
International Journal of Computer Applications (0975 – 8887)

Volume 66– No.24, March 2013

7

Hybrid Algorithm for Optimization Problems Applied to
Single Machine Scheduling

Hemmak Allaoua

Computer Science Department
University of Bejaia, 06000 Bejaia,

Algeria

Bouderah Brahim
Department of Computer Science

Laboratory of Pure and Applied Mathematics
University of M’sila,

 Algeria

ABSTRACT
In this paper, we will present a new variant of genetic algorithm

to solve optimization problems where the number of feasible

solutions is very important. This approach consists on a hybrid

algorithm between genetic algorithms introduced by J. Holland

(1975) and dynamic programming method of R. Bellman

(1957). Then we will apply this hybrid algorithm to solve a

single machine scheduling problem that consists to minimizing

the sum of earliness and tardiness costs with common due date.

Our goal is designing a new approach to find a good near

solutions for combinatory problems as scheduling problems or

traveling salesman problem which have an exponential number

of solutions and known as NP-hard problems.

Keywords
Genetic Algorithm, Scheduling, Dynamic programming,

Optimization.

1. INTRODUCTION
In the recent years, the meta-heuristics become very important

and have received significant attention for solving optimization

problems because they can give near solutions to combinatorial

problems in reasonable time even for the biggest size problems,

on the other hand, the exact methods (such as complete

enumeration, dynamic programming or branch and bound

methods) need a considerable time to find an optimal solution

especially for big size problems. However, the approach

formulation and the choice of the meta-heuristic parameters can

considerably affect the quality of the results. Our approach is

based on this idea, since we will develop a variant of genetic

algorithm where we will adjust the parameters and use the

famous principle of dynamic programming to obtain best results

as possible for combinatorial problems. To show the efficiency

of the approach, we will apply it on a single machine scheduling

that consists to minimizing the sum of earliness tardiness costs

with common due date. Our new approach is presented in

Section 4. The computational results using the Benchmark

instances of Biskup and Feld- mann’s (2001) are presented in

Section3. Finally we could with directions and further research

in Section 4.

2. GENETIC ALGORITHM (GA)
Genetic algorithms, introduced by J. Holland (1975), are

inspired from the Darwin evolution theory: in the population

evolution, the best individuals, which are more adapted to their

environment, can outlive for a long time, on the on other hand,

the individuals which are not fits to their environment disappear

with the passage of generations. So, each individual is coded by

its chromosome and a fitness function to be defined to evaluate

individuals. Firstly, GA consists to randomly generate initial

population, then, genetic operators (selection, crossover,

mutation), within specified probabilities, are applied to produce

a new generation which considered best than its previous. This

process must be iterative for a great number of generations as

shown in the algorithm follow:

Begin

Initialization;

Repeat

 Evaluation;

 Selection;

 Crossover;

 Mutation;

 Until (Criteria Stopping);

End.

However, the individuals encoding, fitness function, selection

method, probability crossover, probability mutation and

criteria stopping depend of the treated problem, so they must

be carefully (empirically) chosen and can considerably

improve the solution quality.

3. DYNAMIC PROGRAMMING (DP)
Dynamic programming method, introduced by R. Bellman

(1957), is based on his famous theory: “every optimal policy

is composed of optimal sub policies”. It can be applicable to

solve sequential combinatorial problems (as the most

problems are) by breaking them down into simpler steps.

Since, we must express the objective of the (k+1) order sub

problem in function of the objective of the k order sub

problem. So, the last problem order will represent the entire

problem proposed. This relation is called bellman equation.

When applicable, the method takes much less time than naive

methods and it obtains exact solution but it stay costly in time

(exponential time complexity), for this, it’s discouraged for

biggest size problems.

However, we will not use exactly this approach, but we will

inspire the idea that we let the size of the problem increase

progressively within the generations. Since, at each iteration,

only the best solutions outlive.

