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ABSTRACT 
In this paper, we will present a new variant of genetic algorithm 

to solve optimization problems where the number of feasible 

solutions is very important. This approach consists on a hybrid 

algorithm between genetic algorithms introduced by J. Holland 

(1975) and dynamic programming method of R. Bellman 

(1957). Then we will apply this hybrid algorithm to solve a 

single machine scheduling problem that consists to minimizing 

the sum of earliness and tardiness costs with common due date. 

Our goal is designing a new approach to find a good near 

solutions for combinatory problems as scheduling problems or 

traveling salesman problem which have an exponential number 

of solutions and known as NP-hard problems. 

Keywords 
Genetic Algorithm, Scheduling, Dynamic programming, 

Optimization. 

1. INTRODUCTION 
In the recent years, the meta-heuristics become very important 

and have received significant attention for solving optimization 

problems because they can give near solutions to combinatorial 

problems in reasonable time even for the biggest size problems, 

on the other hand, the exact methods (such as complete 

enumeration, dynamic programming or branch and bound 

methods) need a considerable time to find an optimal solution 

especially for big size problems. However, the approach 

formulation and the choice of the meta-heuristic parameters can 

considerably affect the quality of the results. Our approach is 

based on this idea, since we will develop a variant of genetic 

algorithm where we will adjust the parameters and use the 

famous principle of dynamic programming to obtain best results 

as possible for combinatorial problems. To show the efficiency 

of the approach, we will apply it on a single machine scheduling 

that consists to minimizing the sum of earliness tardiness costs 

with common due date. Our new approach is presented in 

Section 4. The computational results using the Benchmark 

instances of Biskup and Feld- mann’s (2001) are presented in 

Section3.  Finally we could with directions and further research 

in Section 4. 

2. GENETIC ALGORITHM (GA) 
Genetic algorithms, introduced by J. Holland (1975), are 

inspired from the Darwin evolution theory: in the population 

evolution, the best individuals, which are more adapted to their 

environment, can outlive for a long time, on the on other hand, 

the individuals which are not fits to their environment disappear 

with the passage of generations. So, each individual is coded by 

its chromosome and a fitness function to be defined to evaluate 

individuals. Firstly, GA consists to randomly generate initial 

population, then, genetic operators (selection, crossover, 

mutation), within specified probabilities, are applied to produce 

a new generation which considered best than its previous. This 

process must be iterative for a great number of generations as 

shown in the algorithm follow: 

Begin 

Initialization; 

Repeat  

     Evaluation; 

     Selection; 

             Crossover; 

             Mutation; 

        Until (Criteria Stopping); 

End. 

However, the individuals encoding, fitness function, selection 

method, probability crossover, probability mutation and 

criteria stopping depend of the treated problem, so they must 

be carefully (empirically) chosen and can considerably 

improve the solution quality. 

3. DYNAMIC PROGRAMMING (DP) 
Dynamic programming method, introduced by R. Bellman 

(1957), is based on his famous theory: “every optimal policy 

is composed of optimal sub policies”. It can be applicable to 

solve sequential combinatorial problems (as the most 

problems are) by breaking them down into simpler steps. 

Since, we must express the objective of the (k+1) order sub 

problem in function of the objective of the k order sub 

problem. So, the last problem order will represent the entire 

problem proposed. This relation is called bellman equation. 

When applicable, the method takes much less time than naive 

methods and it obtains exact solution but it stay costly in time 

(exponential time complexity), for this, it’s discouraged for 

biggest size problems. 

However, we will not use exactly this approach, but we will 

inspire the idea that we let the size of the problem increase 

progressively within the generations. Since, at each iteration, 

only the best solutions outlive. 

4. PROPOSED META-HEURISTIC: 

HYBRID ALGORITHM (HA) 
The HA that we will present consists at genetic algorithm 

where the size of the treated problem crow within the 

generations such as in the evolution theory. That s mean, in 

the population generations, the problem of the generation k 

must be “less” than the one of generation n. As well as, when 

we apply the GA, only the best individuals will stay in the 

population. The algorithm start with an initial problem size n0, 

then, the size nk will crow with the passage of generations: 

nk = n0 + [current_iteration*nbr_iterations / n ] 

 
Where:  

 nk: size of the problem at the current generation; 

 n0: initial problem size; 
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 n: size of the entire problem; 

 current_iteration: current generation order; 

 nbr_iterations: total number of generations; 

