
International Journal of Computer Applications (0975 – 8887)

Volume 66– No.4, March 2013

34

Author Identification: An Approach based on Code

Feature Metrics using Decision Trees

Rohit R. Joshi
Computer Science Department,

Walchand Institute of
Technology, Solapur, India.

Rajesh V. Argiddi
Associate Prof.

Computer Science Department,
Walchand Institute of

Technology,Solapur, India.

Sulabha S. Apte, PhD.

Professor
Computer Science Department,

Walchand Institute of
Technology,Solapur, India.

ABSTRACT

Now a day’s, cases of piracies, copyrights, legal disputes, and

allegations are increasing as far as field of software is

concerned. In such cases it is difficult to say who is right and

who is wrong between the two quarreling parties due to

insufficient evidences. So, what could be done in such cases is

the question? The field called as software forensic can help in

such cases by giving the right direction towards the case.

Software forensic is the field which can analyze the code from

different viewpoints and helps in extracting the code metrics

which can be syntactic, semantic, structural, behavioral,

stylometric etc. These metrics can help in doing author

identification, discrimination, characterization etc. Author

identification plays very important role in most of the cases

such as plagiarism detection, masquerade detection, software

maintainability and resolving authorship disputes. This paper

focuses on author identification, source code metrics, related

work, proposed work and applications of author identification.

General Terms

Software Forensics, Decision trees, Authorship analysis

Keywords

Software Source Code Metrics., Author Identification,

Plagiarism Detection

1. INTRODUCTION
As mentioned above software forensic allow to study and

analyze the source code in many different ways. It may be

syntactical, structural, and behavioral. MacDonell S.G. et al

[1] have discussed following four applications of software

forensic:

 1: Author Identification

 2: Author Characterization

 3: Author Discrimination

 4: Author Intent Determination

1.1 Author Identification:
As mentioned above, author identification involves the

likelihood identification of the author of a given code. The

principle here is to take a piece of code to be identified and

extract the characteristics of that author (stylistic, structural,

behavioral etc.) out of that code and then match those

characteristics with the already existing characteristics of the

same author. So, must condition here is to have the previous

records of the authors to be tested.

1.2 Author Discrimination:
It involves making distinction between two or more authors if

they have written the same code together. In some cases, a

module can be divided in to two and given to two different

authors for completion. Afterwards, the module is again

combined to have a complete full module. So, in this case a

source code can have more than two authors. Identifying this

is nothing but author discrimination.

1.3 Author Characterization:

It involves characterizing the author instead of identifying it.

It means from the programming styles of the author,

identification of the personality, educational background,

technical excellence, field of expertise and manner of

specifying the things etc. can be done.

1.4 Author Intent Determination:
While executing the programs, sometimes it gives erroneous

results with some undesired output. Author intent

determination involves detecting whether the undesired output

comes really due to erroneous code or it comes due to an

intentional malicious code.

Amongst all the mentioned applications above author

identification is the most powerful application. Here after, the

focus will be on author identification and its related things

throughout this paper. There are several situations where it is

necessary to identify the author of the code. The situations

may involve plagiarism detection, masquerade detection, legal

allegations, copyrights disputes, piracy etc. In educational

fields, it is quite often in case of assignments. Students copy

the codes from some source and submit as their own work.

There may be disputes between organizations for some

copyrighted software products. Also, anti-virus making

organizations can benefit from author identification. If they

have identified the author who has written the virus code, then

they can find the solution to that virus very fast, from the

previous results of that author. So, the question is how to

identify the author from the code? Every individual has its

own set of style to perform a task. For instance, an example

can be taken of handwriting of a person whose style cannot

change. So, by verifying the handwriting of a particular

person that person can be identified. This is often used in legal

document verification to avoid the frauds. Similarly, it is

necessary in the field of software codes to identify the author

of the codes to avoid the frauds such as software theft etc.

