
International Journal of Computer Applications (0975 – 8887)

Volume 66– No.21, March 2013

27

Fault Localization using Probabilistic Program

Dependence Graph

N.Suguna

Computer Science and Engineering,
Annamalai University,

Chidambaram, Tamilnadu, India.

R M. Chandrasekaran, PhD.
Computer Science and Engineering,

Annamalai University,

Chidambaram, Tamilnadu, India.

ABSTRACT

Fault localization is an expensive technique in software

debugging. Program dependence graphs are used for testing,

debugging and maintenance applications in software

engineering. Program dependence graphs (PDG) are used to

build a probabilistic graphical model of program behavior. In

this paper we proposed a model based fault localization

technique using probabilistic program dependence

(PPDG).This work presents algorithm for constructing PPDGs

and PPDGs based fault localization. Our experimental result

shows that proposed PPDG based fault localization method

performs better than existing testing based fault localization

(TBFL) method for DotNet programs. Our results also

indicate that the probabilistic approach is efficient for fault

localization.

Keywords

Probabilistic Program Dependency Graph, Program

Dependency Graph, Testing Based Fault Localization,

Conditional Probabilistic Table.

1. INTRODUCTION

In debugging, the programmers have to remove the bug part

of the program without introducing new bugs at the same

time. However fault localization is difficult and time

consuming process there are several testing tools available. In

order to reduce the cost of debugging several automated

testing tools based on techniques such as static, dynamic and

execution slice based, spectrum based, statistics based,

program state based, machine learning based, similarity based

and model based technique are used [2, 6, 8,9,11,13,15].

 Program dependence Graph is a combination of control flow

graph and data flow graph. With the help of PDG, a PPDG is

constructed. PPDG is a conditional statistical dependence

model which depicts the independence relationships among

program elements.

Our proposed work identifies the internal behavior for a set

of test inputs. It uses the program dependency graph to

estimate the statistical dependencies between node states for a

set of test inputs for fault localization. We compare the TBFL

[4] and PPDG technique. The result shows that PPDG is more

effective than TBFL.

Section 2 describes the different existing fault localization

techniques. Section 3 explains about fault localization using

TBFL. Section 4 defines PPDG construction. Section 5 and 6

discuss about fault localization techniques used. Section 7

describes the performance comparison results between TBFL

and PPDG and section 8 defines conclusion.

2. RELATED WORK

Fault Localization is a complex and time consuming process.

There are several techniques for fault localization. The first

technique was introduced by Mark Weiser named as slicing.

A slice is an executable set of statements which preserves the

original behavior of the program with respect to a subset of

variables at a given program point [16]. In [4] the author

proposed an efficient dynamic slicing algorithm for

debugging, program integration software maintenance and

reverse engineering [4].

Program spectrum based technique identifies the suspicious

statement in a program responsible for failure. It records the

execution information to find the success or failure of a

statement [5]. The disadvantage of this method is does not

differentiate the cause of a successful or failed testcase.

Renieris & Reiss presents a spectrum based technique which

contrasts the failed test case with successful test case [6].

Statistics based fault localization technique finds the fault in

the program by contrasting the statistics of the evaluation

results of individual predicates between failed runs and

successful runs. It uses the short circuit evaluations to

improve predicate based statistical fault localization

techniques[7].

Liblit et al. proposed a statistical debugging algorithm to

identify bugs in the programs with instrumented predicates at

particular points [8]. Feedback reports are generated by these

instrumented predicates. Predicates with a higher score should

be examined first to find bugs. Once a bug is found and fixed,

the feedback reports related to that particular bug are

removed. This process is continued until other bugs and all

the feedback reports are removed or all the predicates are

examined.

W.Eric .Wong uses the neural network to locate the bugs

effectively. It identifies the relationship between the statement

coverage information of a test case. It uses this information

for success or failure of a test case[9]. Wong et al. [10] also

proposed a crosstab method to find the suspiciousness of each

executable statement in terms of its likelihood of containing

program bugs.