 [x]: entire part of x; 

4.1 PROBLEM PRESENTATION 
To show our approach efficiency, we will applied it on a single 

machine scheduling problem of independent jobs where the 

objective consists to minimize the sum of earliness and tardiness 

penalties against common due date. This problem was treated in 

many search subjects where was proofed as NP-hard problem 

and was applied in JIT (Just-In-Time) philosophy as in 

manufactures, commerce, transport, … 

4.2 Notation 
I : a set of  n jobs:  I =  1 , 2 , …. , n  ; 

d : common due date of all the n jobs ; 

Ci : complete time of job i ; 

pi : processing time of job i ; 

Ei = max{d-Ci , 0} (Earliness of job i) 

Ti = max {Ci-d , 0} (Tardiness of job i)  

 

i : penalty per unit time of earliness for job i ;  

i : penalty per unit time of tardiness for job i ; 

h : parameter of common due date : d = h * T ; where: 

 


n

k ipT
1

   ; h   0.2 , 0.4,0.6,0.8 . 

4.3 Statement 
n independent jobs to be processed on a single machine without 

interruption with common due date d; 

Each job is available at time 0; 

Each job must be processed just once; 

For each job i, the processing time pi , the cost per unit time of 

earliness i the cost per unit time of tardiness i are given and 

assumed integer; 

The objective is:  


n

k iiii TE
1

)(   min  . 

4.4 Literature 
In the recent years, this type of problems has received 

significant attention and become important with the advent 

Just-In-Time (JIT) concept, where early and tardy deliveries are 

highly discouraged. For example, the just-in-time-principle 

states that the right mount of goods should be produced or 

delivered at exactly the right time. According our search, we 

have found the pioneers studying of this type of problems: 

Kanet (1981) [6] [8], Lee and Kim (1995) [1],  James (1997), 

Gordon et al. (2002) [4],  Feldmann et Biskup (2003) [1] [2] 

[3], Hino, Ronconi et Mendes (2005) [7], Lin, Chou, Ying 

(2005), Biskup and Cheng (1999) [9], Hall and Posner (1991) 

[5]. On the other hand, some work has been done on solving 

this type of problem by exact methods. [17] [18] [20]. 

Other searchers have treated heuristics methods. [10] [11] 

[13] [16] [19] [22]. Some works used genetic algorithm 

as meta heuristic. [14] [21] [23]. We note that the 

problem has treated in many options: single machine [1] 

[15] [20] [22], two machines [10] and multi machines 

[11] [12]. 

4.5 Problem properties  
For this problem, an optimal solution must satisfying three 

optimality properties. To obtain the objective value more 

efficiently, these three properties are integrated in our 

meta-heuristic. 

Property 1. An optimal schedule does not contain any idle 

time between any consecutive jobs. 

Property 2. An optimal schedule is V-shaped around the 

common due date: the jobs complete before or on the common 

due date are sorted in decreasing order of the ratios pi/αi, and 

the jobs starting on or after the common due date are sorted in 

increasing order of the ratios pi/βi. 

Property 3. In the optimal schedule, either the first job 

starts at time zero or the completion time of one job coincides 

with the common due date. 

These properties can be established using proof by 

contradiction. Kanet (1981), Lee and Kim (1995),  Gordon et 

al. (2002),  Feldmann et Biskup (2003), Chou, Ying (2005), 

Biskup and Cheng (1999), Hall and Posner (1991). 

4.6 Encoding 
Traditionally, candidate solutions or individuals (also called 

phenotypes) are represented in binary as strings of 0s and 1s, 

but other encodings are also possible. Those abstract 

representations are called chromosomes or genotypes of 

individuals. However, in our case, a chromosome (feasible 

solution) consists on an array of (n+1) integer numbers, the 

first element represents the beginning time of the sequence 

and the other n elements represent the sequence itself. 

Example: the following vector encode the sequence 

(2,6,1,4,5,3) that beginning at time 4: 

  

 
So, a population of m individuals will be represented by a 

matrix m*(n+1), with the passage of generations, this matrix 

will crow against two dimensions: its width (the problem size) 

and height (the generation size).  

