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ABSTRACT 

In a multi input and output (MIMO) process mathematical 

modeling of the physical systems has gained importance due 

to the complexity of interactions within the system. All the 

parameters used in a model cannot be determined accurately. 

The major problem in a multivariable process is that loop 

interaction can arise and cause difficulty in feedback control 

design. This problem can be solved using centralized or 

decentralized controllers. One of the centralized techniques is 

model predictive control, which can be measured current to 

predicted future values of outputs. In this paper, model 

predictive control (MPC) technology for both linear and 

nonlinear model of quadruple tank process is proposed. It 

consists of four inter connected water tanks and two pumps as 

shown in figure 1. A general MPC control is presented, and 

approaches taken for the different aspects of the calculation 

are described. It is shown that MPC control is more stable, 

responsive and robust. 
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1. INTRODUCTION 
The major problem is to solve the control parameters for static 

as well as dynamic systems using model predictive control 

(MPC). Here, MPC is a more advanced method to control the 

predicted output along with tuning the parameters such as 

prediction and control horizons and control weights. It can 

handle multivariable processes, difficult multivariable control 

problems that include inequality constraints [11]. Linear MPC 

refers to a family of MPC schemes in which linear models are 

used to predict the system dynamics, even though the 

dynamics of the closed-loop system is nonlinear due to the 

presence of constraints [10]. Linear [5] and Nonlinear [6] 

MPC approaches have found successful applications, 

especially in the process industries. The process is called the 

quadruple-tank process and consists of four interconnected 

water tanks and two pumps. The system is shown in Figure 1. 

The inputs are the voltages to the two pumps and the outputs 

are the water levels in the lower two tanks. The quadruple-

tank process can easily be built by using two double-tank 

processes. The linearized model of the quadruple-tank process 

has a multivariable zero, which can be located in either the 

left or the right half-plane by simply changing a valve. 

Quadruple tank contains transmission zeros, which can vary 

from left half plane (minimum phase) to right half plane (non-

minimum phase) depending on the ratio of the flow to upper 

and lower tanks. 

The step response of the quadruple tank system using MPC 

with different control values is obtained and compared to the 

step response of the controlled system using Decoupled 

control strategy [1] and Comparative study [2]. 

This paper is organized as follows: section 2 gives description 

of four tank process. The controller design for four tanks and 

simulation analysis for stability is explained in 3 & 4. Finally 

the conclusion is given in 5 

2. DESCRITON OF FOUR TANK 

PROCESS 
Quadruple-tank process consists of four interconnected water 

tanks and two pumps as shown in Figure 1. The target is to 

control the level in the lower two tanks with two pumps [3]. 

The process inputs are v1 and v2 (input voltages to the pumps) 

and the outputs are 1 1cy k h  and 2 2cy k h  (voltages 

from level measurement devices). Mass balances and 

Bernoulli’s law yield the following model: 
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where, i  is the flow distribution to lower and diagonal upper 

tank, iA  is the cross-section area, ia  is the outlet hole cross 

section and ih  is the water level, in tank i respectively. 

The voltage applied to pump i  is iv  and the corresponding 

flow is i ik v . The parameters  1 2, 0,1    are determined 

from how the valves are set prior to an experiment. The flow 

to tank 1 is 1 1 1y k v  and the flow to tank 4 is  1 1 11 y k v  and 

similarly for tank 2 and 3. The acceleration of gravity is 

denoted ‘g’. This typical system has two finite zeros for 

 1 2, 0,1    one always lies in the left half-plane, but, the 

other can be placed either in the left or the right half-plane 

depending on the valve setting of 1 2,  as explained in table 

1,[4]. 
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Fig. 1. Diagram for Quadruple Tank Process. 

 

Table 1. For Valve Setting. 