Zeller, et al. presents a program state-based debugging

technique, delta debugging [11], to reduce the causes of

failures to a small set of variables by contrasting program

states between executions of a successful test and a failed test

via their memory graphs [12]. Gupta et al. [13] introduce the

concept of failure inducing chop as an extension to the cause

transition method to overcome this issue. Brun and Ernst [14]

present a learning model using machine learning to

differentiate faulty and non-faulty programs using static

analysis. Celllier et al [15] propose a combination of

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.21, March 2013

28

association rules and Formal concept Analysis to assist in

fault localization

The main objective of our work is to develop a model based

fault localization method. We generate the PPDG for Dotnet

programs. Then the PPDG generated is used for localizing the

faults in our input test cases. The results are compared with

TBFL to show the effectiveness of PPDG based approach.

3. FAULT LOCALIZATION USING TBFL

 In order to reduce the cost of debugging, fault

localization techniques are automated. One such technique

used in TBFL which is based on information gathered from

testing. Given a program which is composed of statements

(denoted a P={S1,S2,….Sm})and a set of test cases (denoted

as t={t1,t2…,tn}) when these information is acquired and run

the testcases against the target program can be represented as

(n*(m+1)) Boolean execution matrix (called a diagnosis

matrix in this paper) denoted as E=(eij)(1<=i<=n,1<=j<=m)

Where

(1)0

1)+m=(j successful is tcase test 1

m)= <j= <(1 by test t executed is sstatement 1

=e i

ij

ij

 Thus the TBFL technique find the most suspicious

statement by calculating the diagnosis matrix.

 Consider an example of C#.net program and its

diagnosis matrix in Table1 to see how to use the test

information and how to locate the suspicious statement in the

following sections.

S1: intnum,sqr,rev,res;

S2: Console.writeLine(“Enter.write n”),

S3: num=5;

S4: Sqr=num*num;

S5: Rev=0;

S6: While(sqr){

S7: Rev=rev*10+sqr%10;

S8: Sqr/=10;}

S9: Rev=sqt(rev);

S10: Res=0;

S11: While(rev){

S12: Res=res*10+rev%10;

S13: Rev/1;}

S14: If(res==num)

S15: Console.writeLine(“Adam number”+num);

S16: else

S17: Console.writeLine(“Not Adam number+num”);

Fig. 1 Sample C# .net program

The program in Fig. 1 is to check the number is adam or not.

Table 1. Diagnosis matrix of program p

Statement No. T1(3) T2(5) T3(12) T4(15)

S1 1 1 1 1

S2 1 1 1 1

S3 1 1 1 1

S4 1 1 1 1

S5 1 1 1 1

S6 1 1 1 1

S7 1 1 1 1

S8 1 1 1 1

S9 1 1 1 1

S10 1 1 1 1

S11 1 1 1 1

S12 1 1 1 1

S13 1 1 1 0

S14 1 1 1 0

S15 1 0 1 0

S16 0 1 0 0

S17 0 1 0 0

 Table 1 shows the test cases in T and its

corresponding execution path. The program produces correct

outputs on all testcases except T4, in Table 1. Because s11

uses the expression Rev%1 instead of Rev%10for testcaseT4

4. PROBABILISTIC BASED APPROACH

 In this section, we discuss the two models that form

the basis for the Probabilistic Program Dependence Graph.

The first is the program dependence graph, which represents

structural dependences between program statements. The

second is a dependency network, which is a type of

probabilistic graphical model that represents conditional

dependence and independence relationships between random

variables.

Definition 1:

 A Dependency Network[18] is a triple (S,G,Ω),

where S represents a set of random variables, G=(N,E) is a

possibly cyclic directed graph, and Ω represents a set of

conditional probability distributions. N and E are the set of

nodes and set of directed edges in G respectively, with nodes

in G corresponding to random variables in S and edges in G

representing dependences among the random variables

Definition 2:

 A probabilistic graphical model is an annotated

graph[18] that captures the probabilistic relationship among a

set of random variables. The nodes in the graph represent

random variables and the edges represent conditional

dependences between the random variables.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.21, March 2013

29

fa
ct

Definition 3:

 A program dependence graph (PDG)[18] is a

directed graph whose nodes represent program statements and

whose edges represent data and control dependences. Lables

on the control dependence edges represent the truth values of

the branch conditions for those edges, and labels on data

dependence edges represent the variables whose values flow

along those edges.

