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ABSTRACT 

Fault localization is an expensive technique in software 

debugging. Program dependence graphs are used for testing, 

debugging and maintenance applications in software 

engineering. Program dependence graphs (PDG) are used to 

build a probabilistic graphical model of program behavior. In 

this paper we proposed a model based fault localization 

technique using probabilistic program dependence 

(PPDG).This work presents algorithm for constructing PPDGs 

and PPDGs based fault localization. Our experimental result 

shows that proposed PPDG based fault localization method 

performs better than existing testing based fault localization 

(TBFL) method for DotNet programs. Our results also 

indicate that the probabilistic approach is efficient for fault 

localization. 
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1. INTRODUCTION 

In debugging, the programmers have to remove the bug part 

of the program without introducing new bugs at the same 

time. However fault localization is difficult and time 

consuming process there are several testing tools available. In 

order to reduce the cost of debugging several automated 

testing tools based on techniques such as static, dynamic and 

execution slice based, spectrum based, statistics based, 

program state based, machine learning based, similarity based 

and model based technique are used [2, 6, 8,9,11,13,15]. 

 Program dependence Graph is a combination of control flow 

graph and data flow graph. With the help of PDG, a PPDG is 

constructed. PPDG is a conditional statistical dependence 

model which depicts the independence relationships among 

program elements.  

Our proposed work  identifies the internal behavior for a set 

of test inputs. It uses the program dependency graph to 

estimate the statistical dependencies between node states for a 

set of test inputs for fault localization. We compare the TBFL 

[4] and PPDG technique. The result shows that PPDG is more 

effective than TBFL. 

Section 2 describes the different existing fault localization 

techniques. Section 3 explains about fault localization using 

TBFL. Section 4 defines PPDG construction. Section 5 and 6 

discuss about fault localization techniques used. Section 7 

describes the performance comparison results between TBFL 

and PPDG and section 8 defines conclusion. 

 

2. RELATED WORK 

Fault Localization is a complex and time consuming process. 

There are several techniques for fault localization. The first 

technique was introduced by Mark Weiser named as slicing. 

A slice is an executable set of statements which preserves the 

original behavior of the program with respect to a subset of 

variables at a given program point [16].  In [4] the author 

proposed an efficient dynamic slicing algorithm for 

debugging, program integration software maintenance and 

reverse engineering [4].  

Program spectrum based technique identifies the suspicious 

statement in a program responsible for failure. It records the 

execution information to find the success or failure of a 

statement [5]. The disadvantage of this method is does not 

differentiate the cause of a successful or failed testcase. 

Renieris & Reiss presents a spectrum based technique which 

contrasts the failed test case with successful test  case [6]. 

Statistics based fault localization technique  finds the fault in 

the program by contrasting the statistics of the evaluation  

results of individual predicates between failed runs  and 

successful runs. It uses the short circuit  evaluations  to 

improve predicate based statistical fault  localization 

techniques[7]. 

Liblit et al. proposed a statistical debugging algorithm to 

identify bugs in the programs with instrumented predicates at 

particular points [8]. Feedback reports are generated by these 

instrumented predicates. Predicates with a higher score should 

be examined first to find bugs. Once a bug is found and fixed, 

the feedback reports related to that particular bug are 

removed. This process is continued until other bugs and all 

the feedback reports are removed or all the predicates are 

examined. 

W.Eric .Wong uses the neural network to locate the bugs 

effectively. It identifies the relationship between the statement 

coverage information of a test case. It uses this information 

for success or failure of a test case[9]. Wong et al. [10] also 

proposed a crosstab method to find the suspiciousness of each 

executable statement in terms of its likelihood of containing 

program bugs.  

Zeller, et al. presents a program state-based debugging 

technique, delta debugging [11], to reduce the causes of 

failures to a small set of variables by contrasting program 

states between executions of a successful test and a failed test 

via their memory graphs [12]. Gupta et al. [13] introduce the 

concept of failure inducing chop as an extension to the cause 

transition method to overcome this issue. Brun and Ernst [14] 

present a learning model using machine learning to 

differentiate faulty and non-faulty programs using static 

analysis. Celllier et al [15] propose a combination of 
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association rules and Formal concept Analysis to assist in 

fault localization 

The main objective of our work is to develop a model based 

fault localization method. We generate the PPDG for Dotnet 

programs. Then the PPDG generated is used for localizing the 

faults in our input test cases. The results are compared with 

TBFL to show the effectiveness of PPDG based approach. 

