certain properties of I-continuous functions 

and their relationship with the classical definition of 

continuous functions. 

            In the present paper, it has been concluded that the 

concepts of continuity (cf. [9]) and I-continuity are 

independent. This assertion contradicts the claim of Martin 

established in his paper (cf. [10]) that continuity of a function 

implies I-continuity. In support of this claim, Several 

elaborative examples have been constructed . 

            Finally, a result which states that "If f is a 

homeomorphism then f is I-continuous" has been proved 

.Which is a direct consequence of the fact that the 

homeomorphism carries a topological property from one 

space to its  homeomorphic image. 

2. Priliminaries. 
Throughout this paper (X, τX) denotes a topological 

space, and FX denotes the collection of all closed 

subsets of the topological space (X, τX). Also N denotes 

a set of natural numbers, and {xn}
∞

n=1 be a sequence 

of elements of the topological space (X, τX). The set of 

all subsets of a given set S is called the power set of S 

and is denoted by P(S). 

 

Definition 2.1. (cf.[10]) A family I  of subsets of N  is an 

ideal in N  if  

• A, B ∈ I ⇒ A ∪ B ∈ I, 

• A ∈ I  and B ⊂ A ⇒ B ∈ I. 

Remark 2.1. If N ∈ I, then the Ideal is said to be 

improper. 

 

Example 2.1.  N = {1, 2, ...} be a set of 

natural numbers. Consider I = {φ, {1}, 

{2},{1, 2}}.  It is easy to see that I is an 

ideal in N.  (refer Definition 2.1) 

 

Definition 2.2. (cf.[10]) Let I be an ideal in N. A 

sequence {xn}
∞

n=1  in a topological space X is said to be 

I−convergent to a point x  ∈ X  if 

                    A(U) = {n : xn  ∉  U} ∈ I  (2.1) 

holds for each open set U containing x. It has been denoted by 

                             I − lim xn = x. 

Remark 2.2. The I − lim xn is not unique in general. 

 

Example 2.2. Let X = {a, b, c} be a topological space 

with the topology τX  =  {X,  φ, {a}, {a, c}},  

FX= {{φ, X, {b, c}, {b}}. Consider a sequence {xn}
∞

n=1 in X 

as follows: 

 

                  c, for n = 1, 2, ..., 60 

{xn} =        b, for n = 61, ..., 120 

                   a, for n = 121, ....   (2.2) 

Consider           I = { φ, P(S)} in N  (2.3) 

where               S = {1, 2, ...120} 

By construction, the sequence {xn} converges to a in the 

classical sense. The I−limits of the sequence {xn} has been 

verified as follows: 

 

• Claim. a is an I−limit of {xn}. 

a ∈ X, {a}, {a, c}. In view of relation (2.1). Now consider 

A(X) = { φ: xn ∉  X}. 

A({a}) = {1, ...120 : xn ∉  {a}}. 

A({a, c}) = {61, ...120 : xn ∉  {a, c}}. 

Reffering relation (2.3), it is clear that A(X), A{a}, A{a, c}∈  

I.  Hence, it has been concluded that a is an I−limit of {xn}. 

(cf. Definition 2.2). 

Similarly, it may be checked easily that b and c are also the 

I−limits of {xn}. Therefore, I − lim xn = a, b, c. 

 

Definition 2.3. (cf.[10]) Let I be an ideal in N and X, Y 

be  topological spaces. A map f : X → Y is called 

I−continuous if for each sequence {xn}
∞

n=1 in X 
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I − lim xn = x0,   I − lim f(xn) = f(x0). 

 

Example 2.3.  Let X = {a, b, c} be a topological space 

with the topology  τX = {X,  φ , {a}, {a, c}}, FX = { φ, X, {b, 

c}, {b}}. We Define a sequence {xn}
∞

n=1 in X as follows: 

  

                  c,   for n = 1, 2, ..., 60 

{xn} =        b,  for n = 61, ..., 120 

                   a,  for n = 121, ....   (2.4) 

 Consider           I = { φ,  P(S)} in N   (2.5) 

Where               S = {1, 2, ...120} 

It  has been already shown in example 2.2, that  

                      I − lim xn = a, b, c. 