4. PROPOSED META-HEURISTIC:

HYBRID ALGORITHM (HA)
The HA that we will present consists at genetic algorithm

where the size of the treated problem crow within the

generations such as in the evolution theory. That s mean, in

the population generations, the problem of the generation k

must be “less” than the one of generation n. As well as, when

we apply the GA, only the best individuals will stay in the

population. The algorithm start with an initial problem size n0,

then, the size nk will crow with the passage of generations:

nk = n0 + [current_iteration*nbr_iterations / n]

Where:

 nk: size of the problem at the current generation;

 n0: initial problem size;

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.24, March 2013

8

 n: size of the entire problem;

 current_iteration: current generation order;

 nbr_iterations: total number of generations;

 [x]: entire part of x;

4.1 PROBLEM PRESENTATION
To show our approach efficiency, we will applied it on a single

machine scheduling problem of independent jobs where the

objective consists to minimize the sum of earliness and tardiness

penalties against common due date. This problem was treated in

many search subjects where was proofed as NP-hard problem

and was applied in JIT (Just-In-Time) philosophy as in

manufactures, commerce, transport, …

4.2 Notation
I : a set of n jobs: I =  1 , 2 , …. , n  ;

d : common due date of all the n jobs ;

Ci : complete time of job i ;

pi : processing time of job i ;

Ei = max{d-Ci , 0} (Earliness of job i)

Ti = max {Ci-d , 0} (Tardiness of job i)

i : penalty per unit time of earliness for job i ;

i : penalty per unit time of tardiness for job i ;

h : parameter of common due date : d = h * T ; where:

 


n

k ipT
1

 ; h   0.2 , 0.4,0.6,0.8 .

4.3 Statement
n independent jobs to be processed on a single machine without

interruption with common due date d;

Each job is available at time 0;

Each job must be processed just once;

For each job i, the processing time pi , the cost per unit time of

earliness i the cost per unit time of tardiness i are given and

assumed integer;

The objective is:  


n

k iiii TE
1

)(min  .

4.4 Literature
In the recent years, this type of problems has received

significant attention and become important with the advent

Just-In-Time (JIT) concept, where early and tardy deliveries are

highly discouraged. For example, the just-in-time-principle

states that the right mount of goods should be produced or

delivered at exactly the right time. According our search, we

have found the pioneers studying of this type of problems:

Kanet (1981) [6] [8], Lee and Kim (1995) [1], James (1997),

Gordon et al. (2002) [4], Feldmann et Biskup (2003) [1] [2]

[3], Hino, Ronconi et Mendes (2005) [7], Lin, Chou, Ying

(2005), Biskup and Cheng (1999) [9], Hall and Posner (1991)

[5]. On the other hand, some work has been done on solving

this type of problem by exact methods. [17] [18] [20].

Other searchers have treated heuristics methods. [10] [11]

[13] [16] [19] [22]. Some works used genetic algorithm

as meta heuristic. [14] [21] [23]. We note that the

problem has treated in many options: single machine [1]

[15] [20] [22], two machines [10] and multi machines

[11] [12].

4.5 Problem properties
For this problem, an optimal solution must satisfying three

optimality properties. To obtain the objective value more

efficiently, these three properties are integrated in our

meta-heuristic.

Property 1. An optimal schedule does not contain any idle

time between any consecutive jobs.

Property 2. An optimal schedule is V-shaped around the

common due date: the jobs complete before or on the common

due date are sorted in decreasing order of the ratios pi/αi, and

the jobs starting on or after the common due date are sorted in

increasing order of the ratios pi/βi.

Property 3. In the optimal schedule, either the first job

starts at time zero or the completion time of one job coincides

with the common due date.

These properties can be established using proof by

contradiction. Kanet (1981), Lee and Kim (1995), Gordon et

al. (2002), Feldmann et Biskup (2003), Chou, Ying (2005),

Biskup and Cheng (1999), Hall and Posner (1991).

4.6 Encoding
Traditionally, candidate solutions or individuals (also called

phenotypes) are represented in binary as strings of 0s and 1s,

but other encodings are also possible. Those abstract

representations are called chromosomes or genotypes of

individuals. However, in our case, a chromosome (feasible

solution) consists on an array of (n+1) integer numbers, the

first element represents the beginning time of the sequence

and the other n elements represent the sequence itself.

Example: the following vector encode the sequence

(2,6,1,4,5,3) that beginning at time 4:

So, a population of m individuals will be represented by a

matrix m*(n+1), with the passage of generations, this matrix

will crow against two dimensions: its width (the problem size)

and height (the generation size).

4.7 Fitness function
The fitness function is defined over the genetic representation

and measures the quality of the represented solutions. It is

always problem dependent. An ideal fitness function

correlates closely with the algorithm's goal, and yet may be

computed quickly. However, it must not favorite some

solutions that may converge quickly toward a local maximum.

In the other hand, fitness function is to maximize, since the

best solutions may have a greater value of fitness function. So,

it may be inversely proportional to the objective (because the

objective is to maximize). Many processes are possible to

adjust the fitness function, in the first hand, to prevent

premature convergence or diversity, in the other hand, to

assure uniform repartition of the solution. The linearization

and exponentiation are used in this way. So, for these reasons,

we have used the following rule of fitness:

Fitness(x) = h * (1-obj(x)/sum_obj)0.1+1.