3. FAULT LOCALIZATION USING TBFL 

 In order to reduce the cost of debugging, fault 

localization techniques are automated. One such technique 

used in TBFL which is based on information gathered from 

testing. Given a program which is composed of statements 

(denoted a P={S1,S2,….Sm})and a set of test cases (denoted 

as t={t1,t2…,tn}) when these information is acquired and  run 

the testcases  against the target program can be represented  as  

(n*(m+1)) Boolean execution matrix (called a diagnosis 

matrix in this paper ) denoted as E=(eij)(1<=i<=n,1<=j<=m) 

Where  









(1)0

1)+m=(j successful is  tcase test 1

m)= <j= <(1 by test t executed is sstatement  1

=e i

ij

ij

 

 Thus the TBFL technique find the most suspicious 

statement by calculating the diagnosis matrix. 

 Consider an example of C#.net program and its 

diagnosis matrix in Table1 to see how to use the test 

information and how to locate the suspicious statement in the 

following sections. 

S1: intnum,sqr,rev,res; 

S2: Console.writeLine(“Enter.write n”),  

S3: num=5;  

S4: Sqr=num*num; 

S5: Rev=0; 

S6: While(sqr){ 

S7: Rev=rev*10+sqr%10; 

S8: Sqr/=10;} 

S9: Rev=sqt(rev); 

S10: Res=0; 

S11: While(rev){ 

S12: Res=res*10+rev%10; 

S13: Rev/1;} 

S14: If(res==num) 

S15: Console.writeLine(“Adam number”+num); 

S16:  else 

S17: Console.writeLine(“Not Adam number+num”); 

Fig. 1 Sample C# .net program 

The program in Fig. 1 is to check the number is adam or not. 

Table 1. Diagnosis matrix of program p   

Statement No. T1(3) T2(5) T3(12) T4(15) 

S1 1 1 1 1 

S2 1 1 1 1 

S3 1 1 1 1 

S4 1 1 1 1 

S5 1 1 1 1 

S6 1 1 1 1 

S7 1 1 1 1 

S8 1 1 1 1 

S9 1 1 1 1 

S10 1 1 1 1 

S11 1 1 1 1 

S12 1 1 1 1 

S13 1 1 1 0 

S14 1 1 1 0 

S15 1 0 1 0 

S16 0 1 0 0 

S17 0 1 0 0 

 Table 1 shows the test cases in T and its 

corresponding execution path. The program produces correct 

outputs on all testcases except T4, in Table 1. Because s11 

uses the expression Rev%1 instead of Rev%10for testcaseT4 

4. PROBABILISTIC BASED APPROACH 

 In this section, we discuss the two models that form 

the basis for the Probabilistic Program Dependence Graph. 

The first is the program dependence graph, which represents 

structural dependences between program statements. The 

second is a dependency network, which is a type of 

probabilistic graphical model that represents conditional 

dependence and independence relationships between random 

variables. 

Definition 1:  

 A Dependency Network[18] is a  triple (S,G,Ω), 

where S represents a set of random variables, G=(N,E) is a  

possibly cyclic directed graph, and Ω represents a set of 

conditional probability  distributions.  N and E are the set of 

nodes and set of directed edges in G respectively, with nodes 

in  G corresponding to random variables in S and edges in G 

representing dependences among the random variables 

Definition 2: 

  A probabilistic graphical model is an annotated 

graph[18] that captures the probabilistic relationship among a 

set  of random variables. The nodes in the graph represent 

random variables and the edges represent conditional 

dependences between the random variables. 
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Definition 3: 

 A program dependence graph (PDG)[18] is a 

directed graph whose nodes represent program statements and 

whose edges represent data and control dependences. Lables 

on the control dependence edges represent the truth values of 

the branch conditions for those edges, and labels on data 

dependence edges represent the variables whose values flow 

along those edges. 

Definition 4: 

A probabilistic program dependence graph (PPDG)[18] for 

program P is a tripe (G,S,Q),where G=(N,E) is the 

transformed PDG of P whose nodes and edges sets are N and 

E, respectively, and S and Q are mapping from nodes to states 

and from nodes to conditional probability distributions, 

respectively. 