Next, consider Y = {p, q, r} with the topology 

ΤY  = {Y, φ, {p}, {r}, {p, r}}, FY = { φ, Y, {q, r}, {p, q}, 

{q}}. Define a function f : X → Y as follows : 

          f(c) 

              = p;                    (2.6) 

          f(a) 

 

          f(b)           = q 

It may be verified easily that f is a continuous function. In 

view of (2.4) and (2.6), 

the sequence {f(xn)}
 ∞

n=1  in Y turns out to be, 

         

                         f(c) = p, for n = 1, 2, ..., 60       

    {f(xn)} =       f(b) = q, for n = 61, ..., 120 

                          f(a) = p, for n = 121, ..., ...             (2.7) 

 

The I−limits of the sequence {f(xn)} have been checked as 

follows: 

 

• Claim. p  is an I−limit of {f(xn)}. 

p ∈Y, {p}, {p, r}. 

A(Y ) = { φ : f(xn) ∉ Y } 

A({p}) = {61, ..., 120 : f(xn) ∉ {p}} 

A({p, r}) = {61, ..., 120 : f(xn)  ∉ {p, r}} 

Reffering relation (2.5) it is clear that A(Y ), A{p}, A{p, r} ∈  

I. Hence, it may be concluded that p is an I−limit of {f(xn)}. 

(cf. Definition 2.2). 

Similarly, it may be checked that q is also the I−limit of 

{f(xn)}. 

 
• Claim. r is not an I−limit of {f(xn)} 

r ∈ Y, {r}, {p, r} 

A(Y ) = { φ : f(xn) ∉ Y } ∈  I cf. relation (2.1) 

A({r}) = {N : f(xn) ∉  {r}} ∈  I cf. relation (2.1) 

A({p, r}) = {61, ..., 120 : f(xn) ∉  {p, r}} ∈ I cf. relation (2.1) 

Hence, r is not an I−limit of  {f(xn)}. Therefore, 

 I − lim f(xn) = p, q. 

So we get, I − lim xn = a, b, c ,  I − lim f(xn) = p, q. Thus, f is 

I−continuous, in view of definition 2.3 and the equation (2.7). 

 

3. Main result due to Martin. 
In this section, the basic result due Martin which he 

established by considering the relationship between the 

concept of continuity and I−continuity of a function 

f has been considered. The authors found a small error in the 

proof of this result which disproves the claim. In support of 

this investigation, a counter-example has 

been discussed in details. 

 

Theorem 3.1. (Due to Martin) Let X and Y be 

topological spaces and let I be an arbitrary ideal in N. If  

f : X → Y is continuous then f is I−continuous. 

(cf. Theorem 2.2 [10]) 

Proof. (Due to Martin):  Let f : X→  Y be 

continuous function and  I−lim xn = x. Then, for each 

neighborhood V of f(x) there exists a neighborhood U of x 

such that, f(U) ⊆V . Hence, 

{n ∈ N : f(xn) ∉ V } ⊆ {n ∈ N : xn ∉ U} ∈ I and  

                       I − lim f(xn) = f(x). 

 

Error in the last step.  Let f : X → Y be continuous 

and I − lim xn = x. Then, for each neighborhood V of f(x)  

there exists a neighborhood U of x such that f(U) ⊆  V . 

(cf[8]) Since I − lim xn = x  then, 

A(U) = {n : xn  ∉ U} ∈  I ⇒ f(xn) ∉ f(U). Since f(U) ⊆ V , it 

is clear that f(xn) may or may not belong to V ie. f(xn) ∉ f(U)  

⇒ f(xn)  ∉ V Hence, f is not I−continuous necessarily. 

      Therefore, it may be concluded that if the function is  

continuous then it is not necessary that function is 

I−continuous. 

 

Counter-examples. 

 

Example 3.1. Let X = {a, b, c} be a topological space with the 

 Topology  τX = {X, φ , {a}, {a, c}}, FX = { φ, X, {b, c}, {b}}. 

Define a 

 Sequence {xn}
∞

n=1    X as follows: 

 

                  c,   for n = 1, 2, ..., 60 

{xn} =        b,  for n = 61, ..., 120 

                   a,  for n = 121, ....   (3.1) 

 

Consider 

                           I  = { φ , P(S)} in N                 (3.2) 

  Where              S = {1, 2, ...120} 

It has been already checked in example 2.2 that, I − lim xn = a, b, c. 

