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ABSTRACT 

Multipliers play a vital role in many cryptographic 

applications like elliptic curve cryptography, RSA and other 

algorithms. The direct truncation of least significant part of 

the product leads to large error in the resultant product when 

fixed width output is the requirement. This paper proposes a 

truncation error minimizing logic which greatly reduces 

truncation error. Truncation error minimizing logic has been 

inserted in the least significant part of full length Baugh 

Wooley multiplier and Modified Booth Recoding multiplier 

and the results are compared.VHDL simulation shows that the 

truncation error is reduced up to 68% compared with direct 

truncated multiplier and involves lesser number of gates when 

compared to full length multipliers. It is also found that the 

total power consumed by these multipliers is only half the 

amount consumed by full length multiplier. Also Baugh 

Wooley multiplier performs better than Modified Booth 

Recoding multiplier. 
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1. INTRODUCTION 
Multipliers play a very important role in many applications 

like cryptographic systems and multimedia. In full length 

multipliers, the number of partial products has to be reduced 

in order to avoid the growth of multiplication bit-width. 

Cutting off n- least significant bits (LSB) in the output results 

in a fixed-width multiplier with n-bit input and n-bit output 

[5]. However, truncating the entire LSB part leads to large 

truncation errors. In full-length multipliers error compensation 

techniques are precise but hardware is too complex and 

computation delay is high [2].  However, when the operand 

sizes of the multipliers and the process technology need to be 

changed, the existing multipliers have to be redesigned. In the 

proposed design, truncation error can be reduced by using 

“truncation error minimizing logic”. The error compensation 

circuit is constructed by the partial products terms with the 

most-significant weight in the least-significant segment [4]. 

The compensation vector can be directly injected into the 

fixed-width multiplier as compensation, so that extra 

compensation logic gates are not needed. By utilizing the 

symmetric property of truncation error minimizing logic, fan-

in can be reduced to half and hardware can be shared [9]. 

Hardware complexity is reduced in this manner. As compared 

to other multipliers, the proposed fixed-width multiplier 

performs with low compensation error and also with less 

hardware complexity. 

Baugh-Wooley multiplier with error minimizing logic is 

compared with direct truncation multiplier. This shows that 

the Baugh-Wooley multiplier with the error minimizing logic 

requires lesser area since it involves lesser number of partial 

products. Also result shows that fixed-width multipliers with 

truncation error reduction circuit perform with lower 

truncation error when compared to other multipliers.  

This paper is organized as follows. In Section 2, the Baugh-

Wooley multiplier and Modified Booth Recoding multiplier 

are briefly reviewed. Section 3 describes the detailed 

description of Baugh-Wooley technique using truncation error 

minimizing logic. The experiment results and the comparisons 

are given in section 4. Section 5 concludes this paper. 

2.  MULTIPLIERS 

2.1   Baugh-Wooley Multiplier 

Baugh-Wooley multiplication algorithm is an efficient way to 

handle the sign bits.Dr.Gebali has extended the basic idea and 

developed efficient fast products processors capable of 

performing double-precision multiply-accumulate operations 

without the speed penalty [11]. Baugh-Wooley Multiplier is 

used for both unsigned and signed number multiplication. 

Signed number operands are represented in 2’s complement 

form. Partial products are adjusted such that negative sign 

move to last step, which in turn maximize the regularity of the 

multiplication array [7]. Baugh-Wooley Multiplier operates 

on signed operands with 2’s complement representation to 

make sure that the signs of all partial products are positive. 

Let us consider two n-bit numbers, A and B, to be multiplied. 

A and B can be represented as in equation (i) and (ii). 

A=-an-12
n-1+     

   i 2
i    (i) 

B=-bn-12 -1+     
   i2

i                  (ii) 

Where the ai’s and bi’s are the bits in A and B, respectively, 

and an-1 and bn-1 are the sign bits. The final product P=AxB is 

given in equation (iii). 

