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ABSTRACT 

A novel digitally programmable floating impedance converter 

circuit is realized using two CMOS digitally programmable 

differential voltage current conveyors and three grounded 

passive elements. The realized impedance converter can 

provide digitally programmable floating impedances like ideal 

floating resistor, capacitor, inductor and frequency dependent 

negative resistor through appropriate selection of three 

grounded passive elements without any component matching 

constraint. The realized digitally programmable floating 

impedance converter is   designed and verified using PSPICE 

and the results thus obtained justify the theory. 
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1. INTRODUCTION 
For over last two decades the current conveyors have been   

dominating in the area of analog signal processing due to their 

functional versatility in addition to higher signal bandwidth 

and greater linearity. As a result vast variety of linear and 

nonlinear analog signal processing applications are reported in 

technical literature [1-34]. Recently, the introduction of digital 

control to the current conveyor (CCII) has eased the on chip 

control of continuous time systems with high resolution 

capability and reconfigurability [15-26]. Such reconfigurable 

modules are suitable for realizing the field programmable 

analog array [22-24], [35-37]. 

In analog signal processing applications the component 

simulators play an important role and several component 

simulators are reported in technical literature employing 

current conveyors as well [27-34]. However, many of them 

use a complex circuitry and component matching constraints. 

The component matching constraints increase the system 

parameter sensitivity to the unacceptable level [34].  

 In this paper a novel digitally programmable floating   

impedance converter (DPFIC) is presented which uses two 

digitally programmable differential voltage current conveyors 

(DPDVCC) and three grounded passive components. The 

realized DPFIC can provide ideal floating resistor, capacitor, 

inductor and frequency dependent negative resistor (FDNR)   

through appropriate selection of three grounded passive 

elements without any component matching constraint. All the 

DPFIC based simulated floating components can be digitally   

controlled and possess low sensitivity. To verify the proposed 

theory the DPFIC is used to simulate the floating ideal 

inductor and floating ideal frequency dependent negative 

resistor (FDNR). The simulated ideal floating inductor and 

ideal floating FDNR, respectively have been used to realize 

the prototype second order low pass filter (LPF) and high pass 

filter (HPF). These the DPFIC based LPF and HPF are 

designed and verified using PSPICE and the results thus 

obtained justify the theory. 

2. THE CMOS DPDVCC 
The digitally programmable differential voltage current 

conveyor (DPDVCC) symbol is shown in “Figure 1(a)” and 

its CMOS implementation with 4-bit current summing 

network (CSN) at port-Z is shown in “Figure 1(b)”. The 

transfer matrix of the DPDVCC can be expressed as 
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Thus the port voltages and currents for the DPDVCC can be 

expressed as                      
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where, N is an n-bit digital control word. The power integer   

‘m = 1’ for current summing network (CSN) at port-Z and     

m = -1 for the CSN at port-X of the DPDVCC [20-26]. 
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Fig 1(a): Symbol for DPDVCC 
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Fig 1(b): The CMOS implementation of a DPDVCC with 4-bit CSN at Z+ and Z- terminals

3. THE DPFIC CIRCUIT 
The realized digitally programmable floating impedance 

converter (DPFIC) using DPDVCC of “Figure 1” with ‘m=1’, 

is given in “Figure 2”. 
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Fig 2: The DPFIC circuit   

The routine analysis yields its admittance matrix as follows. 
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Thus the equivalent floating impedance Zf can be expressed as 
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The realized floating impedance given in equation (4) can 

result the following digitally programmable floating ideal 

element simulators through appropriate selection of three 

grounded impedances Z1, Z2 and Z3.  

(i) Digitally programmable ideal floating resistor (R):        

If Z1=R1, Z2=R2 and Z3=R3, then Zf =(R1R3/R2)N
2, 

with R = ( R1R3/R2 )N
2. 

(ii) Digitally programmable ideal floating capacitor (C):           

If Z1=1/sC1, Z2=R2 and Z3=R3, then Zf =1/s(C1R2/R3)N
2, 

with C = (C1R2/R3)N
2. 

(iii)  Digitally programmable ideal floating inductor (L):                    

If Z1=R1,   Z2=1/sC2 and Z3=R3, then Zf = s(R1R3C2)/N
2, 

with L = (R1R3C2)/N
2. 

(iv) Digitally programmable ideal floating FDNR (D):                

If Z1=1/sC1, Z2=R2 and Z3=1/sC3, then                                   

Zf  = 1/s2(C1C3R2)N
2, with D = (C1C3R2)N

2. 

Thus, the realized DPFIC simulates the digitally   

programmable ideal floating resistor, capacitor, inductor and 

FDNR without any matching constraint. The incremental 

sensitivity measures of the above realized floating impedances 

with respect to various passive elements and the control word 

N, are analyzed and expressed as follows.  

|1|,,, 321
fZ

NZZZS    (5) 

From equation (5), it is evident that the incremental sensitivity 

measures of the realized floating impedance with respect to 

various passive elements are unity in magnitude [34].   

Taking the tracking errors of the DPDVCC into account, the 

relationship of the terminal voltages and currents of the 

DPDVCC can be rewritten as 
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where, β is the voltage transfer gain from Y to X terminal and 

α is the current transfer gain of the DVCC from X to Z 

terminal. The above transfer gains slightly deviate from unity 

and the deviations are quite small and technology dependent 

[13]. By including these non-ideal effects the DPDVCC the 

floating impedance given in equation (4) is modified as 

follows. 
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Thus, from equation (7) it is observed that the magnitude of 

the floating impedance Zf may get slightly affected due to non 

idealities of the DPDVCC. 