4.7 Fitness function 
The fitness function is defined over the genetic representation 

and measures the quality of the represented solutions. It is 

always problem dependent. An ideal fitness function 

correlates closely with the algorithm's goal, and yet may be 

computed quickly. However, it must not favorite some 

solutions that may converge quickly toward a local maximum. 

In the other hand, fitness function is to maximize, since the 

best solutions may have a greater value of fitness function. So, 

it may be inversely proportional to the objective (because the 

objective is to maximize). Many processes are possible to 

adjust the fitness function, in the first hand, to prevent 

premature convergence or diversity, in the other hand, to 

assure uniform repartition of the solution. The linearization 

and exponentiation are used in this way. So, for these reasons, 

we have used the following rule of fitness: 

Fitness(x) = h * (1-obj(x)/sum_obj)0.1+1. 

Where h is the common due date rate, x is a chromosome, 

solution (individual of the population) and obj(x) the value of 

its objective function. Our experimental results show that this 

rule produces good results. 

4.8 Initialization 
Initially many individual solutions are randomly generated to 

form an initial population. Traditionally, uniform law 

probability must be used to cover all space solutions (space 

search). So, that prevents the algorithm to prematurely 

4 2 6 1 4 5 3 
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converge to a local optimum. The initial population size 

depends on the nature of the problem. Occasionally, the 

solutions may be "seeded" in areas where optimal solutions are 

likely to be found. For our case, we have chosen gen_size0 = 

256 and this number will crow at each iteration, with a rate that 

as every natural population evolution. In fact, this is the 

essential difference between the genetic algorithms family and  

our variant, because, in any evolutionary phenomenal , the size 

of the populations crow with the passage of the populations. 

4.9 Evaluation 
This step consists to compute the objective for each individual 

then its fitness.  Also, it computes the minimum of objectives 

values and save the solution corresponding. So, at the last 

iteration, this step allow us to obtain the best individual of the 

population, it is the near optimal solution searched. 

4.10  Selection 
This step consists to select which individuals are fits to 

participate for producing the next generation. Individual 

solutions are selected through a fitness-based process, where 

fitter solutions (as measured by a fitness function) are 

typically more likely to be selected. Certain selection methods 

rate the fitness of each solution and preferentially select the best 

solutions. Other methods rate only a random sample of the 

population, as this process may be very time-consuming. We 

have opted for fortune wheel method where the individual 

having a great fitness, is probable to be selected using the 

following implementation:  

Function roulette() As Integer 

        Dim i As Integer 

        Dim r, s1 As Double 

        s = 0 

        Randomize() 

        r = Rnd() * sum_fitness 

        i = 0 

        While s < r 

            i = i + 1 

            s = s + fitness(i) 

        End While 

        roulette = i 

End Function 

The crossover allows producing new child solutions from 

couples of parent solutions. For each new couple of child 

solutions to be produced, a couple of parent solutions is selected 

for breeding from the pool selected previously as shown as 

follow: 

Parent 1 4 2 6 1 4 5 3 

 

Parent 2 0 1 4 2 3 6 5 

                                                             

            Crossover  

 

Child 1 4 6 4 2 3 5 1 

 

Child 2 0 2 6 1 4 3 5 

 
This crossover operator is called 2 points crossover. The two 

points are randomly chosen, but, for good efficiency, the first 

point is chosen before the common due date d, the second point 

after. According the experimental results, we have obtain a best 

results with crossover probability pc = 0.75.  

4.11  Mutation  
The mutation genetic operator consists to give just small 

modification at the child obtained by crossover, that is for 
introduce into the population a new characters which does not 

exist among its parents to assure diversity in solutions space. 

So, that will extend the next generation to eventual good 

elements. In our case, in the mutation genetic operator, two 

jobs will be switched with a mutation probability pm= 0.01 as 

shown as follow:  

 

Child k 0 3 4 2 1 6 5 

 

Mutation 

 

Child k 0 3 6 2 1 4 5 

 
The switched jobs are chosen randomly but, as in crossover 

operator, the first one before the common due date d, the 

second after d, otherwise, this mutation will have any effect 

against the solution because the property 2. 

4.12  Termination 
There are many forms of criteria stopping: 

- Fixed number of iterations reached; 

- Fixed time computing; 

- Solution not improved during given number of 

iterations; 

- Optimal solution is found; 
For our case, we have used a fixed number of iterations but 

proportional toward the problem size. 

