
International Journal of Computer Applications (0975 – 8887)

Volume 66– No.5, March 2013

24

Analysis of Forest of Hashed Exponential Trees

Nikita

Lovely University
Phagwara

Neha Arora
Thapar University

Patiala

Puneet Kumar
Lovely University

Phagwara

ABSTRACT

Exponential Tree in the form of forest is proposed in such a

manner that- (a) it provides faster access of a node and, (b) it

becomes more compatible with the parallel environment.

Empirically, it has been show that the proposed method

decreases the total internal path length of an Exponential Tree

quite considerably. The experiments were conducted by

creating three different data structures using the same input- a

conventional binary tree, a forest of hashed binary trees and a

forest of hashed exponential trees. It has been shown that a

forest of hashed exponential trees so produced has lesser

internal path length and height in comparison of other two. It

also increases the degree of parallelism.

General Terms

Algorithms, Parallelism, Traversing.

Keywords
Exponential Tree, Binary Search Tree, Internal Path Length,

Parallel Processing, Balanced Tree

1. INTRODUCTION

The exponential tree was first introduced by Andersson in his

research of Fast deterministic sorting and searching in linear

space [1]. In exponential Tree, the number of children

increases exponentially. It is almost identical to a binary

search tree, with the exception of dimension. The dimension

of exponential tree is not the same at all levels. In a normal

binary tree, each node has 2d children with a dimension of 1.

In an exponential tree, the dimension equals to the depth of

the node with a root node having a dimension equals to 1.

Root node at level 1 holds two children (21), each node at

level 2 holds four children (22), each node at level 3 holds 8

children (23) and so on. Therefore, the second level can hold

two nodes, the third level can hold eight nodes and fourth one

can hold 64 nodes and so on.

Anderson has shown that if integers are passed down in an

exponential tree one by one than insertion takes O (√logn) for

each integer [1]. This is improvement over the result given by

Raman which takes O (n√lognloglogn) expected time [2].

Yijie Han has given an idea in Deterministic sorting in O (n

log logn) time and linear space [3]. In this, complexity is

reduced to O (nloglogn) expected time in linear space. The

technique used by him is that, instead of inserting one integer

at a time in an exponential tree as done by Anderesson [1], he

passed down all integers at one level of the exponential tree at

a time. This idea may provide a speedup, but in practical

implementation it is difficult to handle integers in the form of

batches.

Later on, Ajit Singh presented a way to implement

exponential trees [4]. Modified concept of exponential trees

has been used to implement the sorting as it is difficult to

handle the pointers in actual Anderesson’s exponential tree

[1]. The modified exponential tree has following properties:

1. Each node at level j will hold j number of keys.

2. Each node at level j will hold j+1 children.

3. All the keys in every node must be sorted.

As far as concurrent processing is concerned, considerable

work has been done to develop concurrent algorithms, refer to

[5]-[11]. In a tree, root is the only gateway; it makes it

difficult for all the active processes to achieve maximum

parallelism. No matter how optimal our concurrent algorithms

are; other active processes have to wait until the previous

releases the lock. Ellis [9], [10] presented ways for concurrent

searches and insertions in the AVL and 2-3 trees. Most of the

presented solutions use some kind of locking scheme to allow

concurrent processing on a single tree. The common goal is to

increase the degree of concurrency. It is achieved by having a

lesser portion of the tree locked and thus available a major

portion to the rest of the active processes. These algorithms

can increase the degree of concurrency up to a considerable

extent. However, results could be better if the underlying data

structure is modified to support large number of processes.

Substantial work has been carried out on algorithms, but

hardly an attempt has been made to create an optimal data

structure.

In this paper, we propose a forest of hashed exponential trees

in order to provide better compatibility with the concurrent

environment. To check the overall balance

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.5, March 2013

25

Fig 1: A Forest of Exponential trees

Of the proposed forest, parameters used are internal path

length (IPL) and the height of the tree. The height of the tree

is defined as the length of the longest path from the root to the

leaf.IPL is defined as the sum of the depth of all the nodes in

the tree

2. CREATION OF FOREST

A random exponential tree can be maintained in the set of

trees called ‘forest’. The number of exponential trees in the

forest would depend on the application and requirement. For

the purpose of simulation of simulation, we have used a forest

of 10 trees. There will be a multiple roots to hold multiple

trees. An array of pointers will be there of size k=12. Each

cell of the array acts as a root of tree. In case the tree is empty,

array cell points to a null value (refer to figure 1). In order to

find out the location of a key in the array, hash function is

used. A Key to be inserted or deleted is first divided by the

size of the array and its remainder will provide the location of

that key in the array. Therefore, hash function used is given

by: loc=key % k. Where ‘loc’ is the location of the array

to/from which the key has to be inserted or deleted. In this

way, we get a set of k possible exponential trees, which

resembles a forest, but acts as a single exponential tree. The

only difference between a single exponential tree and a forest

is determining the tree location using hashing. In figure 1, the

forest of two exponential trees is shown. The collective

Internal Path Length of the forest = the sum of the IPLs of all

the trees in the forest = 18+4= 22. Maximum height of the tree

is 2.

