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ABSTRACT 

In recent times in the classification and diagnosis of cancer 

nodules, gene expression profiling by micro array techniques 

are playing a fundamental role. A range of researchers have 

proposed a number of machine learning and data-mining 

approaches for identifying cancerous nodule using gene 

expression data.  The process of gene selection for the cancer 

classification encounters with some major problems due to the 

properties of the data such as the small number of samples 

compared to the huge number of genes, irrelevant genes, and 

noisy data. Hence, this paper aims at selecting a near-optimal 

subset of informative genes that is most relevant for the 

cancer classification. This paper also proposes an efficient 

BFSS (Boost Feature Subset Selection) technique to improve 

the performance of single-gene based discriminative scores 

using bootstrapping techniques. The proposed hybrid 

approach (Filter-Wrapper) will be implemented on three 

publicly available microarray datasets. These microarray 

datasets are: Acute Lymphoblastic Leukemia Cancer (ALL), 

Lung Cancer and Colon Cancer. 

General Terms 

Genetic Algorithm, Cyclic Genetic Algorithm, Boost Feature 

Subset Selection, Filter-Wrapper Technique. 

Keywords 

Evolutionary Algorithms, Binary Coded Genetic Algorithm.  

1. INTRODUCTION 
People live in the information-age—accumulating data is easy 

and storing it is inexpensive. In 1991 it was assumed that the 

amount of stored information doubles every twenty months 

[1]. Unfortunately, as the amount of machine readable 

information increases, the ability to understand and make use 

of it does not keep pace with it’s growth . This necessitates to 

transform enormous amounts of data into useful information 

and knowledge. This study focuses on feature selection. A 

feature selection technique is a pre-processing step to 

eliminate irrelevant and redundant data and in many cases, 

improves the performance of learning algorithms [1]. 

Microarray technology is a developing technology used to 

study the expression of many genes at once. [2]. Microarrays 

experiments are used to gather information from tissue and 

cell samples for finding gene expression differences that are 

useful in diagnosing diseases [3]. It produces gene expression  

 

data as the final product. Therefore, it provides a new way for 

people to understand molecular behaviors in abnormal tissues 

and improve classification performances for accurate cancer 

diagnosis and treatment [4]. Recognition of patterns and other 

subsequent analysis from the thousands of gene expression 

values is particularly difficult and primary role of an effective 

feature selection is to simplify this task [5]. Feature selection 

attempts to identify and highlight the most informative genes 

in the microarray data sets which have dominant effects on the 

biological states of human cells and that this is the main 

objective of this study.  Removal of less informative genes 

helps to alleviate the effects of noise and redundancy [6] and 

simplifies the task of disease classification and prediction of 

medical conditions such as cancer [7]. Feature selection 

techniques can be classified into three broad categories: Filter 

Technique, Wrapper Model and Embedded Technique. Filter 

technique performs individual gene selection process which is 

independent of the classification model [8]. Filter techniques 

are simple, fast and they tend to easily scale the data sets of 

different dimensions. However the filter technique does not 

take into consideration the performance of its selections and 

most importantly they ignore the biological relationships that 

exist among biological markers [9] and studies show that the 

medical states of individuals are a result of gene interactions 

[7]. Wrapper model generates and evaluates various possible 

subsets from the original dataset and seeks to identify the 

most informative subsets among them. As the search space 

grows exponentially, the heuristic measures are put to use to 

guide the search for the optimal subset. Although the filter 

method considers the gene dependencies, wrapper models 

have an over fitting problem [3] and as a wide range of 

possibilities needs to be addressed, the computational cost is 

high, which in turn results to a longer convergence time. 

 

The ultimate goal of this study is to find the best way of 

feature selection that produces the ideal classification using an 
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evolutionary approach (Genetic Algorithm). This will pave 

the way for better machine perception and hence better data 

intelligibility.  