P=an-1bn-12
2n-2+    

   i    
   j2

i+j +2n-1            
   n-1ai   2

i + 

2n-1         
   n-1bj   2

j + [-22n-1] +2n                 (iii) 

Let us assume that A and B are 4-bit binary numbers, then the 

product P=AxB is 8-bits long and is given by equation (iv) 

P=a3b32
6+    

   i    
   j2

i+j+23       
   3ai    2

i +23     
   3bj   

[2j + -27+24  ]                  (iv) 
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The block diagram of 4x4 Baugh-Wooley multiplier is given 

in fig 1. 

 

Fig 1: Block diagram of a 4x4 Baugh-Wooley multiplier 

Here a0, a1, a2, a3 and b0, b1, b2, b3 are the inputs. The 

outputs are p0, p1... p7. This will take less time to multiply 

large number of 2’s complement but less than 32 bit. Above 

32 bit modified Baugh-Wooley multiplier is used[8]. 

2.2   Modified Booth Recoding 

The Modified Booth (MB) algorithm [2] guarantees that only 

half the number of partial products will be generated, 

compared to a conventional partial-product generation using 

2-input AND gates. The reduction of partial-product rows is 

achieved by encoding the multiplier into {-2,-1, 0, 1, 2}, 

which is then multiplied with the multiplicand. A Modified 

Booth multiplier therefore works, internally, with two’s 

complement representation of the partial products. To avoid 

sign extension of the partial products, we are using the 

scheme presented by Fadavi-Ardekani [3].In the two’s 

complement representation, a change of sign includes the 

insertion of a ‘1’at the least significant bit (LSB) position. To 

avoid an irregular implementation of the partial-product 

reduction circuitry, we draw on the idea called modified 

partial product array[4].Here ,the impact of LSB insertion on 

the two least significant bit positions of the partial product is 

pre-computed. The pre-computation redefines the LSB of the 

partial product [4] and moves the potential ‘1’, which results 

from the LSB insertion, to the second least significant 

position. The advantages of this technique are: 

 Only n/2 clock cycles are needed for n-bit 

multiplication as compared to n clock cycles in 

Booth’s algorithm. 

 Isolated 0/1 are handled efficiently. 

 For even n, the two’s complement multipliers are 

handled automatically whereas for odd n an 

extension of sign bit is required. 

 The block diagram of modified booth recoding multiplier is 

shown in fig 2. 

 

Fig 2: Block Diagram of Modified Booth Recoding 

Multiplier 

Partial Products are generated using modified booth’s 

recoding unit block. It can encode the digits by looking at 

three bits at a time. Booth recoding table must be able to add 

multiplicand times –2, -1, 0, 1 and 2.Since Booth recoding got 

rid of generating partial products is not that hard as shifting 

and negating.  

The procedure to multiply two numbers is given below. 

 For all odd values of i where i ranges from 1 to n-1 

for n-bit multiplication (assuming n is even), the 

bits of the multiplicand are recoded using the 

formula 

yi = xi-1 + xi-2 – 2xi 

 Then multiplication is done in normal way with the 

yi that have been calculated. 

The following example illustrate the whole procedure: 

A                                             01     00      01                          17 

X                        x                   11     01      11                          - 9 

Y                                             01’   10       01’                          recoded multiplier 

                                               -A    +2A    -A                           operation 

Add  -A              +                  10     11       11 

2 bit shift                        1      11     10       11   11 

Add 2A              +          0      10     00       10 

                                                01     11       01   11 

2 bit shift                                00     01       11   01   11 

Add  -A              +                  10     11       11 

 Result                                    11     01       10   01   11            -153 

The advantage of this method is halving  the number of partial 

products. This is important in circuit design as it relates to the 

propagation delay in the running of the circuit, and the 

complexity and power consumption of its implementation. 
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3. BAUGH-WOOLEY TECHNIQUE 

USING TRUNCATION ERROR 

MINIMIZING LOGIC 

The full-length n-bit unsigned Baugh-Wooley partial product 

array can be divided into three subsets of most significant part 

(MSP), correction vector and  least significant part   (LSP). 