Where h is the common due date rate, x is a chromosome,

solution (individual of the population) and obj(x) the value of

its objective function. Our experimental results show that this

rule produces good results.

4.8 Initialization
Initially many individual solutions are randomly generated to

form an initial population. Traditionally, uniform law

probability must be used to cover all space solutions (space

search). So, that prevents the algorithm to prematurely

4 2 6 1 4 5 3

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.24, March 2013

9

converge to a local optimum. The initial population size

depends on the nature of the problem. Occasionally, the

solutions may be "seeded" in areas where optimal solutions are

likely to be found. For our case, we have chosen gen_size0 =

256 and this number will crow at each iteration, with a rate that

as every natural population evolution. In fact, this is the

essential difference between the genetic algorithms family and

our variant, because, in any evolutionary phenomenal , the size

of the populations crow with the passage of the populations.

4.9 Evaluation
This step consists to compute the objective for each individual

then its fitness. Also, it computes the minimum of objectives

values and save the solution corresponding. So, at the last

iteration, this step allow us to obtain the best individual of the

population, it is the near optimal solution searched.

4.10 Selection
This step consists to select which individuals are fits to

participate for producing the next generation. Individual

solutions are selected through a fitness-based process, where

fitter solutions (as measured by a fitness function) are

typically more likely to be selected. Certain selection methods

rate the fitness of each solution and preferentially select the best

solutions. Other methods rate only a random sample of the

population, as this process may be very time-consuming. We

have opted for fortune wheel method where the individual

having a great fitness, is probable to be selected using the

following implementation:

Function roulette() As Integer

 Dim i As Integer

 Dim r, s1 As Double

 s = 0

 Randomize()

 r = Rnd() * sum_fitness

 i = 0

 While s < r

 i = i + 1

 s = s + fitness(i)

 End While

 roulette = i

End Function

The crossover allows producing new child solutions from

couples of parent solutions. For each new couple of child

solutions to be produced, a couple of parent solutions is selected

for breeding from the pool selected previously as shown as

follow:

Parent 1 4 2 6 1 4 5 3

Parent 2 0 1 4 2 3 6 5

 Crossover

Child 1 4 6 4 2 3 5 1

Child 2 0 2 6 1 4 3 5

This crossover operator is called 2 points crossover. The two

points are randomly chosen, but, for good efficiency, the first

point is chosen before the common due date d, the second point

after. According the experimental results, we have obtain a best

results with crossover probability pc = 0.75.

4.11 Mutation
The mutation genetic operator consists to give just small

modification at the child obtained by crossover, that is for
introduce into the population a new characters which does not

exist among its parents to assure diversity in solutions space.

So, that will extend the next generation to eventual good

elements. In our case, in the mutation genetic operator, two

jobs will be switched with a mutation probability pm= 0.01 as

shown as follow:

Child k 0 3 4 2 1 6 5

Mutation

Child k 0 3 6 2 1 4 5

The switched jobs are chosen randomly but, as in crossover

operator, the first one before the common due date d, the

second after d, otherwise, this mutation will have any effect

against the solution because the property 2.

4.12 Termination
There are many forms of criteria stopping:

- Fixed number of iterations reached;

- Fixed time computing;

- Solution not improved during given number of

iterations;

- Optimal solution is found;
For our case, we have used a fixed number of iterations but

proportional toward the problem size.

5. COMPUTATIONAL ANALYSIS
The set of problems tested was selected from Biskup and

Feldmann (2001,2003), with seven different instance sizes

with n = 10; 20; 50;100; 200; 500;1000 jobs and 4 restrictive

factors h = 0.2; 0.4; 0.6; and 0.8. They are used to determine

the common due date, d, by multiplying the total sum of all

processing times, as follows: d = h * T ; There are 10

instances for each problem size for our computational

results.

Firstly, we have computed the exact solutions for smaller

sizes such as n = 5; 10 ; 20 ; 50 by using dynamic

programming method then by using the proposed approach.

Thus, we have obtained two solutions for each instance the

one is exact solution ES and the other is near solution NS.

We have remarked that the deviation  = NS – NE is

inversely proportional to h as shown below (see figure 1).