Valve Settings Process Zero Location 

If 1 21 2   
 

Minimum 

Phase 

Zero is in left 

plane 

If 1 20 1   
 

Non 

Minimum 

Phase 

Zero is in left 

plane 

If 1 2 1  
  Zero at Origin 

Linearised the model has two sets of operating points with 

state space equation at operating points 
0

i i ix h h 
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The dynamics for the process transfer function matrix is 
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3. DESCRIPTION OF MPC 
In MPC applications, the output variables are also referred to 

as controlled variables or CV’s, while the input variables are 

called as manipulated variables or MV’s. The predictions are 

made in two types of MPC calculations that are performed at 

each sampling instant: set-point calculations [5] and control 

calculations. Inequality constraints as upper and lower limits 

can be included in either types of calculation [6]. 

In MPC the set points are typically calculated each time for 

MIMO process with u input variables and y output variables 

The current values of u and y as u(k) and y(k). The objective is 

to calculate the optimum set point ysp for the next control 

calculation (at k+1) and also to determine the corresponding 

steady-state value of u, usp. This value is used as the set point 

for u for the next control calculation. 

A general, linear steady-state process model can be written as 

[10] 

 
y K u  

                                             (6) 

Where K the steady-state is gain matrix and ,u y  denotes 

steady-state changes in u and y it is convenient define u  

and y   as 

 spy y yOL k                             (7) 

Here  yOL k  is steady-state value of y 

 spu u u k                                         (8) 

To incorporate output feedback, the steady-state model Eqn 

(6) is modified as 

   y K u y k y k     
 

                                             (9) 

3.1 The principle of linear and nonlinear 

model predictive control 
 In general, the model predictive control problem is 

formulated for solving a finite horizon open-loop optimal 

control problem subject to system dynamics and constraints 

involving states and controls. Fig. 2 shows the basic principle 

of model predictive control. The measurements are obtained 

from plant at regular intervals at time k,. The controller 

predicts the future dynamic behavior of the system over a 

predicted horizon P and control horizon M determines (over a 

control horizon P>M) the input such that a predetermined 

open-loop as well as closed-loop performance objective 

functional is optimized. If there were no disturbances and no 

model-plant mismatch, and if the optimization problem could 

be solved for infinite horizons, then one could apply the input 

function found at time k = 0 to the system for all times k ≥ 0. 

However, this is not possible in general. Due to disturbances 

and model-plant mismatch, the true system behavior is 

different from the predicted behavior [6]. Here we have 

ignored disturbance and match plant model.  
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Fig. 2: Basic principle of Model Predictive Control. 

The main point of this optimization problem is to compute a 

new control input vector,  u k  to be fed to the system, and at 

the same time take the process constraints into consideration. 

An MPC algorithm consists of:  

Cost Function, Constraint and A Model of the Process. 

3.2  Cost Function  
The main idea with MPC is that the MPC controller calculates 

a sequence of future control actions such that the cost function 

is minimized.  

The cost function often used in MPC is like this (a linear 

quadratic function)[10]: 

   
0 0

ˆ ˆ
p pN N

T T

k k

J y r Q y r u R u
 

                              (10) 

Where: 

pN  Prediction horizon 

r  Set point 

ŷ 
Predicted process output 

u  Predicted change in control value, 1k k ku u u   
 

Q Output error weight matrix 

R  Control weight matrix 

This works for MIMO systems (Multiple Input and Multiple 

Outputs) so we are dealing with vectors and matrices. 

3.3 Constrains 
All physical systems have constraints. Generally, physical 

constraints like actuator and valve limits, etc and performance 

constraints like overshoot, settling time, etc. In MPC one 

normally defines these constraints [10] to minimize 

inequalities.  

Constraints in the outputs: 

min maxy y y 
        (11) 

Constraints in the inputs: 

min maxu u u    
     (12) 

min maxu u u 
         (13) 

Note: 1k k ku u u   
 

3.4 Model 
The main drawback with MPC is that a model for the process, 

i.e., a model which describes the input to output behavior of 

the process, is needed. Mechanistic models derived from 

conservation laws can be used. Usually, however in practice 

simply data-driven linear models are used. 