The first addition tree, which is devoted to lower weight 

partial products, is a standard one-counter constructed by 

using full adders and half adders. The lower weight partial 

products of correction vector include the most external four 

partial products, which are x5y0, x4y4, x1y4 and x0y5 in the 

6-bit multiplier, having a weight of in error compensation. As 

for the second addition tree, it utilizes modified half adders 

(MHA) to take into account the contribution of partial 

products with higher weights. The higher weight partial 

products of correction vector include the other internal partial 

products, which are x3y2 and x2y3 in the 6-bit multiplier, 

having a weight in error compensation. The difference 

between MHA and standard HA is that when inputs of A and 

B are both 1, Sum=1 and Cout=1 as in MHA instead of 

Sum=0 and Cout=1 in standard HA. Fig.3 represents 

Truncation error minimizing logic before De Morgan 

simplification. This circuit is being inserted in the least 

significant part of full length Baugh Wooley multiplier after 

De Morgan simplification. 

 

Fig 3: Truncation error minimizing logic before  

De Morgan simplification 

The error compensation circuit is modified from the dual-tree 

design. To further reduce the compensation errors, IC is 

combined with error reduction circuit to correct the under-

compensated and over-compensated cases [1]. To reduce 

hardware complexity, the half adders through C3 to Cn-2 is 

removed. In the under compensation cases of β=2, 4 and over 

compensation case of β=1, the compensation function is 

modified in Cn-1 and C n.  

In order to further reduce the circuit complexity, De-Morgan’s 

law is applied to simplify the error minimizing circuit in Cn-1 

and Cn. After simplifying through De Morgan’s law and 

hardware sharing, the transistor count in proposed error 

minimizing circuit can be reduced from 62 to 40[9]. Finally, 

the proposed fixed-width multiplier with error minimizing 

logic is constructed and represented in fig 4. 

 

Fig 4: Baugh Wooley multiplier with error reduction logic 

4. RESULTS 

The proposed truncation error minimizing logic  is designed 

in Xilinx 9.1i using VHDL code and simulated using 

Modelsim5.7.The Baugh Wooley Multiplier with error 

reduction circuit is compared with full-length Baugh Wooley 

multiplier and modified booth recoding multiplier to analyze 

its approximation error and hardware complexity. To analyze 

the compensation error, all possible input patterns are injected 

into the fixed-width multiplier. The truncated output and full-

length multiplier output is compared. 

4.1 Gate Counts 
The number of gate counts for full length Baugh Wooley 

multiplier (FLBW) and Baugh Wooley multiplier with 

truncation error minimizing logic (BWTEM) are compared 

and is given in table 2. Also full length Modified Booth 

Recoding multiplier (FLMBR) and Modified Booth Recoding 

multiplier with truncation error minimizing logic (MBRTEM) 

are compared and tabulated respectively. Devices like 

Spartan2E and Spartan3E are used. Xilinx9.1i and 

Modelsim5.7 are used for simulation. The comparison results 

are shown in table 2. and table 3. 

Table 2.Comparison of Gate Counts of FLBW and 

BWTEM 

PARAMETERS FLBW BWTEM 

No. of LUT’s 67 47 

No. of Slices 36 26 

No. of IOB’s 24 18 

Gate Counts 402 291 

Additional JTAG 

Gate Counts 

 

1152 

 

864 
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Table 3.Comparison of Gate Counts of FLMBR and 

MBRTEM 

 

It is evident from the table 2 and table 3 that multipliers using 

truncation error minimizing logic requires lesser number of 

gates. It is also evident that Baugh Wooley multiplier using 

truncation error reduction circuit requires lesser number of 

gates when compared with modified booth recoding multiplier 

using the same error reduction circuit. Comparison of gates 

required by all the four multipliers is given in the figure 5. 

  

Fig 5: Comparison of Gate Counts using various devices 

4.2   Power Analysis 

The power analysis of full length Baugh Wooley multiplier 

(FLBW),Baugh Wooley with truncation error minimizing 

logic (BWTEM),full length modified booth recoding 

multiplier and modified booth recoding with truncation error 

reduction logic (MBRTEM) are done at various frequencies. 