Programming language allows programmer to write the

programs in his/her own style following the standard grammar

of the language. Due to this distinguish can be made between

the two authors of a program and ultimately the codes of

theirs. This can be done by capturing the styles of different

authors and testing them against the pre-captured ones. These

styles that are captured are called as source code metrics. But,

is it as simple as that? Let’s see this in the further sections.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.4, March 2013

35

2. RELATED WORK:

2.1 Source Code Metrics:
This section discusses about different software source code

metrics and the work carried out by different people in this

field. We know what the basic term “metrics” means? It’s the

measurement of a particular thing taken at a time. So, the term

software source code metrics means different measurements

taken of a piece of a code of software. MacDonell S.G. et al

[1] have categorized software code metrics into following

three types as:

1. Layout metrics

2. Style metrics

3. Structure metrics

2.1.1 Layout Metrics:
These metrics are extracted from look and feel viewpoint of a

code. Every author of a program has its own way of

presenting a program. Some authors write the code with

proper margins, good indentations, good spacing etc. It’s

intentional so that looking at a code, one can understand what

the code is about, which are different functionalities involved

in the code and what they are doing? Also, a good indentation

always helps in the case of nesting. Following are some layout

metrics used previously:

a. White spaces: This metric deal with total no. of

spaces, proportion of spaces on both sides of

operators, proportion of spaces on either side of

operator, leading spaces, trailing spaces etc.

b. Characters per line: This metric deal with no. of

characters per line. It helps in good view of a too

long line of a code.

c. Tabs: This metric deal with no. of tabs either

leading, trailing or inline tabs.

d. Brace positions: This metric deal with positions of

curly braces such as braces on the same line of the

statement or below the statement. It also helps in

identifying whether a statement has opening and

closing braces or is single statement.

2.1.2 Style Metrics:
These metrics are extracted from the viewpoint of the writing

styles of the authors. Here, lots of variety can be expected

from the authors with their styles. Some authors may try to

write the code in some fixed no. of lines, while others take

more no. of lines for the same code. Also, some authors have

habit of writing the comments for the explanation of the code.

Some authors may take some specific variable names each

time for the same functionality, while others put the restriction

on length of variable names used. Following are some style

metric enlisted:

a. Capital and small letters: This metric capture the

style of author of using capital or small letters in

variables or method names.

b. Lines of code (LOC): This metric counts total no. of

lines in the code. This metric may vary from

technique to technique. Some takes it with white

spaces, some without white spaces while some takes

it with comments and some takes it without

considering comments.

c. Words per line: This metric deal with the specific

no. of words in a particular line. It makes sense in

breaking the same statement and writing it in

multiple lines for a clear view.

d. Variables per methods: This metric deal with the

no. of variables used by an author per method.

Many authors have the habit of doing the task in

minimum no. of variables and that depends on the

level of expertise of the author, whether he is

beginner, intermediate or an expert.

2.1.3 Structure Metrics:
These metrics concerned with the structure of the program.

These include looping and control statements. Every author

has to use the conditional statements in his code. Some may

use while; some use for, some use do-while as far as looping

is concerned. Also, conditional statements such as if, else-if,

switch and turnery operator statements can be used according

to need. Following is the list of some general structure

metrics:

a. If-else statements: This deals with the no. of if-else

statements in the code. Here, nesting of these

statements are also taken into consideration for

extracting these metrics. In some cases only if

statement is used, that metric should also be taken

into consideration for checking of single if

statements.

b. Switch statements: These statements can also be

used by authors for decision making and usually

used in case of menu driven programs. So, the no.

of switch statements used is the metric considered

here.

c. For, while, do-while looping statements: These

statements are also the substitutes for one another

by providing the same functions. It’s on

programmer which statement he wants to use to

achieve the current task. So , the no. of for, while or

do-while statements can be individually taken as

separate metrics or groping of them together can be

considered as one single metric i.e. looping metric.

d. Conditional Operators: It is especially concerned

with the “?:” operator. Many people for single line

condition checking uses this one.

So, grouping these above metrics together constitutes a full set

of metrics to be evaluated from a given piece of a software

source code. Some of the metrics from above listing can be

treated as a Boolean metric i.e. the presence of them are only

considered instead of their count. These metrics plays very

important role in creating author profiles which can be stored

and are used to match it with metrics extracted from the piece

of code whose author is to be found.

2.2 Technologies Used
This section presents the technologies used in previous works

either for extracting software source code metrics or for the

author identification. They are as follows:

2.2.1 Probabilistic Approach:
Jay Kothari et al [2] used the approach of probability for

identifying an author. Here they have considered the

probability of the metric, say metric x, in to consideration ,

such that the metric ‘x’ will be classified to class/author ‘i’.