In this paper, the focus is on the study of existing 

implementations of the different variants of Evolutionary 

Algorithms. Comparative performance analysis of the various 

methods will be done to identify strengths and weaknesses. 

Construction of a model representing the new goal will then 

be done and finally simulation of the model will be done to 

evaluate the effectiveness of the approaches developed 

through the study. In section 1 a brief introduction of the 

study has been provided. Section 2 highlights literature 
review which consists of shifting towards evolutionary 

approach along with a brief introduction on Genetic 

Algorithm. Section 3 elaborates on the proposed 

methodology. Section 4 shows the results from implementing 

our proposed approach on the datasets taken. A comparative 

analysis also creates a fruitfulness of our proposed method 

over other existing implementations based on performance 

analysis. Finally section 5 states conclusion and the possible 

future works on the proposed framework with some existing 

limitations. 

2. LITERATURE REVIEW 

2.1 Evolutionary Algorithms 
PSO: Particle Swarm Optimization is a method that optimizes 

a problem iteratively. PSO treats each solution as a particle 

and starts with a pool of candidate solutions. The particles are 

moved in the search space and the movement of each particle 

is guided by the best known local position. The process is 

iterated as each local solution in found to guide the solution 
towards the global best position or intended optimal solution.  

 

ACO: Ant Colony Optimization relies on a probabilistic 

model so solve problems. The original algorithm was used to 

find the best path in a graph. The algorithm was later modified 

to solve a wide class of problems across various applications. 

 

GA: Genetic Algorithm is a type of Evolutionary Algorithm 

(EA) inspired by the biological method of evolution in which 

an environment is created in which potential solutions can 

evolve. From the population a fitness function selects some 

solutions based on its “goodness” which are subjected to 

genetic operators such Mutation and Crossover which 

generates new population. From this population the entire 

process is repeated until the optimal solution has been found.  

 

In this study binary coded genetic algorithm is highlighted. 

2.1.1 Binary coded Genetic Algorithm 
The binary coded genetic algorithm is a probabilistic search 

algorithm that iteratively transforms a set (called a population) 

of mathematical objects (typically fixed-length binary 

character strings), each with an associated fitness value, into a 

new population of offspring objects using the Darwinian 

principle of natural selection and using operations that are 

patterned after naturally occurring genetic operations, such as 

crossover (sexual recombination) and mutation. Following the 

model of evolution, they establish a population of individuals, 

where each individual corresponds to a point in the search 

space. An objective function is applied to each individual to 

rate their fitness. Using well conceived operators, a next 

generation is formed based upon the survival of the fittest. 

Therefore, the evolution of individuals from generation to 

generation tends to result in fitter individuals, solutions, in the 

search space. Empirical studies have shown that genetic 

algorithms do converge on global optima for large class 

problems. In binary coded genetic algorithms, a population is 

nothing but a collection of “chromosomes” representing 

possible solutions. These chromosomes are altered or 

modified using genetic operators through which a new 

generation is created. This process is repeated a 

predetermined number of times or until no improvement in 

the solution. 

 

 

 

 

 

 

Figure 1: Genetic Loop 

3. PROPOSED METHODOLOGY 
In this paper, a cancer classification mode is proposed which 

has two phases: 1) Gene selection and 2) Classification. The 

first phase uses a gene selection method to select genes, while 

in the second phase a classifier is implemented to perform 

classification process which is shown below- 

 

Here gene expression data is represented as micro-array 

dataset. For gene selection, BFSS is used (Boosted Feature 

Subset Selection) & Cyclic GA (Genetic Algorithm) method 

and classification purpose SVM (Support Vector Machine) 

classifier is used. 

3.1 Boost Feature Subset Selection 
The term boosting means producing a very accurate prediction 

rule by combining rough and moderately inaccurate "rules of 

thumb". In the context of single gene based feature selection 

boosting would improve the performance by identifying the 

weak performers in a particular iteration and in the successive 

iterations it would try to identify features that would perform 

well for those weak performers. The performance of the 

process is said to be “boosted” by giving more emphasis on 

the weak performers in a particular iteration as shown in Xian 

Xu and Aidong Zhang in [5]. 