This variation of  means that when h is small; there are only

few choices to schedule jobs because of their time processing

pi since, some jobs can not scheduled before common due

date d. inversely, when h is larger, there are many choices to

schedule jobs against d, so can conclude that the near

solution is best when h is larger. Even when the size n of the

problem is biggest; this conclusion stay satisfied because the

sequence can begin at any time near d.

http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Fitness_function

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.24, March 2013

10

Fig. 1 : variation of  as a function of h

Then, we have chosen the most restrictive set of 140 instances,

i.e. with h = 0.2 and h = 0.4. In order to measure the

effectiveness of the results obtained, we computed the

average percentage deviation of the average of our solution

values (H) of every 10 instances over the average of the

corresponding benchmark values provided by Biskup and

Feldman as follows: RP D = {(H − BF)/BF }* 100. Our results

were obtained with following number of iterations numbers:

500 iterations for n= 10, 20, 50 jobs; 1000 iterations for n =

100, 200 jobs, 10000 iterations for n = 500, 1000 jobs to

terminate the algorithm. The algorithm was coded in visual

basic 6, VB6, an run on an PC with an Intel dual core 2.16

GHZ, 2 GB RAM.

Table 1. Percentage deviation of the average solutions

h=0.2 n=10 n=20 n=50 n=100 n=200 n=500 n=1000

BFA 1674.4 6429.2 37583.7 141143.
3

543591.
2

3348405.
6

13293514.6

HA 1674.4 6204.7 35505.1 133021.
7

509500.
7

3147715.
8

9208717.2

RPD% 0 -3.62 -5.85 -6.11 -6.69 -6.38 -44.36

h=0.4 n=10 n=20 n=50 n=100 n=200 n=500 n=1000

BFA 973.1 3703.7 21419.5 82120.2 315312.
9

1917425.
8

7651046.5

HA 973.1 3651.1 20519 79051.7 307061.
2

1787201.
8

7320456.9

RPD% 0 -1.44 -4.39 -3.88 -2.69 -7.29 -4.52

The computational results reported in the Table 1 above show

that our algorithm improves the average of all instances. The

overall average improvement for h = 0.2 is around -10.43%

while it is −6.94% for h = 0.4. The CPU time in second are

reported for the above obtained results.

Table 2. CPU time in Seconds

n 10 20 50 100 200 500

Time (s) for h=0.2 6 s 6 s 14 s 61 s 216 s 3325 s

Time (s) for h=0.4 6 s 6 s 14 s 59 s 212 s 3287 s

To show the complexity of our algorithm; we have also

compared between the time processing in our approach and in

the exact method (dynamic programming). As it is shown in

table 2, our approach has polynomial complexity against

dynamic programming which has exponential complexity.

6. CONCLUSION
A new genetic algorithm was developed. It is based on the

concept of dynamic programming where the population size

and the chromosome of the solution are increased as the

iteration number increases. The computational results are very

encouraging. The authors are currently attempting to solve the

other 140 remaining instances of lower restriction factors as

well as comparing with the most developed meta-heuristics

we have recently found in the literature. We consider that the

adjusting of the approach parameters as crossover probability,

mutation probability, initial population, selection method,

increasing step of the population size can more improve the

results. Also, we suggest extending our study by Applying it

on other problems such shortest path or travelling salesman

problem.

7. REFERENCES
[1]. M. Feldman, and D. Biskup, “Single-machine scheduling

for minimizing earliness and tardiness penalties by

meat-heuristic approaches”, Computer & Industrial

Engineering, 44 (2003) 307-323.

[2]. M. Feldman, and D. Biskup, “Benchmarks for

scheduling on a single machine against restrictive and

unrestrictive common due dates”, Computer & Industrial

Engineering, 28 (2001) 787-801.

[3]. M. Feldman, and D. Biskup, “Benchmarks for

scheduling on a single machine against restrictive and

unrestrictive common due dates”, Computer & Industrial

Engineering, 28 (2001) 787-801.

[4]. R. Hassin, and M. Shani, “Machine scheduling with

earliness and tardiness and non-execution penalties”,

Computer & Industrial Engineering, 32 (2005) 683-705.

[5]. G. Li, “Single machine earliness and tardiness

scheduling”, European Journal of Operational Research,

96 (1997) 546-558.

[6]. S. W. Lin, S. Y. Chou and K. C. Ying, “A sequential

exchange approach for minimizing earliness-tardiness

penalties of single machine scheduling with a common

due date”, European Journal of Operational Research, xx

Volume 177, Issue 2, Pages 1294–1301.

[7]. C. M. Hino, D. P. Ronconi, A. B. Mendes, “Minimizing

earliness and tardiness penalties in a single machine

problem with a common due date ”, European Journal of

Operational Research, 160 (2005) 190-201.