For that they have taken two terms into consideration:

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.4, March 2013

36

a. Individual Consistency: It’s the measure of consistency of

author to use the particular metric

b. Population Consistency: It’s the measure of consistency of

the metric used by number of authors.

By getting these two values, they calculated the selection

criterion and applied the classification tools such as bays and

VFI to classify the author of the unknown code.

2.2.2 Genetic Algorithm:
R. A. Vivanco and N. J. Pizzi[3] used genetic algorithm for

identifying the effective metrics. Here, they have identified

the source code metrics with the help of genetic algorithm.

We know that, in GA there is concept called genes which

forms the population. They have represented genes as strings

of bits, with 0 representing off bit, while 1 representing on bit.

Each such a bit represents metric to be used with the

classifier. So, all on bits represents metrics to be used with the

classifier, while all off bits represents metrics that are

excluded to be used with classifier. Each gene is a set of

chromosomes. Two genes acting as a parent can come

together to form a child. For this, fittest genes are chosen by

the function called as fitness function and the process is called

as mutation. Only fittest genes are populated to the next

generation.

2.2.3 N-gram Approach:
Georgia Frantzeskou et al [4] use the approach of N-gram

author profile formation for author identification. In this

approach they have used the concept of n-gram. N-gram is the

contagious sequence that can be defined on byte, character or

word. They have made an n-gram table in which it consists of

n-grams found for a particular file along with its

corresponding frequency. The author source codes are then

combined into a single big file per author and set of L-most

frequent n-grams are extracted from it. This is how the author

profiles are built. For testing a file for author identification

they have built a test profile from the test file. This profile is

then tested against the existing author profiles to classify the

test file to some author. The algorithms such as nearest

neighbor or similarity search are used.

2.2.4 Neural Network, Discriminant Analysis and

Case Based Reasoning:
Frantzeskou G et al [5] discussed three different approaches

as follows:

a. Neural Network: This is very good technology consisting of

multiple layers of nodes one following the other. The popular

technique in neural network is Feed-Forward neural network

especially used with back propagation. They have good

learning, adapting and generalizing capabilities.

b. Discriminant Analysis: It is a statistical technique that

operates with continuous variable measurements. It applies

those measurements to different sets of elements to

distinguish the sets. From these measurements one can

classify the new elements.

c. Case Based Reasoning: This system is based on analogical

reasoning. The results of previous cases are taken in to

consideration and are analyzed to get help to give the solution

to the current case. There are 4 stages in CBR as follows:

1. Retrieval: similar cases are retrieved to think on the current

case

2. Reuse: The solutions of the retrieved cases can be reused to

form the solution to the current case

3. Revision: The solution of the current case can be revised

4. Retention: The retention of the solution of the current case

to the repository

Table 1: Comparative study of existing techniques

Approac

h

Tec

hniq

ue

No.

of

Aut

hors

Total
no.

of

samp

les

No.

of

trai

ning

sam

ples

No.

of

testi

ng

samp

les

Result

%

Probabili

stic

approach

[2]

Bays

/VFI

12 2110 1287 823 61% /

76%

[Bays /

VFI]

GA[3] LDA - 338 - - 62.7%

Above table (see Table 1) discusses about the comparative

study of different techniques mentioned earlier. Jay Kothari et

al [2] have taken in total 2110 samples out of which 1287 are

for training and 823 for testing purpose. They have considered

these samples from open source projects and got 61% correct

classification of unidentified samples using Bays classifier,

while got 76% of correct classification using VFI classifier.

Also, R. A. Vivanco and N. J. Pizzi[3] have used GA

technique along with LDA algorithm for the identification of

effective metrics. They have also used the testing method

called leave-one-out validation. They have got 62.7% as the

classification result for 338 samples. The aim of the proposed

work with the decision tree technique is to take 5-8 no. of

authors approximately with around 1000-1500 code samples

in total.

3. PROPOSED WORK

3.1 Software Source Code Metrics:
We have seen that different metrics have been used in the

literature and are also classified accordingly. The metrics

corresponding to java language for proposed study are as

follows:

1. Leading Spaces: These are the spaces given at the start of

each line. Many programmers have this habit. Especially,

target authors are beginners who many times gives such kind

of spaces e.g. for good indentation they forget to give a tab

and instead gives 4/8 spaces. This is the counting type of

metric.

2. Trailing Spaces: These are the spaces that are present at the

end of the line unknowingly. This is the counting type of

metric.