 

Fig. 2: Steps in the construction of a PPDG. 

 In this paper we show how the PPDG can be used 

for fault localization .Given a program  P it generates the PDG 

and then transforming it into PPDG  by adding nodes and 

edges to it and specifies the states of the nodes we call the 

graph that results after transforming the PDG  termed as  

transformed PDG. 

Steps for generating  PPDG: 

Step 1: Generates the PDG for given input program. 

Step 2:  Transforming the PDG by adding nodes and edges 

 and also specifying the states of the nodes. 

Step 3: It inserts probes into program P to find execution 

data require to estimate the parameters of the PPDG 

and produce the instrumented program p’. 

Step 4:  In this step we generate the execution data by 

 combining p’ with test suit Tp. 

Step 5: The learning step generates a PPDG based on the 

 execution data and the transformed PDG. 

  

Using System;                                  

1 Class fact 

2 { 

3 Int f=1; int n=5; int i=0; 

4 While(i<n) 

5 { 

6 f=f*i; i++; 

7 Console.writeLine(f); 

} 

} 

Fig. 3 Sample C# .Net program  

 Fig. 3 Shows  the   program for  find the factorial of 

a given number. Fig. 4 shows the control flow graph  for 

given program. Node 1 represents the first statement in the 

program and node  6 represents the last statement in the 

program For example node 4 has two outgoing edges edge 

(4,5)  is taken if the condition is true and edge (4,7) is taken if 

the condition  7 is false. Using the control flow graph, we can 

define both control dependence and data dependence. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 Control Flow Graph   

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Program Dependency Graph  
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 From the control flow graph  the PDG  is generated 

as shown in Fig. 5. The PDG is generated with the 

combination of control flow graph and dataflow graph The 

nodes in the PDG represent line numbers of  corresponding 

statements  in the program. Solid edges represent control 

dependences and dotted edges represent data dependences 

between nodes. If the edges represents control dependences 

then it is labiled with T or F. if the edges represents data 

dependence then it is labeled by variable name. 

PDG transformation 

  In this step PDG is transformed structure by adding 

nodes and edges to it and specify the states of the node then it 

is called as transformed PDG. 

--------------->

---------------->

 

Fig. 6 Transformed PDG  

Structural Transformation 

     In this transformation adds nodes and edges in two cases. 

i) If a node has 2 state component(i.e predicate and data 

dependence component) 

ii) If a node has self loops (i.e nodes have control or data 

dependences on themselves in the PDG. 

 For example the predicate “i<n” at node 4 has two 

state components because of the predicate computation at the 

node 4 because of its dynamic data dependences on nodes 3 

and 6. Fig. 6 shows the results of the structural transformation 

of the PDG of fact that introduces new nodes D4. A self-loop 

in a PDG may involve either a control dependence or a data 

dependence. If a node n is data dependent on itself with 

respect to a program variable v, our technique removes the 

self-loop and adds a new node. The new node is an immediate 

predecessor of n. The edge from the new node to n is a data 

dependence edge with respect to variable v. For example, in 

Fig. 5, node 6 is data dependent on itself. The self-loop is 

removed and a new node L6 is introduced. L6 is the 

immediate predecessor of node 6 (i.e., node 6 becomes data 

dependent on L6 with the data dependence variable being i). 

Fig. 6 shows the result of the self-loop transformation.  

State Specification 

 This technique models the states of each node after 

finding the transformed PDG of sample program.  

Predicate nodes 

 For example, Fig. 5 represents a predicate “i<n” at 

node 4. If n=5 and i=1 when node 4 is executed the predicate 

outcome is <. In general, our technique assigns <, >, = = and 

as the set of states to each predicate node whose operands are 

primitive variables. Laski and Korel [17] proposed  that the 

states of non predicate nodes are dynamically data dependant 

on other nodes. It provides the data environment of statement 

s that reaches s along any paths and is used at s consider our 

example in Fig. 5, suppose that di(x) denotes a definition of a 

variable x at node i. For node7, the data environment is 

{d3(fact), d5(fact)} because the definitions of “fact ”at nodes 

3and 5 are potentially used at node 7.The elementary data 

contexts of node 7  are {d3(fact)}and{d5(fact)} because only 

one of the definitions can reach node 7at a time in an 

execution. The data context, is the set of its elementary data 

contexts, is {d3 (fact)} and {d5(fact)}. For node D4, the data 

environment and data context are (d1(i), d2(n)), (d6(i), d2(n)) 

respectively. The data contexts of nodes D4, 6, and  7 are 

(d1(i)), (dl6(i)), (d3(fact)), (d5(fact)), respectively. 