[8]. K. R. Baker, G. D. Scudder, “Scheduling with earliness

and tardiness penalties: a review”, European Journal of

Operational Research, 160 (2005) 190-201.

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.24, March 2013

11

[9]. T. Vallée, and M. Yiltizogli, “Présentation des algorithmes

génétiques et leurs applications en économie”, Mai 2004,

V .5.

[10]. C.S. Sung, J.I. Min. “Scheduling in a two-machine flow

shop with batch processing machine(s) for

earliness/tardiness measure under a common due date”.

European J. Oper. Res., 131 (2001), pp. 95–106

[11]. J. Bank, F. Werner. “Heuristic algorithms for unrelated

parallel machine scheduling with a common due date,

release dates, and linear earliness and tardiness penalties”.

Mathl. Comput. Modelling, 33 (4/5) (2001), pp. 363–383.

[12]. H. Sun, G. Wang. “Parallel machine earliness and tardiness

scheduling with proportional weights”. Comput. Oper.

Res., 30 (2003), pp. 801–808.

[13]. Ching-Jong Liao, Che-Ching Cheng. “A variable

neighborhood search for minimizing single machine

weighted earliness and tardiness with common due date”.

Computers & Industrial Engineering. Volume 52, Issue 4,

May 2007, Pages 404–413.

[14]. Liu Min, Wu Cheng. “Genetic algorithms for the optimal

common due date assignment and the optimal scheduling

policy in parallel machine earliness/tardiness scheduling

problems”. Robotics and Computer-Integrated

Manufacturing. Volume 22, Issue 4, August 2006, Pages

279–287

[15]. Bülbül, K., Kaminsky, P., Yano, C.: “Preemption in single

machine earliness/tardiness scheduling”. Journal of

Scheduling 10, 271–292 (2007).

[16]. Detienne, B., Pinson, E., Rivreau., D.: “Lagrangian

domain reductions for the single machine

earliness-tardiness problem with release dates”,

European Journal of Operational Research 201, 45–54

(2010).

[17]. Sourd, F., Kedad-Sidhoum, S., “A faster branch-and-

bound algorithm for the earliness-tardiness scheduling

problem”, Journal of Scheduling 11, 49–58 (2008).

[18]. Sourd, F., “New exact algorithms for one-machine

earliness-tardiness scheduling”. INFORMS Journal on

Computing 21, 167–175 (2009).

[19]. Yau, H., Pan, Y., Shi, L., “New solution approaches to

the general single machine earliness tardiness problem”.

IEEE Transactions on Automation Science and

Engineering 5, 349–360 (2008).

[20]. Débora P. Ronconi; Márcio S. Kawamura , "The single

machine earliness and tardiness scheduling problem:

lower bounds and a branch-and-bound algorithm”,

Comput. Appl. Math. vol.29 no.2 São Carlos June 2010.

[21]. S. Webster, D. Jog & A. Gupta, “A genetic algorithm for

scheduling job families on a single machine with

arbitrary earliness/tardiness penalties and an unrestricted

common due date”, International Journal of Production

Research. Volume 36, Issue 9, pp. 2543-2551, 1998.

[22]. Shih-Hsin Chen, Min-Chih Chen, Pei-Chann Chang, and

Yuh-Min Chen, “EA/G-GA for Single Machine

Scheduling Problems with Earliness/Tardiness Costs",

Entropy 2011, 13, 1152-1169; doi:10.3390/e13061152.

[23]. Chang, P.C.; Chen, S.H.; Liu, C.H. “Sub-population

genetic algorithm with mining gene structures for

multiobjective flowshop scheduling problems”. Expert

Syst. Appl. 2007, 33, 762–771.

http://www.sciencedirect.com/science/article/pii/S0360835207000150
http://www.sciencedirect.com/science/article/pii/S0360835207000150
http://www.sciencedirect.com/science/journal/03608352
http://www.sciencedirect.com/science/journal/03608352/52/4
http://www.sciencedirect.com/science/article/pii/S073658450500044X
http://www.sciencedirect.com/science/article/pii/S073658450500044X
http://www.sciencedirect.com/science/journal/07365845
http://www.sciencedirect.com/science/journal/07365845
http://www.sciencedirect.com/science/journal/07365845/22/4
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A%28Webster%2C+S.%29
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A%28Jog%2C+D.%29
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A%28Gupta%2C+A.%29
http://www.tandfonline.com/loi/tprs20?open=36#vol_36
http://www.tandfonline.com/toc/tprs20/36/9