Now , consider Y = {p, q, r} with the topology ΤY= {Y, φ, {p}}, 

 FY = { φ, Y, {q, r}}. Define a function f : X → Y as follows : 

  

           

        f(c)  

          =  p                         (3.3) 

        f(a)   

  

        f(b)          = q 

                   

It may be verified easily  that  f is into and continuous. In view of (3.1) 

 and (3.3) the sequence   {f(xn)}
 ∞

n=1 in Y turns out to be, 

    

                      f(c) = p, for n = 1, 2, ..., 60       

    {f(xn)} =      f(b) = q, for n = 61, ..., 120 

                      f(a) = p, for n = 121, ..., ...             (3.4) 

 

The I−limits of the sequence {f(xn)} has been verified as follows: 

 

• Claim. p is an I−limit of {f(xn)}. 

p ∈ Y, {p}. 

A(Y ) = { φ : f(xn) ∉ Y } 

A({p}) = {61, ..., 120 : f(xn) ∉ {p}} 

Reffering relation (3.2) it is clear that A(Y ), A{p} ∈ I. Hence, it has 

 Been concluded that p is an I−limit of {f(xn)}. (cf. Definition 2.2).  

Similarly, it may be checked that q and r are also the I−limits of {f(xn)}. 

Therefore,   I − lim f(xn) = p, q, r 

But, if I − lim xn = a, b, c ,  then I − limf(xn) = p, q. 

Referring the result of Martin (Theorem 2.2 of [10]), the  

conclusion is: 

I − lim f(xn) = p, q which is a contradiction as by applying the 
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 definition directly, we get I − lim f(xn) = p, q, r. 

 

Remark 3.1. By considering one-one onto function, instead of 

 many one function (as considered in Example 3.1)  it has 

 observed in the following example that the result due to 

 Martin does not hold. 

 

Example 3.2. Let X = {a, b, c} be a topological space  

with the topology  τX  = {X, φ, {a}, {b}, {a, b}}, FX = { φ, X, {b, c}, {a, c}, {c}}.  

We define a sequence {xn}
∞

n=1 in X as follows: 

 

                  c,   for n = 1, 2, ..., 50 

{xn} =        b,  for n = 61, ..., 100 

                   a,  for n = 101, ....   (3.5) 

 

 

Consider 

                  I = { φ, P(S)} in N                            (3.6) 

where        S = {1, 2, ...100} 

It may be checked easily that I − lim xn = a, c. 

Next, consider Y = {1, 2, 3} with the topology 

ΤY = {Y, φ, {1, 2}}, FY = { φ, Y, {3}}. 

Define a function f : X →Y as follows: 

                f(a) = 1 f(b) = 2 f(c) = 3                     (3.7) 

Following the technique of earlier examples, it may be 

 verified  easily  that f is continuous but not I−continuous. 

In the next Example, it has been verified that for a given non  

Continuous function f, the property of I−continuity holds. 

. 

Example 3.3. Let X = {a, b, c} be a topological space 

 with the topology τX = {X, φ, {a, b}}, FX = {φ ,X, {c}}. Define 

 a sequence  {xn}
∞

n=1  in X as follows: 

 

                c,   for n = 1, 2, ..., 50 

{xn} =      b,  for n = 61, ..., 100 

                a,  for n = 101, ....   (3.8) 

 

Consider 

                     I = { φ, P(S)} in N                        (3.9) 

Where          S = {51, ..., ...} 

It may be checked easily  that I − lim xn = c. 

Consider  Y = {1, 2, 3} with the topology 

 ΤY = {Y, φ, {1}, {2}, {1, 2}} , FY = { φ, Y, {2, 3}, {1, 3}, {3}}. 

 Now define a function f : X  → Y The I−limits of the 

 sequence   have been computed as follows: 

                   f(a) = 1, f(b) = 2, f(c) = 3               (3.10) 

It may be verified easily that f is not continuous function. In 

 view of (3.8) and (3.10) the sequence  {f(xn)}
 ∞

n=1   in Y 

 turns out to be, 

 

                       f(c) = p, for n = 1, 2, ..., 50       

    {f(xn)} =     f(b) = q, for n = 61, ..., 100 

                       f(a) = p, for n = 101, ..., ...             (3.11) 

 

 

• Claim. 1 is not an I−limit of {f(xn)} . 

