
International Journal of Computer Applications (0975 – 8887)

Volume 66– No.21, March 2013

13

Better Object Oriented Paradigm Inheritance and
Interface through Cohesion Metrics

Varsha Mishra
M.Tech Scholar
MIT Ujjain, India

Shweta Yadav
Assistant Professor
MIT, Ujjain, India

ABSTRACT
Measurement is fundamental to any engineering discipline.

Cohesion metrics play an important role in empirical software

engineering research as well as in industrial measurement

programs. The Cohesion metrics presented in this paper

measure the difference between class inheritance and interface

programming.. This paper presents a measurement to measure

cohesion by Lack of Cohesion in Methods (LCOM1),

LCOM2 in object oriented programming. A measurement is

done for C# inheritance and interface programs. The metric

values of class inheritance and interface prove which program

is good to use and beneficial for C# developers.

KEYWORDS
Inheritance, Interface, Locm1, Lcom2, Cohesion metrics.

1. INTRODUCTION

In the object oriented paradigm, cohesion of a class re-fers to

the degree to which members of the class are in-terrelated.

Chidamber and Kemerer defined the first met-ric to measure

cohesiveness of a class [1].Cohesion, originating in structured

design [23], refers to the relatedness of the elements in a

module. A highly cohesive module is one whose elements

have tight relationships among themselves while providing a

single functionality of the module. In object-oriented

paradigm, the class cohesion can be thought as the

measurement of relatedness among the members of class [4].

Relatedness for a class means similarity in the methods

exposed by a class. A highly cohesive module is one whose

elements have a close relationship among them in order to

provide the sole functionality of the module. All the

advantages provided by the object-oriented paradigm are

mainly based on the notion of class. Thus, all object-oriented

design methods emphasize the importance of the correct

identification of classes from the application domain, and

developers spend significant time and effort to identify the

essential classes relevant to the system. Although each object-

oriented design method provides various guidelines to identify

a set of classes from the application domain, there is a general

agreement that a class should be created to abstract the state

and the behavior of the similar objects by its members (i.e.

instance variables and methods). However, poorly designed

classes may be produced from the inappropriate use of object-

oriented concepts during analysis and design phases or

uncontrolled change during maintenance activities. A class

may be poorly designed if the class fails to represent the

features of the corresponding objects by its members; that is, a

class has disparate and non-related members, or two or more

different kinds of objects are captured by one class. The

principle of high cohesion has been migrated to object-

oriented design by Coad and Yourdon [5, 6] and recent

research has again lead to a large number of new cohesion

measures for object-oriented systems being defined. However,

because cohesion is a complex software attribute in object-

oriented systems (e.g., there are several different mechanisms

which are considered to contribute to cohesion of a class), and

there has been no attempt to provide a structured synthesis,

our understanding of the state-of-the-art is poor. To improve

software products and process, measurements are essential.

Software measurement plays an important role in finding the

software quality, performance, maintenance and reliability of

software products. The concept of measurement requires

appropriate measurement tools to measure, to collect, to verify

and validate relevant metric data. Nowadays, many metric

tools are available for software measurement [7, 8, 9]. The

main objective of this paper is to measure, analyze and

propagate the difference between using object oriented class

inheritance and interfaces in C# source code using cohesion

measures by metrics.

2. COHESION METRICS

High cohesion has traditionally been a desirable property of

classes in object-oriented software systems. Several metrics

have been proposed to assess the degree of cohesion. Most of

them are derived from Chidamber and Kemerer’s LCOM

(Lack of Cohesion in Methods) metric, which, in its original

form, counts the number of pairs of methods in a class using

no attribute in common [10].

A. Lack of Cohesion in Methods (LCOM)
LCOM is a count of the number of method pairs whose

similarity is zero, minus the count of method pairs whose

similarity is not zero. Raymond [11] discussed for example, a

class C with 3 methods M1, M2, and M3. Let I1= {a, b, c, d,

e}, I2= {a, b, e}, and I3= {x, y, z}, where I1 is the set of

instance variables used by method M1. So two disjoint set can

be found: I1 Ç I2 (= {a, b, e}) and I3. Here, one pair of

methods who share at least one instance variable (I1 and I2).