4. DESIGN AND VERIFICATION 
The realized DPFIC of “Figure 2” was designed and verified 

by performing PSPICE simulation with supply voltage ± 2.5 

V, using CMOS TSMC 0.25 μm technology parameters. The 

aspect ratios used are given in the Table 1. The DPFIC was 

used to design a digitally programmable ideal floating 

inductor (L) and FDNR (D), which were used in second order     

Table 1: The aspect ratios of the MOSFETs of the DPCCII 

MOSFETs 
W  

μm 

L  

μm 

M1, M2, M3, M4 

M5, M6 

M7, M8,  

0.8 

4 

14 

0.25 

0.25 

0.25 

M9, M13, M14,, M11, M25, M17, M39  

M19, M26, M33, M40 

M20, M27, M34, M41 

M21, M28, M35, M42 

25 

50 

100 

200 

0.25 

0.25 

0.25 

0.25 

 M10, M15, M16, M12, M29, M18, M43 

M22, M30, M36, M44 

M23, M31, M37, M45 

M24, M32, M38, M46 

10 

20 

40 

80 

0.25 

0.25 

0.25 

0.25 

 

low pass filter (LPF)  and  high  pass  filter (HPF), 

respectively as shown in “Figure 3(a)” and “Figure 4(a)”. 

Thus the resulting DPFIC based LPF and HPF, are 

respectively shown in “Figure 3(b)” and “Figure 4(b)”. The 

cutoff frequency (f0) and pole-Q of the LPF with R1=R3=R 

and C2=C0=C, can be expressed as follows. 
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Similarly, the cutoff frequency (f0) and pole-Q of the HPF 

with C1=C3=C and R2=R0=R, can be expressed as follows. 
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Thus from equation (8) and (9) it is evident that the cutoff 

frequency f0 of the LPF is directly proportional to the digital 

control word N while for HPF it is inversely proportional to 

N.  It is to be noted that with N the pole-Q also increases in 

both the cases which can be readjusted with resistor R0 for 

LPF and with C0 for HPF. Initially the LPF was designed for a 

cutoff frequency f0 = 100KHz and Q = 0.707 at N=1. Using 

equation (8) the designed values were found as R1=R3=R= 37 

KΩ, R0=26.16KΩ, C2=C0=C= 0.043 nF. Then to control the 

cutoff frequency f0, the digital control word N was changed to 

2, 4, 8 and 15, and the pole-Q was readjusted to 0.707 through 

R0. Thus the results observed are shown in “Figure 3(c). 
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Fig 3(a): The prototype second order LPF 
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Fig 3(b): The DPFIC based second order LPF 
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Fig 3(c): The frequency response of the LPF using  

              Digitally controlled ideal floating inductor  

              realized from DPFIC, at different control word N 

Similarly, the DPFIC based HPF of “Figure 4(b) was also 

designed for a cutoff frequency f0 = 100 KHz and Q = 0.707 at 

N=1. Using equation (9) the designed values were found as 

C1=C3=C= 0.043 nF, R2=R0=R= 37 KΩ, C0= 0.0608 nF. Then 

to control the cutoff frequency f0, the digital control word N 

was changed to 2, 4, 8 and 15, and the pole-Q was readjusted 

to 0.707 through C0. The results observed for HPF are shown 
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in “Figure 4(c). Thus the observed results of “Figure 3(c) and 

“Figure 4(c)”, show the close conformity with the theory. 
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Fig 4(a): The prototype second order HPF and its 1/s 

transformed version 
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Fig 4(b): The DPFIC based second order HPF 
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Fig 4(c): The frequency response of the HPF using  

              Digitally controlled ideal floating FDNR 

              realized from DPFIC, at different control word N 

5. COMPARATIVE STUDY 
The digitally programmable floating impedance converter 

presented in this paper, is compared with some other floating 

impedance converters available in recent technical literature 

and the comparative results are given in Table 2. It is 

observed from the Table 2 that DPFIC presented here, enjoys 

the additional feature of digital programmability and 

reconfigurability along with the low sensitivity, over the other 

floating impedance converters. 

Table 2: The comparative results 

Ref. No. 
No. of 

Active 

Devices 

No. of 

Passive 

Elements 

Passive 

Elements 

Matching 

Digital 

Control 

[30] 

Fig 3(a) 

3 

CCII 
3 No No 

[30] 

Fig 3(b-d) 

2 

CCII 
5 No No 

[33] 

Fig 4 

2 

DDCC 
3 Yes No 

[34] 

Fig 1 

2 

CFOA 
5 Yes No 

Proposed 

DPFIC  

Fig 2 

2 

DPDVCC 
3 No Yes 

  

6. CONCLUSION 
A novel digitally programmable floating impedance converter 

is presented which uses two digitally programmable 

differential voltage current conveyors and three grounded 

passive components. The realized digitally programmable 

floating   impedance converter provides ideal floating resistor, 

capacitor, inductor and frequency dependent negative resistor   

through appropriate selection of three grounded passive 

elements without any component matching constraint. All the 

digitally programmable floating impedance converter based 

simulated ideal floating components are digitally   

programmable and possess low sensitivity figures. These 

reconfigurable modules are suitable for realizing the field 

programmable analog array. To verify the proposed theory the 

digitally programmable floating   impedance converter is used 

to simulate the floating ideal inductor and floating ideal 

frequency dependent negative resistor. The simulated ideal 

floating inductor and ideal floating frequency dependent 

negative resistor, respectively have been used to realize the 

prototype second order low pass filter and high pass filter. 

The digitally programmable floating impedance converter 

based low pass and high pass filters were designed and 

verified using PSPICE and the results thus obtained justify the 

theory. 
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