Definition 4:

A probabilistic program dependence graph (PPDG)[18] for

program P is a tripe (G,S,Q),where G=(N,E) is the

transformed PDG of P whose nodes and edges sets are N and

E, respectively, and S and Q are mapping from nodes to states

and from nodes to conditional probability distributions,

respectively.

Fig. 2: Steps in the construction of a PPDG.

 In this paper we show how the PPDG can be used

for fault localization .Given a program P it generates the PDG

and then transforming it into PPDG by adding nodes and

edges to it and specifies the states of the nodes we call the

graph that results after transforming the PDG termed as

transformed PDG.

Steps for generating PPDG:

Step 1: Generates the PDG for given input program.

Step 2: Transforming the PDG by adding nodes and edges

 and also specifying the states of the nodes.

Step 3: It inserts probes into program P to find execution

data require to estimate the parameters of the PPDG

and produce the instrumented program p’.

Step 4: In this step we generate the execution data by

 combining p’ with test suit Tp.

Step 5: The learning step generates a PPDG based on the

 execution data and the transformed PDG.

Using System;

1 Class fact

2 {

3 Int f=1; int n=5; int i=0;

4 While(i<n)

5 {

6 f=f*i; i++;

7 Console.writeLine(f);

}

}

Fig. 3 Sample C# .Net program

 Fig. 3 Shows the program for find the factorial of

a given number. Fig. 4 shows the control flow graph for

given program. Node 1 represents the first statement in the

program and node 6 represents the last statement in the

program For example node 4 has two outgoing edges edge

(4,5) is taken if the condition is true and edge (4,7) is taken if

the condition 7 is false. Using the control flow graph, we can

define both control dependence and data dependence.

Fig. 4 Control Flow Graph

Fig. 5 Program Dependency Graph

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.21, March 2013

30

 From the control flow graph the PDG is generated

as shown in Fig. 5. The PDG is generated with the

combination of control flow graph and dataflow graph The

nodes in the PDG represent line numbers of corresponding

statements in the program. Solid edges represent control

dependences and dotted edges represent data dependences

between nodes. If the edges represents control dependences

then it is labiled with T or F. if the edges represents data

dependence then it is labeled by variable name.

PDG transformation

 In this step PDG is transformed structure by adding

nodes and edges to it and specify the states of the node then it

is called as transformed PDG.

--------------->

---------------->

Fig. 6 Transformed PDG

Structural Transformation

 In this transformation adds nodes and edges in two cases.

i) If a node has 2 state component(i.e predicate and data

dependence component)

ii) If a node has self loops (i.e nodes have control or data

dependences on themselves in the PDG.

 For example the predicate “i<n” at node 4 has two

state components because of the predicate computation at the

node 4 because of its dynamic data dependences on nodes 3

and 6. Fig. 6 shows the results of the structural transformation

of the PDG of fact that introduces new nodes D4. A self-loop

in a PDG may involve either a control dependence or a data

dependence. If a node n is data dependent on itself with

respect to a program variable v, our technique removes the

self-loop and adds a new node. The new node is an immediate

predecessor of n. The edge from the new node to n is a data

dependence edge with respect to variable v. For example, in

Fig. 5, node 6 is data dependent on itself. The self-loop is

removed and a new node L6 is introduced. L6 is the

immediate predecessor of node 6 (i.e., node 6 becomes data

dependent on L6 with the data dependence variable being i).

Fig. 6 shows the result of the self-loop transformation.

State Specification

 This technique models the states of each node after

finding the transformed PDG of sample program.