So LCOM = 2-1 =1. [10] States ―Most of the methods

defined on a class should be using most of the data members

most of the time. If LCOM is high, methods may be coupled

to one another via attributes and then class design will be

complex. So, designers should keep cohesion high, that is,

keep LCOM low.

B. Lack of Cohesion in Methods (LCOM 1)

LCOM1(c) =| {{m1, m2} |m1, m2 € M1(c) ^ m1 ≠ m2 ^ AR (m1)

∩ AR (m2) ∩ A1(c) =

Note that this definition only considers methods implemented

in class c, and that only references to attributes implemented

in class c are counted. This is an additional interpretation of

our own; the influence of inheritance on the cohesion of a

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.21, March 2013

14

class has neither been addressed by Henderson-Sellers nor by

Chidamber and Kemerer [12].

In [10], Chidamber and Kemerer give a new definition of

LCOM:

Consider a Class C1 with methods M1, M2... Mn. Let {Ii} = set

of instance variables used by method Mi.

There are n such sets {I1}... {In}. Let P= {(Ii, Ij) | Ii ∩ Ij = Æ}

and Q= {(Ii, Ij) | Ii ∩ Ij ≠ Æ }. If all n sets {I1}... {In} are Æ

then let P = .

LCOM= |P| - |Q|, if |P| > |Q|

LCOM = 0, otherwise

LCOM is the number of pairs of methods in a class having no

common attribute references,, minus the number of pairs of

similar methods, . However, if, LCOM is set to zero. The

definition of this version of LCOM is almost operational.

C. Lack of Cohesion in Method s (LCOM 2)

Let P = {if AR (m) = m € M1 (c)

P= {{m1, m2} | m1, m2 € M1 (c) ^ m1 ≠ m2 ^ AR (m1) ∩ AR

(m2) ∩ A1 (c) = else

Let Q= {{m1, m2}| m1, m2 € M1 (c) ^ m1 ≠ m2 ^ AR (m1) ∩

AR (m2) ∩ A1(c) ≠

Then LCOM2(c) = {|P| - |Q|, if |P| > |Q|

 LCOM2(c) = 0, otherwise

LCOM1: Lack of cohesion in methods – The number of pairs

of methods in the class using no attribute in common. [13]

LCOM2: LCOM1 minus number of pairs of methods that use

common attribute. When difference is negative it is set to

zero. [13]

LCOM3: Make an undirected graph with methods as vertices

and edges between them if there is a common attribute used.

LCOM3 is the number of connected components in graph.

[13]

LCOM4: Same as LCOM3 but edge is also considered if

method invokes another method. [13]

TCC: Tight Class Cohesion – Percentage pairs of methods

which directly or indirectly use and attribute. [13]

LCC: Loose Class Cohesion: Same as TCC but methods

indirectly connected are also considered. [13]

3. CLASS INHERITANCE AND

INTERFACE

The engineering process and products or any software can be

quantitatively measured and assessed for the merits and

benefits of their improvements [14]. The limits of object

oriented programming are characterized by the use of

inheritance between classes. Inheritance is one of the initial

features of object oriented programming and is often

prototyped as an ingredient for object oriented programming.

[15][16]. Using inheritance, a derived class receives the

methods and attributes of the base class and this relationship

is referred as “is-a” or “isa-kind-of” relationship. Inheritance

will create class hierarchy. Today interfaces are heavily used

in all disciplines. Interfaces are advisable to be used in large

type of applications because the interface makes the

application easier to extend, modify and integrate new

features. Inheritance also can be applied to interfaces.

Interfaces can help to prevent the misuse of inheritance.

Interfaces can be used like classes in declarations and

signatures. By using the interface concept java helps to

produce reusable code. Interfaces are prototype for a class and

also inheritance hierarchy of interfaces is independent of class

inheritance tree [17] [18] [19] [20].