1 ∈ Y, {1}, {1, 2}. 

A(Y ) = { φ : f(xn) ∉ Y } ∈ I (cf. relation (2.1)) 

A({1}) = {1, ..., 100 : f(xn)  ∉ {1}} ∉  I (cf. relation (2.1)) 

A({1, 2}) = {1, ..., 50 : f(xn) ∉ {1, 2}} ∉ I (cf. relation (2.1)) 

Hence, 1 is not an I−limit of f(xn). Similarly, it may be  

checked  easily  that 2 is not the I−limit of {f(xn)}. 

 

• Claim. 3 is an I−limit of {f(xn)} 

3 ∈ Y . 

A(Y ) = { φ : f(xn) ∉ Y } ∈ I (see relation (2.1)) 

Hence, 3 is an I−limit of f(xn). Therefore, I − lim f(xn) = 3. 

Thus, we get I − lim xn = c ⇒ I − lim f(xn) = 3 (cf.(3.11)). 

 Hence, f is I−continuous. 

4. Main result. 

Remark 4.1. Any property of the domain which has 

 been described in terms of 

open sets also holds in its homeomorphic  image. 

 

Theorem 4.1. Let X and Y be topological spaces and let I be 

 an arbitrary ideal in N. If f : X  → Y is a homeomorphism then 

 f is I−continuous. 
Proof. Let f :X →Y be a homeomorphism (cf. [8])  and I − lim xn = x. 

Reffering relation (2.1), 

A(U) = {n : xn ∉ U for each nbd U of x} ∈ I                        (4.1) 

Since f is a homeomorphism it is an open mapping and f(U) is 

 an open set in Y whenever U is open in X. Since x ∈ U, f(x) ∈ f(U). 

Claim. Xn ∉ U ⇒ f(xn) ∉ f(U) for each nbd f(U) of f(x). 

Let if possible there exits an open set V in Y containing f(x) which  

is not equal to any of f(U). Then x ∈ f-1(V ) since, f is continuous 

 f-1 (V ) is an open set containing x. Hence, V must be of the form  

f(U) for some nbd U of x. Therefore, each nbd of f(x) is of the form  

f(U). Hence, I − lim f(xn) = f(x). 

 

Conclusion.  

Finally the following conclusion have been noted: 

1. Continuity of f does not imply I−continuity of f. 

2. Considering even one-one onto continuous function then also 

 above  assertions (1) holds. 

3. I−continuity of function does not imply continuity of a function. 

4. If f is a homeomorphism then f is I−continuous. 

4. ACKNOWLEDGMENTS 
 The authors would like to thank referees of this paper for 

their valuable suggestions.   

5.  REFERENCES 
[1] Balaz V., Cervenansky  J., Kostyrko Salat T., I-

convergence and I-continuity of real functions,Acta 

Mathematica, Faculty of Natural Sciences Constantine 
the Philosopher University Nitra 5 (2002),  43-50. 

[2] Cintura J., Heredity and Coreflective Subcategories of 

the category of the topological Spaces, Applied 

categorical structures 9 (2001), 131- 138. 

[3] Engelking R., General Topology, PWN, Warsaw, 1977. 

[4] Franclin S.P., Rajagopalan M., On subsequential spaces 

Topology Appl. 35 (1990),  1-19. 

[5] Franclin S.P., Spaces in which sequences suffice, Fund. 
Math. 57 (1967),   107-115. 

[6] Herrlich H., Topologische Reflexionen and 
Coreflexionen, Springer  Verlag, Barlin, 1968. 

[7] Kostyrko P., Salat T., Wilczynski W., I-convergence, 
Real  Anal.Exch. 26 (2) (2000/2001), 669-686. 

[8] Munkers J. R., Topology, Second Edition, Pearson 
Education Asia (1988). 

[9] Power P.L., Rajak  K., Some new concepts of continuity 

in generalized topological space, International Journal of 

Computer Application, volume 38 NO.5, January 2012, 
ISSN NO. 0975-8887 (online). 

[10]  Sleziak Martin, I-continuity in topological spaces, Acta 

Mathematica, Faculty of Natural Sciences Constantine 
the Philosopher University Nitra, 6 (2003) , 115-122. 

 