In MPC it is assumed that the model represents a state-space 

model of the form [8]: 

  ,x k Ax Bu   

  .y k Cx Du          (14) 

We consider the stabilization problem for a class of systems 

described by the following nonlinear of differential equations 

[8]: 

         0 0, , 0, ,x t A t f x t u t t x t x      

  0, , . :c m c mx X R u U R A R R 
                  (15) 

With the known smooth nonlinear map    ,f x t u t   and 

the unknown parameter matrix  A t  

4. SIMULATION ANALYSIS 
In this paper, simulation results are compared with [1] and [2] 

on time based domain using tuning predictive control 

response, to a step response input. Here, response is plotted 

for the lower tanks for minimum and non minimum phase at 

two operating points is studied at p- and p+ of minimum and 

non minimum phase [9]. These operating points are at 

Table.2. 

For minimum phase response of linear system with P=10, 

M=2, no of control interval=1 as shown in Fig. 3 when tuning 

the parameters the response is shown in Fig.4, here P=10, 

M=3, no of control interval=0.25. 

Table 2. Operating Points. 

Operating 

Points 
Units p-  p+ 

 0 0
1 2,h h  

[cm] 
(12.4, 12.7) (12.6, 13.0) 

 0 0
3 4,h h  

[cm] 
(1.8, 1.4) (4.8, 4.9) 

 0 0
1 2,v v  

[V] 
(1,1) (1, 1) 

 1 2,k k  [cm3/Vs] (3.33, 3.35) (3.14, 3.29) 

 1 2,    (0.7, 0.6) (0.43, 0.34) 

k - 1 k k + 1 k + 2 k + M - 1 k + P 

u 
Prediction horizon, P 

y 

ŷ 

u 

Control horizon, M 

Set point (target) 

Future Past 

Past output 

Predicted future output 

Past control action 

Future control action  
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Fig.3 Output response with specified input 

 

Fig.4 Output response with specified input 

For non minimum phase response of linear system with P=10, 

M=2, no of control interval=1 as shown in Fig. 5. When tune 

parameters the response is shown in Fig.6, here P=10, M=3, 

no of control interval=0.25, along delay of 1second. 

 

Fig.5 Output response with specified input 

 

Fig.6 Output response with specified input 
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For minimum phase response of linear system without applied 

input 2u   is shown at Fig. 7, similarly response obtained 

without input 1u  is shown at Fig.8. 

 

Fig.7 Output response with specified input u1 

Fig.8 Output response with specified input u2 

Similarly for non minimum phase response of linear system 

without applied input 2u   as shown in Fig. 9, similarly 

response obtained without input 1u  as shown in Fig.10. 

 

Fig.9 Output response with specified input u1 

Fig.10 output response with specified input u2 

For minimum phase response of non linear system P=10, 

N=2, no of control intervals=1 is shown in Fig. 11, with slide 

adjusted the response is shown in Fig. 12, here P=10, M=3, no 

of control interval=0.25 
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     Fig. 11 output response with specified input 

 

Fig.12Output response with specified input 

 

For non minimum phase response of non linear system with 

P=10, M=2, no of control interval=1, along delay of 1second 

is shown in Fig. 13, when tune parameters the response is 

show in Fig. 14, here P=10, M=3, no of control interval = 

0.25. 

Fig. 13 Output response with specified input 

Fig.14 Output response with specified input 
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5. CONCLUSION 
The design procedure for MPC controller for Quadruple tank 

process has been proposed in this paper. The step response for 

process is compared with the results obtained in references 

listed as paper1 and paper 2 for both minimum and non 

minimum phase of linear and nonlinear system. It is observed 

that linear and nonlinear process with different controller 

parameters offers stable response for step input. Nonlinear 

system exhibits stable response without overshoots for 

minimum and non minimum phase. Similarly linear systems 

also exhibit stable response without overshoot for certain 

tuned controller parameters. Response of linear system for the 

lower two tanks, when absence of one input, one of them 

exhibits stable response for set point of respective step input. 

Remaining tank exhibits slit stable response not up to set 

point. Non minimum phase system has a transmission zero on 

right plane still exhibits stable response without any 

compensation for linear and non linear system. MPC is a more 

advanced technique to handle multivariable parameters. 

Finally, all transient and steady state responses have been 

obtained in all cases. 
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