4. BACKGROUND

The concept of interfaces has been measured in java

programming by Fried Stiemann and Co [21] who represented

the usage of interfaces compared to classes as 4:1. Ken Pugh

[17] said that finding commonality among classes makes more

it effective for object oriented programming. He explored the

commonality in using inheritance and interfaces in object

oriented programming. In this paper, the usage of interfaces is

increased and the benefits of using interfaces are shown by

cohesion measures. V. Krishnapriya and Dr. K. Ramar [2],

through surveys and experiments, identify complexity

between inheritance and interface programming using

Coupling Matrices. It measure coupling between object

(CBO), number of associations between classes (NASSocC),

number of dependencies in metric (NDepIN) and number of

dependencies out metric (NDepOut) in object oriented

programming. The metric values of class and inheritance

diagrams have been compared to prove which concept is good

to use and beneficial for developers.

In 2011 Narendra Pal Singh Rathore, Ravindra Gupta [22]

presented a novel approach to Measure difference between

Inheritance and Interface to find better OOP Paradigm using

C# through coupling metrics.

5. PROPOSED APPROACH

Goal: Comparing the inheritance and interface concepts in

object oriented programming through cohesion- metrics.

Hypothesis: Two object oriented metrics are used for

cohesion measures in C# inheritance source code and

interface source code.

1. One object oriented C# program is used with inheritance

concept in this paper.

2. This program is introduced with maximum possible

interfaces.

3. Both Cohesion metrics are applied to both inheritance and

interface C# program.

4. The results are compared between inheritance and interface

cohesion measures.

6. RESULT

Now we have applied cohesion metrics on an example and

calculated LCOM1 & LCOM2. All the approach is described

below for particular example itself.

Example I: Implementation Using Inheritance:

using System;

class Shape

{

 public void Draw();

 public void Element();

}

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.21, March 2013

15

class RegularPolygon:Shape

{

 public int Linesegment;

 public void Perimeter();

}

class Ellipse: Shape

{

 public int curved;

 public int Surface;

}

class Triangle : RegularPolygon

{

 public int sumofangles = 180;

 public void setsides();

 public void Area();

}

class Rectangle : RegularPolygon

{

 public int sumofangles = 360;

 public void setsides();

 public void Area();

}

class Circle : Ellipse

{

 public int symmetrical;

 public void Circumference();

}

class Salene : Triangle

{

 public int Nosidesequal;

}

class Isosceles : Triangle

{

 public int sideequal2;

 public int Anglesequal2;

}

class Equilateral : Triangle

{

 public int sidesequal3;

 public int Anglesequal3;

}

class Square : Rectangle

{

 public int oppositesidequal;

 public int angles;

}

Measurement Conventions: We are measuring the cohesion

in the given program therefore considering the classes in short

name

1. Shape S

2. Regular Polygon Rp

3. Ellipse E

4. Triangle T

5. Rectangle R

6. Circle C

7. Selene Se

8. Isosceles Is

9. Equilateral Eq

10. Square Sq

LCOM1

Formula LCOM1 =|P|-|Q|

Where P=No of pairs in Disjoint Set

 Q=No of Pairs in Joint Set

 P = {<S, T>, <S, R>, <S, C>, <S, Se>, <S, Is>, <S, Eq>, <S,

Sq> 7

<Rp, E>, <Rp, C>, <Rp, Se>, <Rp, Is>, <Rp, Eq>, <Rp, Sq>

6

 <E, T>, <E, R>, <E, Se>, <E, Is>, <E, Eq>, <E, Sq>

6

 <T, R>, <T, C>, <T, Sq> 3

 <R, C>, <R, Se>, <R, Is>, <R, Eq> 4

 <C, Se>, <C, Is>, <C, Eq>, <C, Sq> 4

 <Se, Is>, <Se, Eq>, <Se, Sq> 3

 <Is, Eq>, <Is, Sq>, <Eq, Sq> } 2+1

Total no of pairs in P is (7+6+6+3+4+4+3+2+1) = 36

Q = {<S, Rp>, <S, E>, <Rp, T>, <Rp, R>, <E, C>, <T, Se>,

<T, Is>, <T, Eq>, <R, Sq>}

Q = 9

LCOM1=|36| - |9| = 27

LCOM2:

Formula of LCOM2 =| [4|p| - n (n-1)] / 2 |

Where the ‘P’: No of Pairs in Disjoint set

No of classes are: n=10

Then

LCOM2 is =| [4|36|-10*9]/2 | = |54/2|= 27

LCOM2=27

Example I: Implementation Using Interface:

using System;

interface Shape

{

 public void Draw_Element();

}

interface RegularPolygon

{

 public void Linesegment();

 public void Perimeter();

}

interface Ellipse

{

 public void Circumference();

}

class Triangle : Shape

{

 int Sumofangles = 180;

 public void Draw_Element();

 public void setsides();

 public void Area();

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.21, March 2013

16

}

class Rectangle : RegularPolygon

{

 int sumofangles = 360;

 public void Perimeter();

 public void Linessegment();

 public void setsides();

 public void Area();

}

class Circle : Ellipse

{

 int symmetricalpictur;

 public void Circumference();

}

class Scalene : Triangle

{

 int notequalsides;

}

class Isosceles : Triangle

{

 int sidesequal;

 int angleequal;

}

class Equilateral : Triangle

{

 int sidesequal;

 int angleequal;

}

class square : Rectangle

{

 int opposite;

 int sidesequal;

 int anglesequal;

}

Measurement Conventions: We are measuring the cohesion

in the given program therefore considering the classes in short

name

1. Triangle T

2. Rectangle R

3. Circle C

4. Scalene Sc

5. Isosceles Is

6. Equilateral Eq

7. Square Sq

LCOM1:

Formula LCOM1 =|P|-|Q|

Where P=No of pairs in Disjoint Set

 Q=No of Pairs in Joint Set

P = {<T, R>, <T, C>, <T, Sq> 3

<R, C>, <R, Sc>, <R, Is>, <R, Eq> 4

<C, Sc>, <C, Is>, <C, Eq>, <C, Sq> 4

<Sc, Is>, <Sc, Eq> <Sc, Sq> 3

<Is, Eq>, <Is, Sq> 2

<Eq, Sq> 1}

Total no of pairs in P is (3+4+4+3+2+1) = 17

Q= {<T, Sc>, <T, I>, <T, Eq>, <R, Sq>}

Q=4

LCOM1=|17|-|4|= 13

LCOM2: Formula of LCOM2 =| [4|p| - n (n-1)] /2 |+

Where the ‘P’: No of Pairs in Disjoint set

No of classes are: n=7

Then LCOM2 is =| [4|17|-7*6]/2 | = |26/2|= 13

LCOM2=13

The calculated values are of LCOM1 & LCOM2 for the same

example:

Table 1: Cohesion Measure for Example I

Fig. 1 : Cohesion Measure for Example I

In the table and graph above we see that the values tend to be

generally lower for interface program as compared to

inheritance program, which mean that cohesion is actually

higher. High cohesion is associated with several desirable

traits of software engineering like robustness, reliability,

reusability and understand-ability.

7. CONCLUSION

To improve modularity and encapsulation the inter class

cohesion measures should be larger. In Comparison of

cohesion in between inheritance and interface for the

modules, functions, attributes, classes in oops through

cohesion metrics is done, and interface is calculated as more

reusable code then inheritance. The more independent a class

it is easier to be reused by another application. The further

developed metrics are given that also can be implement in

realistic behaviour so that an efficient way can be identified to

optimise our approach for development of IT products. Due

to the reduction in values of cohesion metrics the stability of

the structure will be good. By using more interfaces compared

to inheritance the cohesion measures are increased.

Metrics/ Approach Inheritance Interface

LCOM1 27 13

LCOM2 27 13

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.21, March 2013

17

8. REFERENCES

[1] P. Chidamber and C. Kemerer, “Towards a Metrics Suite

for Object Oriented Design,” Proceedings of 6th ACM

Conference on Object Oriented Programming, Systems,

Languages and Applications, Phoenix, Arizona, 1991,

pp. 197-211.