3. METHODOLOGY

The same random input is used to construct the three data

structures namely a conventional tree, a forest of Hashed

binary trees and a forest of hashed exponential trees. A

random number is generated for every insertion which serves

as an input to three different algorithms: one creates a

conventional tree that is also perfectly balanced, second one

constructs an exponential tree and the third one creates a

forest. Duplicates are avoided. The Internal Path Length (IPL)

of all the three structures is calculated. For a Conventional

tree, IPL is calculated by summing the depths of all nodes in

the tree. In the case of a forest whether Exponential or Binary,

the IPL is calculated by adding all the IPLs of the individual

trees in the forest [4].The heights of all the trees in the forest

as well are recorded. For example, the worst case height of

tree in the above given forest is 2 and collective IPL is

18+4=22.The array size is 12 i.e. roughly equal to 1% of the

input size i.e.1023.

4. RESULTS

The parameters used are as follows:

Average Height of forest = Sum of all twelve trees in the

forest/12.

Height of worst tree in the forest = A tree with maximum

height in the forest.

Collective Path length of forest = the sum of path lengths of

all 12 trees in the forest

Table 1 is obtained by conducting several tests under Borland

C++ compiler 5.5 for windows and GNU C++ compiler

3.4.3(g++) under Linux [4],[12].This table shows the result

for n=1023 and k=12.the average height of exponential trees

in a forest was roughly equal to 5,which is quite close to

perfectly balanced exponential tree. On comparing the

average height of the exponential trees in forest there is a

whopping reduction of 90% as compared to conventional tree

and a reduction of almost 50% when compared with forest of

hashed binary trees. Though comparing both the forests with

the conventional tree is not justifiable because the number of

nodes changes randomly and is not the same in all the three

structures. However, we get the worst case behavior of the

structure through this analysis. And the result so obtained is

more than considerable .The worst case IPL of exponential

tree is 1715 as compared to 12174. IPL (In) is related to the

number of comparisons as follows:

Can = In/n+1 (1)

For Conventional tree, the number of comparisons is

(12174/1023) + 1 = 12.9 approximately, for forest of hashed

binary trees it is (6623/1023) +1=7 and for forest of

exponential trees the comparisons are (1715/1023) +1=3.

Hence, it is quite obvious that the forest of exponential trees

require less number of comparisons. Therefore, behavior of

exponential tree forest is far better than conventional tree and

forest of hashed binary trees

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.5, March 2013

26

5. TIME AND SPACE REQUIREMENTS

OF FOREST

A random BST with n nodes requires log (n) time for almost

all operations on an average. But forest requires an additional

effort of hashing so an overhead of order O (1) is added to

jump to correct tree. Therefore, total time required in forest is

of order O (log (n/k)) +O (1). However the case is entirely

different for hashed exponential tree forest. A random

exponential tree requires log (log (n)) time for all operations

on an average which implies O (log (log (n)) +O (1) time for

forest of exponential trees [11]. The space whatever is used is

in the form of Array which does not have any overhead.

Overhead occurs when restructuring and balancing is needed

in trees as the random BST or exponential trees have been

assumed to be perfectly balanced [5].

6. PARALLEL PROCESSING OF

FORESTS

The forest of trees is compatible with the concurrent

environment. Each tree can be operated independently and it

is quite obvious that a forest allows more number of processes

to act upon .There is no need of any proof or demonstration

without requiring use of any locking schemes [6],[8]. It can be

concluded that by maintaining the trees in this way increases

the degree of parallelism by k times which is of the order of

size of array. For huge data sets and massively parallel

systems, large number of trees can be used, requiring large

array size. For better results, tree restructuring techniques can

be used. In case of global restructuring, entire tree is taken as

input and restructured. However in case of forest, only a part

of forest needs to be restructuring. It can be done with series

of other operations like insertions or deletions [10].It has been

proved that a series of such operation leads to O (nlg3 (n))

increase in size of IPL, though forests are immune to such

problems

.