3. Trailing Tabs: There are the tabs at the end of the line

unknowingly remained by some of the authors. This is the

counting type of metric.

4. Leading Tabs: These are the tabs at the start of each line.

This is an intentional kind of thing done by good authors for

the purpose of better representation of a program. This is the

counting type of metric.

5. i-as-iterator: There is the natural tendency of some authors

to use variable ‘i’ as iterator in every loop they use. Some

authors intentionally avoid it or some authors while doing

nesting at least use it once. Here, only the presence or absence

of this metric can be checked and not taking the count of it.

Because, counting no. of i’s from the program on per author

basis is simply useless.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.4, March 2013

37

6. Line-Length: This metric deal with the no. of characters per

line. Some author has the habit of writing the statement of the

code into single line while some other authors write it in

multiple lines for better understanding and representation of

the code. This is the counting type of metric.

7. Lines-of-Code: This metric deal with no. of lines of code on

per author basis. Some expertise authors have the habit of

writing the code in some specific no. of lines only due to good

logical skills of theirs. While beginners don’t bother about the

lines of code of a program or logic even. They only have to

perform the task in front of them. So, this makes the

difference between the authors using this metric. This is the

counting type of metric.

8. Brace Position: This metric covers the curly bracket

positions. It includes the proper opening and closing of the

curly braces. Also, the presence of curly braces at different

positions such as at the end of the statement immediately, at

the immediate next line of the end of the statement, both

opening and closing curly braces on the same line of the end

of the statement, both the opening and closing curly brackets

appears in the same column. This is the counting type of

metric.

9. Comments: This metric deal with comments used by the

authors for the description of the code they have written. We

have taken comments as the overall and not differentiating as

large or small comments. No. of single line comments and

multiline comments or their presence or absence is taken into

consideration. This is the counting type of metric.

10. Average Procedure Length: This metric deal with the

average no. of lines per method. This is the counting type of

metric and taken on “per class basis” for each author.

11. Conditional Statements: This metric only deal with the

presence or absence of the conditional statement. The

conditional statement means here the turnery operator”?:”

This is not the counting type of metric , instead it is Boolean

type of metric.

12. Average Indentations: These are average indentations of

an author taken on “per class basis / per file basis”. In this,

indentations with respect to leading characters are taken into

consideration.

13. No. of Methods: This metric deal with no. of methods on

“per class basis” for each author. It is quite often for the

authors that they include a method in their code. But, for

which functionality to use the method and for which to not

depend on individual author and that makes the difference in

the two authors. This is the counting type of metric.

14. Try Statements: This metric deal with the no. of try

statements used. This is the counting type of metric as well as

Boolean.

15. Unary and Binary Operators: Authors do write the codes

containing mathematical manipulations. Also, for some

conditional manipulations they need logical operators. So,

they need arithmetic or logical operators either unary or

binary. It’s the count of unary and binary operators we have

taken into consideration.

16. No. of Loops: This metric captures how frequently the

author uses the loop. It’s the no. of loops overall i.e. while,

do-while, for etc an author have used collectively.

17. Single Literal Variables: This metric we hope can make

the difference. It considers the single letter variables such as

int a, int b etc. Because, reducing the no. of variables is the

sign of efficient programming. It’s the count we have taken of

total no. of single literal variables.

18. Double Literal Variables: This metric considers the

double literal variables such as int aa, int bb, int cc etc. This is

also a counting type of metric.

19. Naive Variables: The concept of naive variables consist of

the variables of the form int a1, int a2, int a1234 etc. i.e. those

variables whose first character is alphabet and all other

characters are digit. This is a Boolean type of metric.

20. Method Chaining: This metric deal with no. of method

chaining done by an author. Method chaining consist of

chaining of different methods one after the other. E.g.:

Integer.equals(int i).toString (). Here equals (int i) and

toString () are the two methods that are chained.

3.1.1 Boolean Metrics:
We are going to introduce another type of metrics called as

Boolean metrics. In, counting type of metrics the actual count

of the metric is taken into consideration. In Boolean metric

only the presence or absence of that metric is taken into

consideration. Following table shows the counting metrics(see

Table 2) and Boolean metrics (see Table 3) from the above

enlisted metrics.