5. LEARNING  

 This technique finds the parameters of PPDG using 

set of execution data { } )(
0

n

kkDD ==  generated by P with its test 

suite Tp. In this technique uses node state trace information to 

find the parameters of the PPDG.A node state trace is a set of 

executed nodes which are active in transformed PDG. For 

each Dk∈D is a node state trace. A node can be multiple times 

in the trace so that states of node can also be different.  We 

used batch learning algorithm for finding the parameters 

 The parameters of the PPDG are estimated by 

conditional probability table(CPTs). Conditional probability 

distributions  are represented by  tables because the nodes in 

transformed PDG are discrete. Suppose that X={X1,….,Xn} 

represents the set of nodes in the transformed PDG. 

For a node with no parents our technique estimates the 

probabilities (P(xj=xji)) of the nodes as 

 

)(

)(
)(

j

jjj

jij
Xn

xXn
xXp

=
==

 

 Where n(Xj=xji) is the number of times nodes (Xj) in 

state xji across all node state traces and n(xj) is the number of 

times the node Xj occurs across all node state traces. 

Table 2 Nodes in Transformed PDG with  

Corresponding States 

Nodes states 

1,2,3,L6 

D4 

4 

5 

6 

7 

T, 

(d1(i),d2(n)),(d6(i),d2(n)) 

>,<,==, 

(d3(fact)),(d1(i)), 

(d1(i)),(dl6(i)), 

(d3(fact)),(d5(fact)), 
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Table 3. Nodes in Transformed PDG with Corresponding  

Conditional Probability Distributions 

Nodes Conditional Probability Distribution 

1,2,3,L6 

D4 

4 

5 

6 

7 

P(1),P(2),P(3),and P(L6) 

P(D4|1,2,6) 

P(4|D4) 

P(5|1,3,4) 

P(6|1,4,L6) 

P(7|3,5) 

 For a node with parents our technique estimates the 

probabilities (p(Xj=xji|pa(Xj) =pa ji))of the node as 

 

),Pa)X(Pa(n

)Pa)X(Pa.xX(n
pa=)Pa(X|x=p(X

jij

jijjij

jijjij =

==
=

(3) 

 Where n(Xj=xji. Pa(Xj)=Paji) is the number of times 

node Xj and its parents assume a specific state configuration 

allows all node state traces. A state configuration in a set of 

states assigned to a set of nodes in the PPDG. The CPTs of the 

nodes is the sum over the states of node Xj given that its 

parents are in a specific state configuration paji must         

equal 1.0. 

 

0.1)pa)X(Pa(|sx(P ji

x

xs

jj

ji

ji

===∑
=

 (4)

 

Algorithm: Learmparam 

Input: D = ; transformed PDG 

Output: PPDG 

1 foreachDk€ D do 

2  for j=1 to length(Dk) do 

3  if Pa(Xj)=0 then 

4 Increment n(Xj = xji) by 1, where xji is then Current 

state of Xj 

5  else 

6 Increment n(Xj = xji.Pa(Xj) = paji) by 1,where Xji is 

the current state conFig.uration of  

the parents of Xj 

7 end 

8 end 

9 end 

10 Compute probabilities of Xj using equation (5), (2) 

return PPDG 

Fig.7 Batch Learning Algorithm 

 The  input to the algorithm is a set of execution data 

with its test suite Tp and transformed PDG then the output is 

PPDG.  Different types of  execution data ( coverage and trace 

information)are used to estimate the parameters of the PPDG. 

A node state trace in a set of executed nodes in the 

transformed PDG. It is uses node state to estimate the 

parameters  of the PPDG. As  it process from beginning to 

end of each Di∈D changing the state of the parents  and 

increase the probability. 

 For node with parents it computes the conditional 

probability of present node. For node without parents it 

computes the conditional probability and it increments the 

probability of current node. For the above example using the 

learnparameter algorithm probability is calculated. The 

probability for each node is calculated and given in Table 4. 