The results show that as frequency increases power also 

increases and the multipliers with truncation error reduction 

consumes less power when compared to multipliers without 

truncation error minimizing logic. 

Comparison of total power consumed by FLBW and BWTEM 

multipliers and FLMBR and MBRTEM under various 

frequencies are presented in table 4 and table 5 . It is evident 

from the table 4. and table 5.that the  multiplier using 

truncation error reduction circuit consumes lesser power than 

full length multipliers without error minimizing logic. 

Table 4. Comparison of Power Consumption by FLBW 

and BWTEM 

 

FREQUENCY(HZ) 
POWER(mW) 

FLBW BWTEM 

100 44.12 39.30 

200 54.69 41.92 

300 64.27 47.41 

400 73.19 55.22 

500 80.60 63.11 

 

Table 5. Comparison of Power Consumption by FLMBM 

and MBRTEM 

 

FREQUENCY(HZ) 
POWER(mW) 

FLMBM MBRTEM 

100 124 112 

200 157 140 

300 192 177 

400 219 193 

500 254 236 

 

It is also evident from the table 4. and table 5. that the Baugh 

Wooley multiplier using truncation error minimizing logic 

consumes less power  when compared with Modified Booth 

Recoding multiplier using the same truncation error 

minimizing logic.  The figure 6. represents the power 

consumed by FLBW, BWTEM,FLMBR  and MBRTEM at 

various frequencies. 

 Fig 6: Comparison of Power Consumption by FLBW , 

BWTEM , FLMBR and MBRTEM 
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Frequency in Hertz 

FLBW 

BWTEM 

FLMBR 

MBRTEM 

PARAMETERS FLMBR MBRTEM 

No. of LUT’s 51 96 

No. of Slices 32 54 

No. of IOB’s 21 18 

Gate Counts 1240 681 

Additional JTAG 

Gate Counts 

 

1056 

 

912 
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Figure 6 shows that Baugh Wooley and Modified Booth 

Recoding which  uses truncation error minimizing logic 

consumes less power when compared with full length 

multiplier without error minimizing logic.  

4.3 Comparison of Compensation Error 

Percentage 

The truncation error minimizing logic is used to reduce the 

compensation error in Baugh Wooley multiplier and to reduce 

the hardware complexity. Some examples are given to prove 

that this compensation method results in less truncation error 

when compared to multipliers using direct truncation. 

In direct truncated multipliers truncation error increases 

because of truncating the entire LSB part of the multiplier 

output. Table 7. gives the results of direct truncated Baugh 

Wooley multiplier and Baugh Wooley multiplier with error 

reduction circuit for the given inputs of 6-bit multiplicand and 

multiplier and Table 8. gives the reduced  results of direct 

truncated modified booth recoding multiplier and modified 

booth recoding multiplier with error reduction circuit for the 

given patterns of 6-bit multiplicand and multiplier.  

Table 7.  Truncation results of FLBW and BWTEM 

 

This new error minimizing logic given is illustrated through    

an example given below. 

 

Example 1 

 

 

 

 

 

 

 

 

Reduction Error Value   

Full Length Baugh Wooley (Direct Truncation)  

                                           

                                                   Main         Truncation 

    Part         Part        

                                              011011 100100   

          

Value obtained using                   011011           1728 

direct truncation (DT) 

 

 

Error percentage      1764-1728=  36% 

 

Baugh Wooley with Truncation Error Minimizing Logic 

(Error reduction logic) 

 

                                              011011 100100             

 Adding MSB of truncation part  to the main part gives the 

value 1792. 