Before moving to the details of the BFSS algorithm some 

terminologies need to be discussed.  

A bootstrap sample set Sm is a multiset of samples randomly 

drawn with replacement from the original set of samples S. 

s∈  S can appear more than once or does not appear at all in 

Old generation New generation 

Fitness Mutation 

Selection Cross-over 
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Sm.  The sampling probability of each sample in S is 

determined by a probability table p(s) where s∈  S. 

A bootstrap B of a training dataset using bootstrap sample set 

Sm is a dataset containing the samples of Bootstrap sample set 

The worst set of samples Sworst with respect to bootstrap 

dataset B and a single-gene based scoring function F is 

defined as a multiset: 

argmax ( F (E( g, SM - S ) ) ) 

Here Sm - S means a set by removing S from Sm. We also call 

Sm - Sworst , the best set of samples. 

A microarray data set E can be considered as a collection S 

samples each containing G number of genes with each g, g ∈  

G having a an expression value. Boost Feature Subset 

Selection (BFSS) algorithm (as shown in [1]) starts of by 

generating a set of samples called a bootstrap sample set Sm 

which is a multiset of samples obtained by random sampling 

from the pool of all samples S. The probability of a sample 

being selected is equal to p(s) where s ∈  S and initially all 

samples have a probability of 1/S. Using the Sm a bootstrap B 

is generated which is reduced version of the full microarray 

expression set containing all the genes and expression values, 

but containing only the samples present in Sm. After the 

creation of B a single gene based score for each of the score is 

calculated, in [5] F score was used. The gene with the best 

score g for the current B is identified and added to the list of 

selected genes G`. In the next step the samples for which g is 

not informative is identified i.e the worst set of samples.  The 

probability of the remaining set of samples i.e good samples 

are reduced so that in subsequent iterations genes that would 

perform well on the current worst set of samples can be 

selected. g is marked as selected and is not evaluated again by 

the algorithm. BFSS would run until the number of selected 

genes has been found which depends on the dataset being 

evaluated.  

Algorithm 2: BFSS: Boost Feature Subset Selection 

 is the number of genes to be selected;  is a single gene 

based discriminative score 

1. Initialize  to be  (  is the total 

number of samples in the dataset). Set 

2.  as an empty set 

3. For | |<  do 

4. Generate the bootstrap sample set  

5. Calculate score  on bootstrap; keep track of the 

best score so far 

6. Add top ranked gene based on  score to  

7. Find worst  samples  based on gene  

and  using algorithm 1 

8. Reduce the probability for the best set of samples 

(those samples which are classified accurately by 

the gene ) 

9. Remove  from dataset 

End for 

10. Return  

Algorithm 1: Worst Sample Set: Calculate the worst set of 

samples  

1.    to be empty sets 

2. For all  in   do 

3.      – { } 

4. Calculate  score for the gene  , add score to 

 

5. End for 

6. Sort , add samples   corresponding to top  

scores in  to  

7. Return  

 

The Boost feature subset selection algorithm (BFSS) is 

depicted by Algorithm 1 and Algorithm 2. After initialization, 

the Algorithm 2 generates a bootstrap B of training set E 

which also includes the creation of bootstrap sample set and 

then the bootstrap itself using random sampling with 

replacement from S using probability table p(s). 

After bootstrap B is produced, the F score is calculated for 

each gene in B. The gene with best F score for the current B is 

selected and added to the selected gene set G’. Based on this 

best gene g, BFSS ascertains the worst set of samples with 

respect to g and the single-gene based scoring function F 

using Algorithm 1. The probability table p(s) which affects 

the generation of further bootstrap B is updated by reducing 

the probabilities of the non-worst or good samples. Thus the 

probability of selecting these good samples being in the later 

iterations is thus reduced, causing BFSS to shift the focus 

onto those samples that previously selected genes would not 

perform well on i.e the worst set of samples for the current g. 