Predicate nodes

 For example, Fig. 5 represents a predicate “i<n” at

node 4. If n=5 and i=1 when node 4 is executed the predicate

outcome is <. In general, our technique assigns <, >, = = and

as the set of states to each predicate node whose operands are

primitive variables. Laski and Korel [17] proposed that the

states of non predicate nodes are dynamically data dependant

on other nodes. It provides the data environment of statement

s that reaches s along any paths and is used at s consider our

example in Fig. 5, suppose that di(x) denotes a definition of a

variable x at node i. For node7, the data environment is

{d3(fact), d5(fact)} because the definitions of “fact ”at nodes

3and 5 are potentially used at node 7.The elementary data

contexts of node 7 are {d3(fact)}and{d5(fact)} because only

one of the definitions can reach node 7at a time in an

execution. The data context, is the set of its elementary data

contexts, is {d3 (fact)} and {d5(fact)}. For node D4, the data

environment and data context are (d1(i), d2(n)), (d6(i), d2(n))

respectively. The data contexts of nodes D4, 6, and 7 are

(d1(i)), (dl6(i)), (d3(fact)), (d5(fact)), respectively.

5. LEARNING

 This technique finds the parameters of PPDG using

set of execution data { })(
0

n

kkDD == generated by P with its test

suite Tp. In this technique uses node state trace information to

find the parameters of the PPDG.A node state trace is a set of

executed nodes which are active in transformed PDG. For

each Dk∈D is a node state trace. A node can be multiple times

in the trace so that states of node can also be different. We

used batch learning algorithm for finding the parameters

 The parameters of the PPDG are estimated by

conditional probability table(CPTs). Conditional probability

distributions are represented by tables because the nodes in

transformed PDG are discrete. Suppose that X={X1,….,Xn}

represents the set of nodes in the transformed PDG.

For a node with no parents our technique estimates the

probabilities (P(xj=xji)) of the nodes as

)(

)(
)(

j

jjj

jij
Xn

xXn
xXp

=
==

 Where n(Xj=xji) is the number of times nodes (Xj) in

state xji across all node state traces and n(xj) is the number of

times the node Xj occurs across all node state traces.

Table 2 Nodes in Transformed PDG with

Corresponding States

Nodes states

1,2,3,L6

D4

4

5

6

7

T,

(d1(i),d2(n)),(d6(i),d2(n))

>,<,==,

(d3(fact)),(d1(i)),

(d1(i)),(dl6(i)),

(d3(fact)),(d5(fact)),

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.21, March 2013

31

Table 3. Nodes in Transformed PDG with Corresponding

Conditional Probability Distributions

Nodes Conditional Probability Distribution

1,2,3,L6

D4

4

5

6

7

P(1),P(2),P(3),and P(L6)

P(D4|1,2,6)

P(4|D4)

P(5|1,3,4)

P(6|1,4,L6)

P(7|3,5)

 For a node with parents our technique estimates the

probabilities (p(Xj=xji|pa(Xj) =pa ji))of the node as

),Pa)X(Pa(n

)Pa)X(Pa.xX(n
pa=)Pa(X|x=p(X

jij

jijjij

jijjij =

==
=

(3)

 Where n(Xj=xji. Pa(Xj)=Paji) is the number of times

node Xj and its parents assume a specific state configuration

allows all node state traces. A state configuration in a set of

states assigned to a set of nodes in the PPDG. The CPTs of the

nodes is the sum over the states of node Xj given that its

parents are in a specific state configuration paji must

equal 1.0.

0.1)pa)X(Pa(|sx(P ji

x

xs

jj

ji

ji

===∑
=

 (4)

Algorithm: Learmparam

Input: D = ; transformed PDG

Output: PPDG

1 foreachDk€ D do

2 for j=1 to length(Dk) do

3 if Pa(Xj)=0 then

4 Increment n(Xj = xji) by 1, where xji is then Current

state of Xj

5 else

6 Increment n(Xj = xji.Pa(Xj) = paji) by 1,where Xji is

the current state conFig.uration of

the parents of Xj

7 end

8 end

9 end

10 Compute probabilities of Xj using equation (5), (2)

return PPDG

Fig.7 Batch Learning Algorithm

 The input to the algorithm is a set of execution data

with its test suite Tp and transformed PDG then the output is

PPDG. Different types of execution data (coverage and trace

information)are used to estimate the parameters of the PPDG.