Table 2: Counting Metrics

Counting Metrics

Leading spaces Average procedure length

Trailing spaces Average indentations

Leading tabs No. of methods

Trailing tabs Unary and Binary operators

Line length No. of loops

Lines of code(LOC) Single literal variables

Brace position Double literal variables

Comments

Table 3: Boolean Metrics

Boolean metrics

i-as-iterator Naïve variable names

Conditional operator Method chaining

Try statements

3.2 Proposed System Architecture:
Here, the procedure begins with taking the source codes of the

known authors as the input and give them to the feature

extraction model for filtering purpose. Filtering includes

scanning the inputted codes and extracting above source code

metrics from them by using any java parser. As mentioned

above filtering also take care of the values of these extracted

metrics and gives them to model for classification. The

decision tree based classifier such as ID3 or C4.5 can be used

for classification. The classifier then based on values of

extracted metrics takes the decisions and forms the

classification model of known authors. This classification

model is saved for future use. Then we take the input as

source codes of unknown authors, again do the process of

metric extraction [i.e. filtering] with those codes and obtain

their values. Then classifier do the classification of codes of

unknown authors based on above classification model we

have built. (See Figure 1)

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.4, March 2013

38

3.3 Proposed Algorithm:
1. Start

2. Take the source codes of known authors

3. Extract different metrics from those codes and do

the training of those source codes

4. Generate classification model using decision tree

algorithms.

5. Save classification model for future use.

6. Take the unknown codes to be tested.

7. Extract the metrics of that unknown codes

8. Classify the likely authors of the unknown codes

using above classification model.

9. End

 ………………

Fig 1: System Architecture

3.4 General Working of Decision Tree

Based Algorithm:
Different people in the field of author identification uses

different techniques as mentioned above. The proposed

technique for author identification includes decision tree

algorithms such as ID3, C4.5 etc [6]. The proposed method

includes the selection of splitting attribute that splits the entire

dataset into smaller subsets. Any attribute having the highest

information gain amongst all can be the splitting attribute.

Information gain can be calculated as the difference between

the entropy of the original dataset and the weighted sum of

entropies from each of the subdivided datasets. This

procedure of selection of splitting attributes with the highest

information gain and making subdivision of datasets

continues recursively until all elements in each final subset

belongs to the same class. Here, splitting attributes are

nothing but metrics extracted. These algorithms calculate the

information gain for each extracted metric and then choose

the metric that has the highest information gain. Based on that

metric, dataset is divided into subsets and this procedure

continues until the entire classification has been done. While

making the subdivision of the datasets a question of YES/NO

type is asked to that metric i.e. splitting attribute and then the

decision is taken for the division. Then, that metric is chosen

as the tree node and entire tree is built by repeating the above

procedure. While building a tree especially in C4.5 the

concept called as pruning a tree exist. The pruning concept

deals with the reduction of size of the tree by avoiding the sub

trees or some branches of the trees which are not important

and replacing them directly with the leaf nodes of theirs

providing an equivalent representation.

3.5 General Decision Tree Based

Classification Algorithm [ID3, C4.5 etc.]:
1. Start

2. Calculate entropy of entire dataset provided

3. Calculate entropy and weighted some of each of the

metric

4. Calculate the information gain on each metric

5. Select the metric with the highest information gain

as the splitting attribute

6. Take the decision of splitting the entire dataset

available into subsets on the value of that metric

selected

7. Make splitting attribute metric as the node of the

tree.

8. Repeat

Step 2 to step 7 until entire classification has been

done or no instances remained for classification.

4. APPLICATIONS
Up till now we have seen the software forensic field, its

applications, different software source code metrics, different

techniques used to extract those metrics. Now, this section

discusses about the applications of author identification.

Those are as follows:

4.1 Plagiarism Detection:
Paul Clough [7] has discussed the term plagiarism and current

technologies for plagiarism detection. The phenomenon of

plagiarism includes the use of original work of some other

person without taking the prior permission of that person or

without acknowledging him. This may be intentional or

unintentional sometimes. In most of the cases it happens in

the areas of software education, where student copy each

other’s code to fulfill the task. So, author identification is the

one method due to which we can find the suspected

plagiarism if the codes are exactly copied. Because, for

exactly copied code the author’s style remains same as far as

original author is concerned and the other claiming author can

be identified easily.