The currently selected gene is then marked as selected and 

hence it is not considered further by the BFSS algorithm. 

BFSS repeats this process until n` genes are selected. 

Experimentally d was chosen to be 0.96 of the number of 

training samples in a dataset and e to be 0.96.  

3.2 Cyclic Genetic Algorithm (CGA): 
CGA starts executes cycles iteratively which is repeated until 

the required number of genes has been selected. Generating a 

potential subset of genes in the current cycle c, which is used 

for the next cycle (c+1) as its input set, thus selection of genes 

in (c+1) only uses genes given by cycle c to generate potential 

subset. A near-optimal subset is selected among the potential 



International Journal of Computer Applications (0975 – 8887) 

Volume 66– No.18, March 2013 

4 

subsets based on the highest fitness value which is the 

aggregate of the highest LOOCV (leave-One-Out Cross-

Validation) accuracy given by the smallest number of selected 

genes. The cyclic process results a near-optimal subset of 

genes. In each iteration CGA chooses the highest possible 

number of genes in order to avoid the over fitting problem as 

the inclusion of the largest possible subset ensures that the 

combined power of a subset of genes are taken into 

consideration.  The working procedure is shown in the 

flowchart below- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Proposed flowchart for Cyclic Genetic 

Algorithm 

4. EXPERIMENTAL RESULTS: 

4.1 Dataset Details 
Experiments start with the implementation of Boost feature 

subset selection (BFSS). As mentioned earlier the main 

purpose of using BFSS is to provide a better initial population 

for cyclic genetic algorithm (CGA) rather than generating it 

completely on random basis thus avoiding early convergence 

and over-fitting problems. To implement BFSS we have used 

t-score to acquire the scoring of each gene within a specific 

sample. Process of t-score is amalgamated with the algorithm 

of BFSS successfully. This BFSS algorithm is then applied on 

the three publicly available microarray datasets. These 

microarray datasets are:  Acute Lymphoblastic leukemia 

cancer (ALL), Lung cancer and colon cancer. Table 1 

summarizes the data sets. 

Table 1: Summary of Microarray datasets 

 

Dataset 

 

Number of 

Classes 

 

Number of 

Samples in 

the Dataset 

 

Number of 

Genes 

 

ALL 

 

2 (B-cell 

ALL and T-

cell ALL) 

 

128 (95 B-

cell ALL 

and 33 T-

cell ALL) 

 

12625 

 

Lung 

 

2 (MPM 

and ADCA) 

 

181 (31 

MPM and 

150 

ADCA) 

 

12533 

 

Colon 

 

2 (Normal 

and tumor) 

 

62 (22 

normal and 

40 tumor) 

 

2000 

 

From table 1 it is seen that dataset for Colon cancer contains 

the lowest number of genes comparing to other two datasets, 

exposing higher possibilities of misclassifications and over 

fitting. It is because the more the number of samples the more 

we can train classifiers to classify test samples. The outputs of 

BFSS of 3 different datasets which are taken as the initial 

population by CGA are shown in Table 2. 

Table 2: Reduced number of genes by Boost Feature 

Subset Selection 

Datasets Original Number 

Of Genes  

BFSS output 

Leukemia (ALL) 

Cancer 

12625 4000 

Lung Cancer 12533 4000 

Colon 2000 1500 

 

Define Probability of Crossover, Probabilty of 

Mutation 

Generate the initial population individually using 

Binary encoding 

 Evaluate the fitness of each individual from the fitness 

function and sort in descending order (Cycle = 1) 

 
A certain no. of individual were selected for cross-

over and the child population were generated 

 

The poulation obtained is the 

optimal solution 

 