                                      011011 + 

                                                               1 

                                                     011100                 1792 

 

 Reduced error percentage              1792-1764= 28% 

 

Example 2 

            

 

 

   

 

 

 

Reduction Error Value   

Full Length BaughWooley (Direct Truncation) 

 

                                                   Main        Truncation 

    Part         Part        

                                             101011   111001             

 

Value obtained using                101011              2752 

direct truncation  

 

Error percentage     2809-2752= 57% 

 

INPUTS 

 

 

NUMERICAL 

PRODUCT 

     (XY) 

 

REDUCTION ERROR 

VALUE 

 

REDUCED 

ERROR 

% 

 

MULTIPLIER 

X 

 

MULTIPLICAND 

Y 

 

FLBW 

(DT) 

 

BWTEM 

(ERL) 

 

101010 

 

101010 

 

1764 

 

36 

 

28 

 

8 

 

110101 

 

110101 

 

2809 

 

57 

 

7 

 

50 

 

110101 

 

101010 

 

2226 

 

50 

 

14 

 

36 

 

111111 

 

111111 

 

3969 

 

1 

 

1 

 

0 

 

011001 

 

110111 

 

1375 

 

31 

 

33 

 

2 

   

AVG 

 

35 

 

16.6 

 

18.4 

Multiplicand 

Multiplier 

Product 

101010       X       42 

 

101010              42 

011011100100                 1764 

Binary   Decimal 

 Value     value 

 

Multiplicand

ddd 

Multiplier 

Product 

110101       X       53 

 

110101             53 

 

101011111001                 2809      

228091764 

 Binary                   Decimal 

 Value     value 
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Baugh Wooley with Truncation Error Minimizing Logic 

(Error reduction logic) 

 

 

                                             101011  111001     
         
Adding MSB of truncation part  to the main part gives the 

value 2816. 

                                      101011 + 

                                                               1 

                                                     101100                 2816 

 

Error percentage                   2816-2809= 7% 

 

The proposed truncation error minimizing logic  in which the 

product is split into two parts: with higher order bits grouped 

into main part and truncation part. The length of each part 

need not necessary be equal. The addition process starts from 

the demarcation line in which the most significant bit(MSB)of 

the truncation part (LSB) is being added  to the least 

significant bit of the main part(LSB) . In the example 1, the 6-

bit multiplicand “101010” (42) and 6-bit multiplier “101010” 

(42) is multiplied. This results in a product of 12 bits 

“011011100100” (1764). Full length Baugh Wooley 

multiplier using direct truncation the 6–bit LSB is being 

truncated directly which results in a value of “011011” 

(1728).This results in a error percentage of 36% from the 

original product. While using the error reduction circuit by 

adding the MSB of the inaccurate part to the LSB of the 

accurate part the he value obtained is “011100” (1764). This 

results in a error percentage of 28% from the original product. 

 

Table 8.  Reduced error value of FLMBR and MBRTER 

 

The same procedure adopted in Baugh Wooley multiplier has 

been carried out in the Modified Booth Recoding Multiplier. 

It is evident from the tables that the Baugh Wooley multiplier 

using Truncation error reduction(BWTER) circuit performs a 

higher percentage in error reduction when compared with 

Modified Booth Recoding multiplier(MBRTER) using the 

same truncation error circuit .   

Wave forms of Baugh Wooley multiplier using truncation 

error reduction circuit and Modified Booth Recoding 

multiplier using the same truncation error minimizing logic 

for the given inputs of 6-bit multiplicand and multiplier are 

shown in figure 7 and figure 8. 

 

Fig 7: Wave form of BWTER 

 

Fig 8:Wave form of MBRTER 

 

5. CONCLUSION 

 A fixed-width multiplier with a new error compensation 

circuit by using ‘truncation error minimizing logic” is 

proposed. Truncation error minimizing logic has been inserted 

in the least significant part of full length Baugh Wooley 

multiplier and modified booth recoding multiplier.  In these 

multipliers the truncation error is reduced up to 68% as 

compared with direct truncated multiplier and it involves 

lesser number of gates (of about 47%) when compared to full 

length multipliers. Also the total powers consumed by these 

multipliers are only half the amount consumed by full length 

multipliers. Extensive comparisons among all the four 

multipliers show that Baugh Wooley multiplier with 

truncation error minimizing logic is the one which occupies 

minimum area and less power. This is because it uses lesser 

number of partial products. And also it reduces truncation 

error up to 68%.  These fast multipliers play a very important 

role in cryptographic systems, multimedia, etc. 
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