4.2 Masquerade Detection:

Boleslaw K. Szymanski , Yongqiang Zhang[8] discussed the

recursive data mining concept for masquerade detection and

author identification. Author identification can also be very

useful for masquerade detection. We know that viruses such

as Trojan horse etc. are too dangerous for the system. So, it is

very much essential to identify such viruses and find the

solutions to them as early as possible. If a new piece of code

causing the danger to system is identified, then there may be a

possibility that it could be a virus. So, we can analyze the

source code and try to find the author of that virus source

Source

code of

author n

Source

code of

author 2

Source

code of

author 1

Filtering the source codes for metrics extraction

Building decision tree based classification model

of known authors [ID3 or C4.5] & saving it

Extracting the metrics from unknown source

codes taken

Classifying the likely author of the unknown

source codes based on above classification

model

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.4, March 2013

39

code. If we find the author of the similar kind in our records,

then we will try to neutralize that virus with the help of

solutions we have previously done with this type of author.

4.3 Copyright Disputes:
Another application of author identification is resolving

copyright disputes. Copyright means a person or an

organization has the sole right of a particular work carried out

by them. Without their permissions one cannot reproduce the

work. So, in some cases the copyrighted work has been used

without the permission of the author or reproduced it

intentionally without the owner’s knowledge. In this case,

situations can be resolved by author identification, by actually

identifying the likely author of the original work.

4.4 Software Maintainability:
As far as software organizations are considered, the hectic job

for them is to maintain software in its good condition

throughout its journey. Suppose for e.g., if a software is

developed by a team of some people module wise. So, if in

future, a problem occurs to a particular module of the

software, the placing of that person who has developed that

module in the past is necessary to provide an immediate

service. In, that case, author identification can be used for

finding that author from a huge pool of employees.

5. CONCLUSION:
This paper discusses about the general term software forensic

and its applications. Also, the main perspective in this paper is

author identification. Author identification is the phenomenon

of the likely identification of the author of a given piece of a

source code. This can be done by the process of metric

extraction from, the different source code of the known

authors and also from the piece of the source code to be

identified. Then it is followed by the building of classification

model for the known authors and then classifying the

unknown authors based on that classification model. The

paper also discusses about types of metrics and different

metrics that are considered for proposed work. Then, the

discussion is followed by different techniques of metrics

extraction as well as author identification such as genetic

algorithm, n-gram profiles, and neural network based

algorithms etc and then moved towards proposed technology

of decision tree based algorithm. Then it is followed with the

discussion of different applications of author identification.

Hope this paper helps you to gain the basic knowledge of the

field of software forensic and its special application called

“Author Identification”

6. REFERENCES:
[1] MacDonell S.G., Buckingham D., Gray A. R., and Sallis

P. J. (2002) , Software Forensics : Extending Authorship

Analysis Techniques to computer programs , Journal of

Law and Information Scienece, 13(1) , pp. 34-69

[2] Jay Kothari, Maxim Shevertalov, Edward Stehle, and

Spiros Mancoridis .A probabilistic approach to source

code authorship identification”, 4th International

Conference on Information technology, IEEE

Conference Publication, 2007.

[3] R. A. Vivanco, N. J. Pizzi, Identifying Effective

Software Metrics Using Genetic Algorithm , Canadian

Conference on Electrical and Computer Engineering,

2003, IEEE CCECE 2003.

[4] Georgia Frantzeskou, Efstathios Stamatatos, Stefanos

Gritzalis, Sokratis Katsikas ,Source Code Author

Identification Based on N-gram Author Profiles ,

Artificial Intelligence …, 2006 – Springer

[5] Frantzeskou G, Gritzalis S., & MacDonell S., (2004)

,Source Code Authorship Analysis For Supporting the

Cybercrime Investigation Process , 1st International

Conference on E-Business and Telecommunication

networks. Setubal, Portugal, INSTICC Press, pp. 85-92.

[6] Margaret H. Dunham, Data Mining, Introductory and

Advanced Topics, 4th Edition.

[7] Paul Clough – July 2000, Plagiarism in natural and

programming languages: an overview of current tools

and technologies.

[8] Boleslaw K. Szymanski,, Yongqiang Zhang , Recursive

Data Mining for Masquerade Detection And Author

Identification, Proc. 5th IEEE System, Man and

Cybernetics Information Assurance Workshop, West

Point, ,NY,June.2004,pp. 424-431