Select the best fit individual to form the elitist 

individual which act as the population for next 

generation 

 

A few individual were mutated to generate the 

mutated population 

 
The initial population, child population, mutated population 

formed the total poulation. Evaluate the fitness function and 

sort in descending order 

 

No 

Yes 

Start 

Stop 

Termination condition 

 Cycle = 

Cycle+1 
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The number of genes to be given by BFSS as output for the 

initial population of Cyclic GA was set roughly as 30-32% of 

the total number of genes for leukemia and lung cancer 

datasets. Therefore Cyclic GA will take 4000 as the initial 

population for these two datasets. As the number of genes in 

colon cancer datasets is only 2000, output of BFSS for this 

dataset was set to 75% of total number of genes, which is 

1500 genes.  

4.2 Performance Analysis 
The implementation of Boosted Cyclic GA requires the 

implementation of Boost Feature Subset Selection (BFSS) and 

then GA and Cyclic GA successively.  Then BFSS and Cyclic 

GA are combined to produce our proposed approach Boosted 

Cyclic GA (BCGA). This sequence of implementation 

provided the opportunity to compare the proposed method 

Boosted Cyclic GA (BCGA) with the related previous works 

like GA and simple Cyclic GA. Different predefined 

parameters for GA, CGA and BCGA are given in Table 3.  

Table 3: Parameters for Cyclic-GA 

 

Dataset 

 

ALL 

 

Lung 

 

Colon 

 

Initial 

Population 

 

4000 

 

4000 

 

1500 

 

Number of 

Generations 

 

200 

 

200 

 

200 

 

Crossover Rate 

 

0.9 

 

0.9 

 

0.9 

 

Mutation Rate 

 

0.03 

 

0.03 

 

0.03 

 

To explore and observe the diversified results of the Boosted 

Cyclic GA, two classifiers are used namely KNN and SVM. 

On the other hand GA and Cyclic GA were implemented and 

tested only with SVM classifier. Cyclic GA creates possible 

potential subset of genes in each cycle and it reduces the 

number of genes in successive cycles. Now the termination 

condition could be set as the lowest number of genes 

produced by Cyclic GA beyond which it cannot be reduced 

further. But the motivation was to combine some reasonable 

number of genes that can hold the characteristics of diversity, 

providing higher accuracy and can classify maximum number 

samples avoiding the possibility of over fitting problem. For 

example in this experiment, 10 is used as the minimum 

number of genes which can be produced in a cycle of Cyclic 

GA.  This condition holds for both Cyclic GA and our 

proposed approach Boosted cyclic GA throughout the 

experimental processes. The results after applying our 

proposed approach Boosted Cyclic GA on the leukemia 

(ALL) dataset are given in Table 4. This table contains the 

accuracies provided by the two classifiers along with the 

respective number of selected genes in 10 independent runs. 

At the end of the table the average values and also the 

standard deviations are given. The best accuracy with the 

number of selected genes and also the best average accuracy 

are shaded for noticing them easily. 

Table 4: Classification accuracies and number of genes 

selected by Boosted Cyclic GA for leukemia (ALL) dataset 

No. of 

Runs 

Leukemia Cancer 

BCG

A-

KNN 

#Selected 

Genes(KNN) 

BCG

A-

SVM 

#Selected 

Genes(SVM) 

1 94.63 16 95.48 17 

2 96.19 15 94.79 15 

3 93.89 10 96.24 18 

4 95.34 13 94.49 11 

5 96.29 13 97.87 16 

6 96.78 15 96.21 14 

7 98.19 18 97.64 18 

8 97.92 18 95.84 22 

9 97.16 18 97.98 16 

10 95.49 16 97.14 15 

Avera

ge ± 

S.D. 