5. COMPUTATIONAL ANALYSIS 
The set of problems tested was selected from Biskup and 

Feldmann (2001,2003), with seven different instance sizes 

with n = 10; 20; 50;100; 200; 500;1000 jobs and 4 restrictive 

factors h = 0.2; 0.4; 0.6; and 0.8. They are used to determine 

the common due date, d, by multiplying the total sum of all 

processing times, as follows: d = h * T ;  There are 10 

instances for each problem  size for our computational 

results.  

Firstly, we have computed the exact solutions for smaller 

sizes such as n = 5; 10 ; 20 ; 50 by using dynamic 

programming method then by using the proposed approach. 

Thus, we have obtained two solutions for each instance the 

one is exact solution ES and the other is near solution NS. 

We have remarked that the deviation  = NS – NE is 

inversely proportional to h as shown below (see figure 1).  

This variation of  means that when h is small; there are only 

few choices to schedule jobs because of their time processing 

pi since, some jobs can not scheduled before common due 

date d. inversely, when h is larger, there are many choices to 

schedule jobs against d, so can conclude that the near 

solution is best when h is larger. Even when the size n of the 

problem is biggest; this conclusion stay satisfied because the 

sequence can begin at any time near d. 

 

 

http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Fitness_function
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Fig. 1 : variation of  as a function of h 

 

Then, we have chosen the most restrictive set of 140 instances,  

i.e.  with h = 0.2 and h = 0.4.  In order to measure the 

effectiveness of the results obtained,  we computed the 

average percentage deviation of the average of our solution 

values (H) of every 10 instances over the average of the 

corresponding benchmark values provided by Biskup and 

Feldman as follows: RP D = {(H − BF )/BF }* 100. Our results 

were obtained with following number of iterations numbers: 

500 iterations for n= 10, 20, 50 jobs; 1000 iterations  for n = 

100, 200 jobs, 10000 iterations  for n = 500, 1000 jobs to 

terminate the algorithm.  The algorithm was coded in visual 

basic 6, VB6, an run on an PC with an Intel dual core 2.16 

GHZ, 2 GB RAM. 

 
Table 1. Percentage deviation of the average solutions 

h=0.2 n=10 n=20 n=50 n=100 n=200 n=500 n=1000 

BFA 1674.4 6429.2 37583.7 141143.
3 

543591.
2 

3348405.
6 

13293514.6 

HA 1674.4 6204.7 35505.1 133021.
7 

509500.
7 

3147715.
8 

9208717.2 

RPD% 0 -3.62 -5.85 -6.11 -6.69 -6.38 -44.36 

h=0.4 n=10 n=20 n=50 n=100 n=200 n=500 n=1000 

BFA 973.1 3703.7 21419.5 82120.2 315312.
9 

1917425.
8 

7651046.5 

HA 973.1 3651.1 20519 79051.7 307061.
2 

1787201.
8 

7320456.9 

RPD% 0 -1.44 -4.39 -3.88 -2.69 -7.29 -4.52 
 

The computational results reported in the Table 1 above show 

that our algorithm improves the average of all instances. The 

overall average improvement for h = 0.2 is around -10.43% 

while it is −6.94% for h = 0.4. The CPU time in second are 

reported for the above obtained results. 

Table 2. CPU time in Seconds 

n 10 20 50 100 200 500 

Time (s) for h=0.2 6 s 6 s 14 s 61 s 216 s 3325 s 

Time (s) for h=0.4 6 s 6 s 14 s 59 s 212 s 3287 s 

 
To show the complexity of our algorithm; we have also 

compared between the time processing in our approach and in 

the exact method (dynamic programming). As it is shown in 

table 2, our approach has polynomial complexity against 

dynamic programming which has exponential complexity. 

6. CONCLUSION 
A new genetic algorithm was developed. It is based on the 

concept of dynamic programming where the population size 

and the chromosome of the solution are increased as the 

iteration number increases. The computational results are very 

encouraging. The authors are currently attempting to solve the 

other 140 remaining instances of lower restriction factors as 

well as comparing with the most developed meta-heuristics 

we have recently found in the literature. We consider that the 

adjusting of the approach parameters as crossover probability, 

mutation probability, initial population, selection method, 

increasing step of the population size can more improve the 

results. Also, we suggest extending our study by Applying it 

on other problems such shortest path or travelling salesman 

problem. 
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