A node state trace in a set of executed nodes in the

transformed PDG. It is uses node state to estimate the

parameters of the PPDG. As it process from beginning to

end of each Di∈D changing the state of the parents and

increase the probability.

 For node with parents it computes the conditional

probability of present node. For node without parents it

computes the conditional probability and it increments the

probability of current node. For the above example using the

learnparameter algorithm probability is calculated. The

probability for each node is calculated and given in Table 4.

Table 4. Conditional probability distribution

 Node Probability

 1 1

 2 1

 3 1

 4 1.0

 5 0.5

 6 0.4

 7 0.2

6 FAULT LOCALIZATION

 Software debugging is one of the difficult task in

software. For finding the fault several fault localization

technique are available. In this paper RankCPalogorithm [18]

is used for finding the fault. It examines a single failing

execution at a time. It ranks the nodes based on conditional

probability of nodes having parents. RankCPalgorithm finds

the first causes of a failure of a node Xj given the state of its

parents.

Algorithm: RankCP

Input: node-state trace: ;PPDG

Output: ranked nodes with state conFig.urations

1 for j=1 to n do

2 prob← p(Xj = xji | Pa(Xj)=paji)

3 ifprob<lowest_prob(Xj) then

4 Lowest_prob(Xj) ← prob

5 Index(Xj)← j

6 ConFig.uration(Xj) ← {xjiᶸpaji}

7 end

8 end

9 rank nodes in the ascending order by

probability,break ties using indexes

10 return ranked nodes with state conFig.urations

Fig. 8 RankCP Algorithm

 The input to this algorithm is node state trace and

PPDG and the output is list of nodes ranked from most

suspicious to least suspicious. It computes the conditional

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.21, March 2013

32

probability for the current node (xji) and its parent node Paji

(ie.,P(Xji|Pa(Xj)=Paji)). For each node Xj it finds the lowest

probability using the conditional probability table .if a node

has same probability value then it ranks the node with lowest

index value.

7. EXPERIMENTS

 In our experiments we evaluate the effectiveness of

fault detection techniques by finding the fault detection rate

.We considered 20 c#.Net programs. We have generated

PPDG for the programs. Fault Localization is carried out by

TBFL and PPDG. For evaluation purpose we have included

faults randomly into our input test cases. Table 5 shows the

results of both the Fault localization technique for different

C#.Net programs.

Table. 5 Faults identified by TBFL and PPDG

Name of program
Number

of faults

Faults

Identified

TBFL

Faults

Identified

PPDG

1. Sorting.cs 25 18 23

2. Stack.cs 27 21 25

3. Tic-Tac_toe 13 5 10

4. Matrix 30 17 22

5. Queue 28 10 16

6. Binary tree 19 12 18

7. File operations 11 6 10

8. Calculator 18 12 14

9. Palindrome 10 7 8

10. String operations 17 12 15

11. Linked list 24 15 22

12. Thread 21 12 21

13. Animation 25 15 20

14. Dining

philosopher

41 31 35

15. Tower of Hanoi 26 21 24

16. Inheritance 8 3 6

17. Binary search 19 12 17

18. Interface 24 17 22

19. Database 27 16 25

20. Operator

overloading

25 12 19

 From the results we are noticed that our proposed

method has more fault localization rate than TBFL method.

Fig. 9 Comparison between TBFL and PPDG

 The performance analysis measure is shown in the

Fig. 9. Consider for example the. Net Program sorting. In this

program number of faults identify by TBFL is 18. But for

same program PPDG identifies 23 faults thus we can conclude

that PPDG is efficient than TBFL.

8. CONCLUSION AND FUTURE WORK

In this paper we developed an fault localization technique

based on statistical dependences between program elements.