96.08

±1.28 

15.2±2.61 96.37

±1.26 

16.2±2.89 

 

Table 4 shows that the highest accuracy was achieved by 

BCGA-KNN approach with accuracy of 98.19% and it was 
achieved only with 18 genes from a total of 12625 genes. On 

the other hand the BCGA-SVM provides the best average 

accuracy of 96.37% with a standard deviation of 1.26. So if 

we consider the overall performance and compare the average 

accuracies then definitely BCGA-SVM has shown better 

performance. Results after applying BCGA-KNN and BCGA-

SVM on lung cancer dataset are given in Table 5. 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 66– No.18, March 2013 

6 

Table 5: Classification accuracies and number of genes 

selected by Boosted Cyclic GA for lung cancer dataset 

No. of 

Runs 

Lung Cancer 

 BCGA-

KNN 

#Selected 

Genes(KN

N) 

BCGA-

SVM 

#Selected 

Genes(SV

M) 

1 87.93        23 89.71 26 

2 86.19 27 90.56 23 

3 89.63 23 87.13 21 

4 89.56 23 89.53 23 

5 89.13 26 89.92 29 

6 87.89 34 87.31 21 

7 88.23 23 89.59 23 

8 88.73 29 87.94 29 

9 86.27 21 88.43 22 

10 89.76 27 87.29 23 

Averag

e± S.D 

88.33±1.

30 

25.6±3.86 88.74±1.

27 

24±2.98 

 

From table 5 it is seen that BCGA-SVM provides both highest 

accuracy which is 90.56% with only 23 genes from a total of 

12533 genes and better average accuracy of 88.74% with 1.27 

as standard deviation. 

Results after applying the proposed approaches on Colon 

cancer dataset are given in Table 6. 

Table 6:  Classification accuracies and number of genes 

selected by Boosted Cyclic GA for colon cancer dataset 

No. of 

Runs 

Colon Cancer 

 BCGA-

KNN 

#Selected 

Genes(KN

N) 

BCGA-

SVM 

#Selected 

Genes(SV

M) 

1 87.34 24 88.23 23 

2 86.47 19 86.65 26 

3 86.32 19 86.74 19 

4 89.43 18 87.43 22 

5 88.54 22 85.76 23 

6 88.75 21 88.84 19 

7 88.83 19 86.64 18 

8 87.85 23 87.82 24 

9 85.23 19 89.73 20 

10 88.27 19 91.43 22 

Avera

ge ± 

S.D 

87.70±1.

34 

20.3±2.06 87.93±1.

70 

21.6±2.55 

 

Table 6 shows that the highest accuracy is achieved by 

BCGA-SVM which is 91.43% with only 22 genes and the 

best average accuracy is 87.93% with standard deviation of 

1.70. Results for GA and CGA on leukemia cancer dataset, 

lung cancer dataset and colon cancer dataset are given in 

Table 7, Table 8 and Table 9 respectively. 

Table 7: Classification accuracies and number of genes 

selected by GA and Cyclic GA for leukemia (ALL) cancer 

dataset 

No. 

of 

Ru

ns 

Leukomia (ALL) Cancer 

 GASV

M 

#Selected 

Genes(GAS

VM) 

CGASV

M 

#Selected 

Genes(CGAS

VM) 

1 83.16 14 89.64 21 

2 84.38 16 88.91 16 

3 82.29 18 90.13 19 

4 83.61 20 96.12 18 

5 85.27 22 92.38 20 

6 81.37 24 89.49 16 

7 83.43 26 93.37 15 

8 88.24 28 94.42 17 

9 80.94 30 91.57 19 

10 85.31 32 89.29 18 
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Average SD is 83.80±2.14 (GASVM), No. of Selected Genes 

are 23±6.06; Average SD for CGASVM (91.53±2.48), No. of 

Selected Genes 17.90±1.91. From Table 7 it is seen that best 

result for GASVM is 88.24% with 28 genes. On the other 

hand best result for CGASVM is 96.12% with only 18 genes 

and it has average 91.53% accuracy with standard deviation of 

2.48, which is higher than basic GASVM method. Another 

noticing fact we have found is that CGASVM selects 17.90 

genes, which can be rounded to 18 genes on average with 

standard deviation of 1.91; it is lesser than the GASVM 

method. 