Table 4. Conditional probability distribution 
 

         Node  Probability 

          1 1 

          2 1 

          3 1 

          4 1.0 

          5 0.5 

          6 0.4 

          7 0.2 

6 FAULT LOCALIZATION 

 Software debugging  is one of the difficult task in 

software. For finding the fault several fault localization 

technique are available. In this paper RankCPalogorithm [18] 

is used for finding the fault. It examines a single failing 

execution at a time. It ranks the nodes based on conditional 

probability of nodes having parents. RankCPalgorithm finds 

the first causes of a failure of a node Xj given the state of its 

parents. 

Algorithm: RankCP 

Input: node-state trace: ;PPDG 

Output: ranked nodes with state conFig.urations 

1 for j=1 to n do 

2 prob← p(Xj = xji | Pa(Xj)=paji) 

3 ifprob<lowest_prob(Xj) then 

4 Lowest_prob(Xj)  ←  prob 

5 Index(Xj)← j 

6 ConFig.uration(Xj) ←  {xjiᶸpaji} 

7 end 

8 end 

9 rank nodes in the ascending order by 

probability,break ties using indexes 

10 return ranked nodes with state conFig.urations 

Fig. 8 RankCP Algorithm 

 The input to this algorithm is node state trace and 

PPDG and the output is list of nodes ranked from most 

suspicious to least suspicious. It computes the conditional 
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probability for the current node (xji) and its parent node Paji 

(ie.,P(Xji|Pa(Xj)=Paji)).  For each node Xj it finds the lowest 

probability using the conditional probability table .if a node 

has same probability value then it ranks the node with lowest 

index value. 

7. EXPERIMENTS 

 In our experiments we evaluate the effectiveness of 

fault detection techniques by finding the fault detection rate 

.We considered 20 c#.Net programs. We have generated 

PPDG for the programs. Fault Localization is carried out by  

TBFL and  PPDG. For evaluation purpose we have included 

faults  randomly into our input test cases. Table 5 shows the 

results of both the Fault localization technique for different  

C#.Net programs.  

Table. 5 Faults identified by TBFL and PPDG 

Name of program 
Number 

of faults 

Faults 

Identified 

TBFL 

Faults  

Identified 

PPDG 

1. Sorting.cs  25 18 23 

2. Stack.cs  27 21 25 

3. Tic-Tac_toe 13 5 10 

4. Matrix 30 17 22 

5. Queue 28 10 16 

6. Binary tree  19 12 18 

7. File operations  11 6 10 

8. Calculator  18 12 14 

9. Palindrome  10 7 8 

10. String operations  17 12 15 

11. Linked list  24 15 22 

12. Thread  21 12 21 

13. Animation  25 15 20 

14. Dining 

philosopher 

41 31 35 

15. Tower of Hanoi 26 21 24 

16. Inheritance  8 3 6 

17. Binary search  19 12 17 

18. Interface  24 17 22 

19. Database  27 16 25 

20. Operator 

overloading  

25 12 19 

 From the results we are noticed that our proposed 

method has more fault localization rate than TBFL method. 

 

Fig. 9 Comparison between TBFL and PPDG 

 The performance analysis measure is shown in the 

Fig. 9. Consider for example the. Net Program sorting. In this 

program number of faults identify by TBFL is 18. But for 

same program PPDG identifies 23 faults thus we can conclude 

that PPDG is efficient than TBFL.       

8. CONCLUSION AND FUTURE WORK 

In this paper we developed an fault localization technique 

based on statistical dependences between program elements. 

Here we used RankCP algorithm for finding the fault in the 

program. RankCP algorithm uses the conditional probability 

from PPDG to rank the nodes from most suspicious to least 

suspicious. In existing work fault localization in done for 

object oriented programming language such as  c,c++ and 

java. In the proposed work fault localization is applied for 

Dotnet programs. Learnparam approach is used to estimate 

the parameters of PPDG from the set of executed data. We 

used RankCP algorithm for fault localization of PPDG.PPDG 

is generated based on the execution data and transformed 

PDG. We compared two fault localization techniques such as 

TBFL and PPDG and the result shows that PPDG is effective 

model for representing program behaviours particularly that 

associated with faults. This work may be extended to find 

memory related faults.  
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