Here we used RankCP algorithm for finding the fault in the

program. RankCP algorithm uses the conditional probability

from PPDG to rank the nodes from most suspicious to least

suspicious. In existing work fault localization in done for

object oriented programming language such as c,c++ and

java. In the proposed work fault localization is applied for

Dotnet programs. Learnparam approach is used to estimate

the parameters of PPDG from the set of executed data. We

used RankCP algorithm for fault localization of PPDG.PPDG

is generated based on the execution data and transformed

PDG. We compared two fault localization techniques such as

TBFL and PPDG and the result shows that PPDG is effective

model for representing program behaviours particularly that

associated with faults. This work may be extended to find

memory related faults.

9. REFERENCES

[1] FeiPu, Yan Zhang, Localizing Program Errors Via

slicing Reasoning. IEEE High Assurance systems

Engineering symposium, 187-196, 2008.

[2] Damiano Zanardini, The semantics of program slicing

,IEEE 2008

[3] T. Gyimothy , A. BESzedes, and I.Forgacs. An efficient

relevant slicing method for debugging. In symposium on

Foundations of Software Engineering (FSE’99), 303-

321, ACM, 1999.

[4] Sun Ji-Rong, Ni Jian-cheng, and Li Bao-Lin. Dichotomy

method in testing –based fault localization. International

Journal of Mathematical models and methods in applied

sciences,2007.

[5] M. Renieris and S. P. Reiss, “Fault Localization with

Nearest Neighbor Queries,” In Proceedings of the 18th

IEEE International Conference on Automated Software

Engineering, pp. 30-39, Montreal, Canada, October

2003.

[6] Zhenyu Zhang, Bo Jiang, W.K. Chanb, T.H. Tsea,1,

XinmingWangc, Fault localization through evaluation

sequences, Journal of Systems and Software ,Volume 83

Issue 2, 174-187, 2010.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.21, March 2013

33

[7] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.

Jordan, “Scalable Statistical Bug Isolation,” in

Proceedings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation, pp.

15-26, Chicago, Illinois, USA, June, 2005.

[8] W. Eric Wong, Program Debugging with Effective

Software Fault Localization IEEE Transactions on

Reliability 61(1): 149-169 (2012).

[9] W. E. Wong, T. Wei, Y. Qi, and L. Zhao, “A Crosstab-

based Statistical Method for Effective Fault

Localization,” in Proceedings of the 1st International

Conference on Software Testing, Verification and

Validation, pp. 42-51, Lillehammer, Norway, April 2008.

[10] Zeller, “Isolating Cause-Effect Chains from Computer

Programs,” in Proceedings of the 10th ACM SIGSOFT

Symposium on Foundations of Software Engineering, pp.

1-10, Charleston, South Carolina, USA, November

2002.

[11] T. Zimmermann and A. Zeller, “Visualizing Memory

Graphs,” in Proceedings of the International Seminar on

Software Visualization, pp. 191-204, Dagstuhl Castle,

Germany, May 2001.

[12] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating

Faulty Code Using Failure-Inducing Chops,” in

Proceedings of the 20th IEEE/ACM International

Conference on Automated Software Engineering, pp.

263-272, Long Beach, California, USA, November 2005.

[13] Y. Brun and M. D. Ernst, “Finding Latent Code Errors

via Machine Learning over Program Executions”, in

Proceedings of the 26th International Conference on

Software Engineering, pp. 480- 490, Edinburgh, UK,

May 2004.

[14] Eric Wong, Vidrohadebroy, “Software fault localization”

W. IEEE Annual Technology Report, 2009.

[15] M.Weiser. Program slicing. IEEE transactions on

software engineering, SE-10(4):352-357, 1984

[16] J.W. Laski and B. Korel, “A Data Flow Oriented

Program Testing Strategy,” IEEE Trans. Software Eng.,

vol. 9, no. 3, pp. 347-354, May1983.

[17] George K. Baah, Andy Podgurski, Mary Jean Harrold,

“The probabilistic Program Dependence Graph and its

application to Fault Diagnosis,” IEEE Trans. Software

Eng., vol. 36, no. 4, pp. August 2010.