After applying the GASVM and CGASVM on lung cancer 

dataset it is found that CGASVM provides the best accuracy 

of 89.32% with only 32 genes among the two methods and it 

has also better average accuracy of 86.89% with 1.54 as 

standard deviation. Best accuracy for GASVM method is 

87.92% with 32 genes and this method has an average of only 

84.85% with standard deviation of 1.54. 

Table 8: Classification accuracies and number of genes 

selected by GA and Cyclic GA for lung cancer dataset 

No. 

of 

Runs 

Lung Cancer 

 GASV

M 

#Selected 

Genes(GAS

VM) 

CGASV

M 

#Selected 

Genes(CGA

SVM) 

1 85.39 14 85.73 35 

2 84.16 16 87.19 33 

3 83.27 18 89.13 29 

4 84.96 20 86.17 34 

5 86.49 22 87.73 27 

6 83.31 24 89.32 32 

7 84.78 26 84.74 34 

8 82.96 28 86.28 31 

9 85.17 30 87.43 34 

10 87.92 32 85.27 34 

Average 

± S.D 

84.85±1.

54 

 

23±6.06 86.89±1

.54 

 

32.3±2.58 

 

 

Table 9: Classification accuracies and number of genes 

selected by GA and Cyclic GA for colon cancer dataset 

No. of 

Runs 

Colon Cancer 

 GASV

M 

#Selected 

Genes(GAS

VM) 

CGAS

VM 

#Selected 

Genes(CGA

SVM) 

1 84.76 14 87.63 27 

2 82.43 16 84.83 26 

3 84.89 18 84.72 28 

4 83.94 20 85.96 25 

5 81.54 22 86.13 25 

6 85.32 24 86.43 24 

7 86.27 26 85.39 26 

8 82.64 28 86.13 25 

9 81.76 30 89.74 23 

10 81.29 32 86.64 26 

Avera

ge ± 

S.D 

83.48±1

.77 

 

23±6.06 86.36±1

.46 

 

25.5±1.43 

 

From Table 9 it is see that the best accuracy is achieved by 

CGASVM which is 89.74% with only 23 genes and 

CGASVM yields 86.36% accuracy on average with 1.46 as 

standard deviation. On the other hand GASVM method 

provides 86.27% as highest accuracy with 26 genes and 

83.48% accuracy on average with 1.77 as standard deviation. 

This indeed shows that CGASVM performs better than 

GASVM method. 

4.3 Comparative Analysis 
Table 10 and Table 11 show a comparison among BCGA-

KNN, BCGA-SVM and related previous works namely GA 

and CGA by means of average accuracies, best accuracies and 

also the number of selected genes.  
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Table 10: Comparison of accuracies (%) obtained by 

Boosted Cyclic GA and other related previous methods. 

Datas

et 

A

C

O 

PS

O 

GA-

SVM 

CGA-

SVM 

BCGA

-KNN 

BCGA

-SVM 

Leuke

mia 

(Aver

age 

±SD; 

The 

Best) 

83.

89 

---- 

84.

22 

---- 

83.80±

2.14; 

88.24 

91.53±

2.48; 

96.12 

96.08±

1.28; 

98.19 

96.37±

1.26; 

97.98 

Colon 

(Aver

age 

±SD; 

The 

Best) 

76.

87 

---- 

79.

69 

---- 

83.48±

1.77; 

86.27 

86.36±

1.46; 

89.74 

87.70±

1.34; 

90.43 

87.93±

1.70; 

91.43 

Lung 

(Aver

age 

±SD; 

The 

Best) 

79.

76 

---- 

80.