Table 1: Comparison between conventional tree, forest of hashed BST and forest of hashed exponential trees

Sample

Run

Conventional

Tree

Forest of Hashed Binary Trees Reduction (%) Forest of Hashed

Exponential trees

Reduction

(%)

 Height Path

Length

Average

Height

Worst

Tree

Height

Collective

Path

Length

Height Path

Leng

th

Avera

ge

Height

Wors

t

Heig

ht

Collect

ive

Path

Length

Heig

ht

Path

Lengt

h

1 18 11018 10.8 12 6193 40 44 3.5 5 1574 72 86

2 20 10782 12.0 14 6594 40 39 3.7 5 1715 75 84

3 21 11299 11.6 13 6623 44 41 3.2 4 1660 80 85

4 24 13728 12.0 17 6542 50 52 2.3 4 1349 83 90

5 21 11840 11.1 14 6081 47 48 2.9 4 1462 81 87

6 22 11158 12.2 15 6567 44 41 3.5 4 1659 81 85

7 20 11185 11.4 16 6467 43 42 4.5 5 1630 75 85

8 20 10814 12.2 17 6533 39 40 3.7 5 1687 76 84

9 22 11359 12.0 16 6481 45 43 2.6 4 1602 82 86

10 24 12174 11.4 13 6414 52 47 2.8 4 1490 83 87

7. CONCLUSION AND FUTURE WORK
We have concluded that a forest of exponential trees shows

better results than that of conventional trees as well as a forest

of hashed binary trees. A tree can be converted into a forest

with reduced IPL and good compatibility with concurrent

environment, without compromising with structural

information. It has been shown in results that the height of

forest of exponential trees is smaller than that of forest of

binary search trees. It provides more optimal searching. Time

Complexity in case of the forest of Exponential Tree is less

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.5, March 2013

27

than that of Binary Search Trees. In nutshell, small

modifications in data structure leads to faster node access and

higher degree of parallelism.

In future, this forest can also helps in the field of sorting in a

significant way. As amount of data is increased, complexity of

sorting algorithm also gets increased significantly. But this

forest can provide better results in field of sorting also. Forest

has to be traversed in such a manner that result will provide a

list of sorting elements. A way to traverse the forest needs to

be found, so that parallel processing can contribute in the field

of sorting also.

8. REFERENCES

[1] A. Anderson “Fast deterministic sorting and searching in

linear space”, IEEE Symposium on Foundations of

Computer Science, 1996.

[2] R. Raman “Priority queues: small, monotone and trans-

dichotomous” in European Symposium on Algorithms,

1996.

[3] Y. Han. 2002 “Deterministic sorting in O (n log logn)

time and linear space” in 34th STOC.

[4] Ajit Singh, Dr. Deepak Garg “Implementation and

Performance Analysis of Exponential Tree Sorting “,

International Journal of Computer Applications, 2011.

[5] Samadhi “B Trees in System with Multiple Users” in

Information Processing Letters, 107-112, 1976.

[6] Eswaran, K. P. , Gray, J.N Lorie, R. A. and Traiger, I.L

“The notions of Consistency and Predicate Locks in a

Database System” in Communication of the ACM, 1976.

[7] Bayer, R, Schkolnick “Concurrency of Operations on B

Trees” in Acta Information, 1977.

[8] Ries, D.R., Stonebreaker “Effects of Locking Granularity

in a Database Management System” in ACM

Transaction on Database Systems, 1977.

[9] Ellis, C.S. “Concurrency search and insertion in AVL

trees” in IEEE Transactions on Computers, 1980.

[10] Ellis, C.S. “Concurrency search and insertion in 2-3

trees”. Acta Information, 1980.

[11] Kung, H. T., Lehman, P.L. “Concurrent manipulation of

binary search trees” in ACM Transaction on Database

Systems, 1980.

[12] Knuth, D. E. “The Art of Computer Programming” in

Pearson Education, Vol.3, Searching and Sorting, 2005.

[13] Y. Han, M. Thorup. “Sorting integers in O (n√loglogn)

expected time and linear space” in IEEE Symposium on

Foundations of Computer Science, Vol-43, 2002.

 [14] Day, A.C. “Balancing a Binary Tree” in Computer

Journal, 1976.

[15] Stout, F, Bette, L.W. “Tree Rebalancing in Optimal Time

and Space in Communication of the ACM”, 1986.

[16] S. Alberts, T. Hagerup. “Improved parallel integer sorting

without concurrent writing in Information and

Computation, 1997.