[2] V. Krishnapriya and Dr. K. Ramar, Exploring the

Difference between Object Oriented Class Inheritance

and Interfaces Using Coupling Measures. IEEE 2010.

[3] G. Eason, B. Noble, and I. N. Sneddon, “On certain

integrals of Lipschitz-Hankel type involving products of

Bessel functions,” Phil. Trans. Roy. Soc. London, vol.

A247, pp. 529–551, April 1955. (references)

[4] J. M. Bieman and B.K. Kang, “Cohesion And Reuse In

An Object-Oriented System”, Proceedings of The

Symposium on Software Reusability (SSR’95), Seattle,

1995, pp. 259-262.

[5] P. Coad, E. Yourdon, “Object-Oriented Analysis”,

Prentice Hall, second edition, 1991.

[6] P. Coad, E. Yourdon, “Object-Oriented Design”,

Prentice Hall, first edition, 1991.

[7] Christopher L. Brooks, Chrislopher G. Buell, “A Tool for

Automatically Gathering Object-Oriented Metrics”,

IEEE, 1994.

[8] Rajib Mall, “Fundamentals of Software Engineering”,

Chapter 1, Pg.No:1-18,2nd Edition, April 2004.

[9] Rudiger Lincke, Jonas Lundberg and Welf

Lowe,”Comparing Software Metrics Tools”, ISSTA’08,

July 20-24, 2008, ACM 978-1- 59593-904-3/07.

[10] Chidamber, S. R. and Kemerer, C. F., “A Metric Suite

for Object-Oriented Design,” IEEE Transactions on

Software Engineering, 20(6):476-493, 1994.

[11] Alexander et al 2003,‖Mathematical Assessment of

Object-Oriented Design Quality‖, IEEE Transactions on

Software Engineering, VOL. 29, NO. 11, November

2003.

[12] Lionel C. Briand, John W. Daly, and Jürgen Wüst, A

Unified Framework for Cohesion Measurement in

Object-Oriented System. ISERN-97-05.

[13] N. Kayarvizhy, S. Kanmani, Analysis of Quality of

Object Oriented Systems using Object Oriented Metrics,

978-1-4244-8679-3/11/$26.00 ©2011 IEEE.

[14] Christopher L. Brooks, Chrislopher G. Buell, “A Tool for

Automatically Gathering Object-Oriented Metrics”,

IEEE, 1994.

[15] Fisher K. and Reppy J, “The Design of Class Mechanism

for Mobby”, In Proceedings of the Conference on

Programming Language Design and Implementation

(PLDI), P.No:37-49, May 1999.

[16] Wegner .P. “Dimension of Object-Based Language

Design “, In Proceedings of the Conference on Object-

Oriented Programming Systems, Languages and

Applications, OOPSLA, Oct 1987.

[17] Ken Pugh,” Interface Oriented Design”, Chapter 5, 2005.

[18] ISRD GROUP,” Introduction to object oriented

programming through java”, TATA Mc Graw HILL,

Pg.No:109.

[19] Friedrich Stiemann, Philip Mayer and Andreas Meibner,

“Decoupling Classes with Inferred Interfaces”,

Proceedings of the 2006 ACM Symposium on Applied

Computing, P.No:1404 – 1408.

[20] Markus Mohnen, “Interfaces with Default

Implementations in Java”, Technical Report.

[21] Fried Stiemann, Wolf Siberski and Thomas Kuhne, “

Towards the Systematic Use of Interfaces in Java

Programming”, 2nd Int. Conf. on the Principles and

practice of Programming in Java PPJ 2003, P.No:13-17.

[22] Narendra Pal Singh Rathore, Ravindra Gupta, A Novel

Coupling Metrics Measure difference between

Inheritance and Interface to find better OOP Paradigm

using C#. IEEE 2011 978-1-4673-0125-1_c 2011 IEEE

W. Stevens, G. Myers, and L. Constantine, “Structured

Design,” BM Systems J., vol. 12, no. 2, 1974