09 

---- 

84.85±

1.54; 

87.92 

86.89±

1.54; 

89.32 

88.33±

1.30; 

89.97 

88.74±

1.27; 

90.56 

 

From Table 10 it is seen that our proposed method Boosted 

Cyclic Genetic Algorithm has significantly outperformed 

previous related works namely Genetic Algorithm and Cyclic 

Genetic Algorithm. Both BCGA-KNN and BCGA-SVM 

provides better accuracy than the other two but BCGA-SVM 

shows better result than BCGA-KNN. 

Table 11: Comparison of number of genes selected by 

Boosted Cyclic GA and other related previous methods 

Dataset Origin

al 

Genes 

Selected Genes 

GA-

SVM 

CGA-

SVM 

BCGA-

KNN 

BCGA-

SVM 

Leuke

mia 

(Avera

ge 

±S.D.) 

12625 23±6.

06 

17.90±1.

91 

15.2±2.

61 

16.2±2.

89 

Colon 

(Avera

ge 

±S.D.) 

2000 23±6.

06 

25.5±1.4

3 

20.3±2.

06 

21.6±2.

55 

Lung 

(Avera

ge 

±S.D.) 

12533 23±6.

06 

32.3±2.5

8 

25.6±3.

86 

24±2.9

8 

 

Table 11 shows that the proposed method has selected less 

number of genes than the other two methods. The average 

number of genes selected by BCGA-KNN is lesser than GA, 

CGA and BCGA-SVM except for the Lung cancer dataset 

where BCGA-SVM has selected lesser number of genes than 

other methods. 

The comparison among different methods is graphically 

represented in Figure 1, Figure 2 and Figure 3 for leukemia, 

lung and colon cancer datasets respectively where X-axis 

represents number of selected genes and Y-axis represent 

accuracies (%) for each independent run. 

 

Figure 3: Graphical representation of comparison for 

leukemia (ALL) cancer dataset. 
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Figure 4: Graphical representation of comparison for lung 

cancer dataset. 

 

Figure 5: Graphical representation of comparison for 

colon cancer dataset. 

From the graphs, a clear contrast is viewed between the 

performance of BCGA and other methods. For GA we 

predefined the number of genes for output. This number was 

set to be different for every independent run in order to 

observe the fluctuation of accuracies for different number of 

genes. From Figure 5 it is seen that CGA-SVM, BCGA-KNN 

and BCGA-SVM provide accuracies which fluctuate between 

the ranges 10-22 along the X-axis which represents the 

number of selected genes. With a closer inspection it can be 

observed that BCGA-KNN and BCGA-SVM provides better 

accuracies starting from 10 along the X-axis. Thus it is clear 

that BCGA starts exploration within the problem space from 

different points and yet it can provide better solution in most 

cases with lesser number of genes comparing with GA and 

CGA. The same phenomenon can be observed for other two 

datasets in Figure 6 and Figure 7.  

5. CONCLUSION AND FUTURE WORK 
In this study, the proposed framework is used only on 

microarray datasets. Traditional GA suffered from some 

problems namely random initial population, high convergence 

time, overfitting among others. Using the proposed 

framework the limitations of traditional GA were alleviated as 

shown earlier. Using a Boosted Filter Approach as the 

processing step, the random initial population and high 

convergence time problems problem were removed. Then 

using CGA overfitting problem was successfully reduced by 

incrementally reducing the steps in each iteration. For future 

development, this framework can also be used for other high 

dimensional data used in other fields such as archeology, 

geography, climate study, data mining, image processing and 

many others. The data analysis is expected to produce good 

results for these other datasets.  Even in the field of 

specialization, the proposed framework was not used on all 

the microarray datasets such as brain cancer, bone cancer, 

stomach cancer etc. Also there are many classifiers available; 

in our study we have used SVM and KNN classifiers. Other 

classifiers such as C4.5, Naïve Bayes Classifier can also be 

integrated with the proposed framework for an enhanced 

comparative analysis. 
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